Lifshitz as a deformation of AdS

Kostas Skenderis

University of Amsterdam

Gravity Theories and their Avatars Crete, 18 July 2012

 Based on Yegor Korovin, KS, Marika Taylor, Lifshitz as a deformation of AdS to appear

A (10) A (10) A (10)

Introduction

- Gauge/gravity dualities have been an important new tool in extracting strong coupling physics.
- In particular, there has been a lot of activity recently aiming at using holography in order to model strongly interacting condensed matter systems.
- More precisely, several interesting condensed matter systems exhibit strongly interacting non-relativistic scale invariant fixed points and one may hope to use gauge/gravity duality to study them.
- To this end supergravity solutions with Schrödinger and Lifshitz isometries were constructed and studied.

- The idea here is that the holographic models may allows to uncover new universality classes, not easily accessible with conventional perturbative methods.
- One should emphasize however that there is very little a priori evidence that the holographic models actually describe physics appropriate for the condensed matter systems.

- The predominant approach has been to proceed phenomenologically and probe the relevance of these models by computing observables holographically and comparing to experimental results.
- Our goal is to understand better the dual theory from first principles.

Introduction: main idea

The main problems with getting a handle on the dual theory are:

- These models have been constructed in a bottom-up approach so we can't directly use string theory to get clues about the dual theory.
- The geometries are not asymptotically AdS so the usual holographic dictionary and intuition does not directly apply.
- Our main idea is try to tune the parameters of the gravitational solutions so that they become deformations of asymptotically AdS solutions.
 - Then, at least for such parameters, one can use standard AdS/CFT to understand the dual theory.

< 🗇 🕨 < 🖻 🕨

Holography for Schrödinger

This approached was exploited in [Guica, KS, Taylor, van Rees (2010)] for the Schrödinger spacetimes

$$ds^{2} = -\frac{b^{2}du^{2}}{r^{2z}} + \frac{2dudv + dx^{i}dx^{i} + dr^{2}}{r^{2}},$$

- For z = 2, this metric realizes geometrically the Schrödinger group in (d − 1) dimensions [Son (2008)], [K. Balasubramanian, McGreevy (2008)].
- For d = 2 this is the "null warped AdS_3 " solution of topologically massive gravity with $\mu = 3$ [Anninos et al (2008)].

< □ > < @ > < E > < E</pre>

Schrödinger as a deformation of AdS

$$ds^{2} = -\frac{b^{2}du^{2}}{r^{4}} + \frac{2dudv + dx^{i}dx^{i} + dr^{2}}{r^{2}},$$

- This metric is not asymptotically AdS.
- The metric becomes the AdS metric when b=0: Schrödinger is a deformation of AdS
- Considering the small *b* limit the geometry is a small perturbation of *AdS* and standard *AdS/CFT* applies.

A (1) > A (1) > A

The QFT dual to Schrödinger

The dual QFT is a deformation of a relativistic CFT:

$$S_{CFT} o S_{CFT} + \int d^d x \ b X_i$$

- $\rightarrow X_i$ is an irrelevant operator from the perspective of the original CFT.
- $\rightarrow X_i$ is exactly marginal operator from the perspective of the Schrödinger symmetry [Guica, KS, Taylor, van Rees (2010)] [Kraus, Perlmutter (2011)].
- Apart from elucidating the duality and irrespectively of it, this shows that there is a new general class of theories with Schödinger symmetry, obtained from deformations of relativistic conformal theories [for a recent application see [Hofman, Strominger (2011)].

The QFT dual to Schrödinger

The dual QFT is a deformation of a relativistic CFT:

$$S_{CFT} o S_{CFT} + \int d^d x \ b X_i$$

- $\rightarrow X_i$ is an irrelevant operator from the perspective of the original CFT.
- $\rightarrow X_i$ is exactly marginal operator from the perspective of the Schrödinger symmetry [Guica, KS, Taylor, van Rees (2010)] [Kraus, Perlmutter (2011)].
- Apart from elucidating the duality and irrespectively of it, this shows that there is a new general class of theories with Schödinger symmetry, obtained from deformations of relativistic conformal theories [for a recent application see [Hofman, Strominger (2011)].

Lifshitz spacetimes

In this work we aim to reach a similar understanding for Lifshitz spacetimes [Kachru, Liu Mulligan (2008)].

$$ds^2 = dr^2 - e^{2zr/l}dt^2 + e^{2r/l}dx^a dx_a$$

The Lifshitz symmetry is realized by the following isometry,

$$t \to e^{z\lambda}t, \qquad x^a \to e^{\lambda}x^a, \qquad r \to r - \lambda l.$$

- This solution in not asymptotically AdS.
- The only parameter that appears in the solution is the dynamical exponent z, so one may try to tune it in order the solution to become a deformation of AdS.

Lifshitz as a deformation of AdS

There are three known ways to view Lifshitz as a deformation of AdS.

- 1. In the limit $z \to \infty$ the solution becomes $AdS_2 \times \mathbb{R}^{d-2}$.
- This limit is not very useful because there is no clean holographic dictionary for this solution (because of the subtleties with AdS₂ holography and the presence of the R^{d-2} factor).

Lifshitz as deformation of AdS

- 2. The z = 2 case can be oxidized to a z = 0 Schrödinger spacetime in one dimension higher [Costa, Taylor (2011)] [Narayan (2011)] and we just argued that Schrödinger is a deformation of AdS. This was recently pursued in [Chemissany etal (2012)].
- The problem with this is that the reduction circle becomes null at infinity. This implies that the dual QFT would have the interpretation of a DLCQ of a deformed CFT ...
- 3. For $z \approx 1$ the solution is a deformation of AdS.
- There are no subtleties with this case: one can use standard AdS/CFT in order to study the dual QFT.

A (1) > A (1) > A

Lifshitz as deformation of AdS

- 2. The z = 2 case can be oxidized to a z = 0 Schrödinger spacetime in one dimension higher [Costa, Taylor (2011)] [Narayan (2011)] and we just argued that Schrödinger is a deformation of AdS. This was recently pursued in [Chemissany etal (2012)].
- The problem with this is that the reduction circle becomes null at infinity. This implies that the dual QFT would have the interpretation of a DLCQ of a deformed CFT ...
- 3. For $z \approx 1$ the solution is a deformation of AdS.
- There are no subtleties with this case: one can use standard AdS/CFT in order to study the dual QFT.

A (1) > A (1) > A

Condensed matter systems with z pprox 1

A number of theoretical models with dynamical exponents close to one have appeared in the condensed matter literature.

- Quantum spin systems with quenched disorder.
- Quantum Hall systems.
- Graphene.
- Spin liquids in the presence of non-magnetic disorder.
- Quantum transitions to and from the superconducting state in high T_c superconductors.

 $z\approx 1$ systems are also relevant for the study of the IR limit of Hořava-Lifshitz gravity.

A (1) > A (2) > A

Experimental evidence for $z \approx 1$ systems

There is further experimental evidence for quantum critical behavior with $z \approx 1$ in:

- the transition from the insulator to superconductor in the underdoped region of certain high T_c superconductors [Zuev et al PRL(2005)], [Matthey etal PRL(2007)] [Broun etal PRL (2007)].
- the transition from the superconductor to metal in the overdoped region of certain high T_c superconductors [Lemberger etal PLB (2011)].

> < (2) > < (2) > <</p>

1 Lifshitz models

- 2 Holographic dictionary
- 3 Dual QFT
- 4 Lifshitz black holes
- 5 Conclusions

1 Lifshitz models

- 2 Holographic dictionary
- 3 Dual QFT
- 4 Lifshitz black holes
- 5 Conclusions

▲圖 ▶ ▲ 臣 ▶ ▲ 臣

The holographic model

We will use the formulation in terms gravity coupled to a massive vector [Taylor (2008)]

$$S = \frac{1}{16\pi G_{d+1}} \int d^{d+1}x \sqrt{G} \left[R + d(d-1) - \frac{1}{4}F^2 - \frac{1}{2}M^2A^2 \right]$$

Relative to prior literature we rescaled the fields such that the AdS critical point has AdS radius $l^2 = 1$.

This model admits a Lifshitz solution

$$ds^{2} = dr^{2} - e^{2zr/l}dt^{2} + e^{2r/l}dx^{a}dx_{a};$$

$$A = Ae^{zr/l}dt, \qquad A^{2} = \frac{2(z-1)}{z},$$

provided the mass is given by

$$M^{2} = \frac{zd(d-1)^{2}}{z^{2} + z(d-2) + (d-1)^{2}}$$

The holographic model

Standard AdS/CFT duality implies that this Lagrangian, expanded around the AdS critical point, describes a relativistic CFT which has a vector primary operator J_i of dimension

$$\Delta = \frac{d}{2} + \sqrt{(\frac{d}{2} - 1)^2 + \frac{zd(d-1)^2}{z^2 + z(d-2) + (d-1)^2}}$$

The same theory admits a Lifshitz critical point with dynamic critical exponent z, if

$$M^{2} = \frac{zd(d-1)^{2}}{z^{2} + z(d-2) + (d-1)^{2}}$$

viewed an equation for z has real solutions with z > 1.

Top-down models?

Thus a necessary condition for obtaining such a Lifshitz theory with critical exponent z_+ or z_- is that the spectrum of the *AdS critical point* contains vector modes with mass within the following range

	z_+	<i>z</i> _
d = 2	$0 < M^2 \le 1$	$M^{2} = 1$
d = 3	$0 < M^2 \le 2.4$	$2.33 < M^2 \le 2.4$
d = 4	$0 < M^2 \le 9/2$	$4.29 < M^2 \le 9/2$

This is only a necessary condition because one needs to additionally check that it is consistent to retain only the massive vector mode.

Top-down models?

The simplest AdS compactifications do contain modes in the allowed range:

- The $AdS_3 \times S^3$ spectrum contains vector modes with $M^2 = 1$, leading to z = 1.
- The $AdS_4 \times S^7$ spectrum contains two such massive vectors:
 - > $M^2 = 3/4$, leading to $z \approx 14.72$.
 - > $M^2 = 1$, leading to either z = 4 or z = 1.
- The $AdS_5 \times S^5$ spectrum contains one massive vector in the allowed range, $M^2 = 3$, leading to either z = 9 or z = 1.

Consistent truncation to only these modes is a non-trivial condition that still needs to be checked (in progress).

A (10) > A (10) > A

The $z \approx 1$ case

Leaving aside the top-down models, we now focus on the case $z = 1 + \epsilon^2$, with $\epsilon \ll 1$.

This can be achieved by taking

$$M^{2} = (d-1) + (d-2)\epsilon^{2} + \frac{1+d-d^{2}}{d(d-1)}\epsilon^{4} + \cdots$$

The Lifshitz solution now becomes Asymptotically AdS and its dual interpretation can be obtained using the standard AdS/CFT dictionary.

A (1) > A (1) > A

The QFT dual to Lifshitz with $z = 1 + \epsilon^2$

The dual theory is a deformation of a relativistic CFT by the time component of a vector primary J^{μ} of dimension *d*,

$$S_{CFT} \to S_{CFT} + \sqrt{2} \int d^d x \epsilon J^t.$$

- ∢ ⊒ ▶

1 Lifshitz models

- 2 Holographic dictionary
- 3 Dual QFT
- 4 Lifshitz black holes
- 5 Conclusions

▲圖 ▶ ▲ 臣 ▶ ▲ 臣

Holographic dictionary

We are now going set up the holographic dictionary working perturbatively in ϵ .

- Holographic renormalization for general z was studied by a number of authors [Ross (2011)], [Baggio et al (2011)] [Griffin et al (2011)].
- When *ϵ* ~ 0, the solution is Asymptotically AdS, so well established techniques can be used [de Haro, KS, Solodukhin (2000)].
- The results obtained in this fashion are more easily comparable with those of the dual QFT.

The d=2 case: General asymptotic solution

• At order ϵ^0 we just have pure gravity

$$ds^{2} = dr^{2} + e^{2r}g_{ij}dx^{i}dx^{j},$$

$$g_{ij} = (\mathbf{g}_{0\mathbf{ij}}(\mathbf{x}) + e^{-2r}g_{[0](2)\mathbf{ij}}(\mathbf{x}) + \dots)$$

- This is the most general asymptotic solution with Dirichlet data g_{0ij}(x).
- The coefficient g_{[0](2)ij}(x) is only partially determined by the asymptotic analysis and is related with the dual stress energy tensor (*T_{ij}*)_[0].

The d=2 case: General asymptotic solution

• At order ϵ^1 the vector is turned on

$$ds^{2} = dr^{2} + e^{2r} g_{ij} dx^{i} dx^{j},$$

$$g_{ij} = (\mathbf{g}_{0ij}(\mathbf{x}) + e^{-2r} g_{[0](2)ij}(x) + ...)$$

$$A_{i} = (\epsilon e^{r} \mathbf{A}_{(0)i}(\mathbf{x}) + e^{-2r} (\mathcal{A}_{(2)i}(x) + \mathbf{r} \tilde{\mathcal{A}}_{(2)i}(x)) ...)$$

$$A_{r} = e^{-r} (A_{(0)r}(x) + e^{-2r} (A_{(2)r}(x) + \mathbf{r} a_{(2)r}(x)) ...)$$

- **A** $_{(0)i}(x)$ is the new Dirichlet data.
- The coefficient $\mathcal{A}_{(2)i}(x)$ is undetermined by the asymptotic analysis.
- The remaining coefficients are locally determined by the Dirichlet data $g_{0ij}(x)$, $A_{(0)i}(x)$ and $g_{[0](2)ij}(x)$.

The d=2 case: General asymptotic solution

• At order ϵ^2 the vector back-reacts to the metric

$$\begin{split} ds^{2} &= dr^{2} + e^{2r} g_{ij} dx^{i} dx^{j}, \\ g_{ij} &= (\mathbf{g}_{0ij}(\mathbf{x}) + e^{-2r} g_{[0](2)ij}(x) + \ldots) \\ &+ \epsilon^{2} (\mathbf{r} h_{[2](0)}(x) + e^{-2r} g_{2}(x) + \mathbf{r} e^{-2r} h_{2}(x) + \ldots) + \ldots \\ A_{i} &= (\epsilon e^{r} \mathbf{A}_{(0)i}(\mathbf{x}) + e^{-2r} (\mathcal{A}_{(2)i}(x) + \mathbf{r} \tilde{\mathcal{A}}_{(2)i}(x)) \ldots), \\ A_{r} &= e^{-r} (A_{(0)r}(x) + e^{-2r} (A_{(2)r}(x) + \mathbf{r} a_{(2)r}(x)) \ldots). \end{split}$$

- The coefficient g_{2}(x) is only partially determined by the asymptotic analysis.
- The remaining coefficients are locally determined by the Dirichlet data $g_{0ij}(x)$, $A_{(0)i}(x)$ and $g_{[0](2)ij}(x)$.

Renormalization of the boundary metric

In particular, h_{[2](0)} may be viewed as a renormalization of the boundary metric:

$$g_{0ij} \to g_{0ij} + r\epsilon^2 h_{[2](0)}$$

where

$$h_{[2](0)ij} = -A_{(0)i}A_{(0)j} + \frac{1}{2(d-1)}A_{(0)k}A_{(0)}^k g_{0ij}.$$

Such renormalization is only possible for the specific case we discuss: g_{0ij} and $A_{(0)i}A_{(0)j}$ transform the same way under Weyl transformations.

Counterterms and renormalization

 Using the asymptotic solution one can compute the most general infinities and then work out the counterterm action needed to remove them,

$$S_{ct} = -\frac{1}{8\pi G_3} \int d^2 x \sqrt{\gamma} (1 + \frac{1}{2} R \mathbf{r_0}) + \frac{1}{32\pi G_3} \int d^2 x \sqrt{\gamma} (\gamma^{ij} A_i A_j - \mathbf{r_0} \left((\nabla_i A^i)^2 - \frac{1}{2} F_{ij} F^{ij} \right).$$

The renormalized action is

$$S_{\rm ren} = \lim_{r_0 \to \infty} (S_{\rm reg} + S_{\rm ct})$$

One-point functions

$$\langle \mathcal{T}_{ij} \rangle = \langle T_{ij} \rangle_{[0]} + \epsilon^2 \langle T_{ij} \rangle_{[2]}$$

$$\begin{split} \langle T_{ij} \rangle_{[2]} &= -\frac{1}{2} A^{k}_{(0)} \langle T_{ij} \rangle_{[0]} A^{j}_{(0)} g_{0ij} \\ &+ \frac{1}{8\pi G_{3}} \left[-g_{2ij} + A_{(0)i} A_{(2)j} + \frac{1}{2} A_{(0)k} A^{k}_{(2)} g_{0ij} \\ &- \frac{1}{4} (A_{(0)i} a_{(2)j} + A_{(0)j} a_{(2)i}) + \frac{R}{16} A_{(0)k} A^{k}_{(0)} g_{0ij} \\ &- \frac{5}{8} A^{k}_{(0)} \nabla_{k} \nabla_{l} A^{l}_{(0)} g_{0ij} - \frac{1}{4} (\nabla_{k} A^{k}_{(0)})^{2} g_{0ij} + \frac{1}{2} A_{(0)j} \nabla_{i} \nabla_{k} A^{k}_{(0)} \\ &+ \frac{1}{4} \left(A_{(0)i} \nabla^{k} F_{(0)kj} + A_{(0)j} \nabla^{k} F_{(0)ki} \right) - \frac{3}{8} A_{(0)l} \nabla_{k} F^{kl}_{(0)} \right]. \end{split}$$

$$\langle \mathcal{J}^i \rangle = -\frac{2\epsilon}{16\pi G_3} A^i_{(2)} + \frac{1}{2} \langle T_{ij} \rangle_{[0]} (\epsilon A_{(0)j}).$$

Ward identities

The leading order terms satisfy the correct Ward identities as expected. The Ward identities for the subleading terms are:

Diffeomorphism Ward identity

$$\nabla^{j} \langle T_{ij} \rangle_{[2]} = A_{(0)i} \nabla_{j} \langle J^{j} \rangle - \langle J^{j} \rangle F_{(0)ij}.$$

This is indeed the correct Ward identity.

Trace Ward identity

$$\langle T_i^i \rangle_{[2]} = A_{(0)i} \langle J^i \rangle + \mathcal{A},$$

This is the expected trace anomaly with a trace anomaly A.

The conformal anomaly

$$\mathcal{A} = \frac{1}{4} F_{(0)ij} F_{(0)}^{ij} - \frac{1}{2} (\nabla_i A_{(0)}^i)^2 - \frac{1}{2} A_{(0)}^i \langle T_{ij} \rangle_{[0]} A_{(0)}^j + \frac{R}{4} A_{(0)}^i A_{(0)i}$$

- As usual, this expression should be Weyl invariant.
- Remarkably, a related Weyl invariant action for d > 2 has appeared in [Deser, Nepomechie (1984)]

$$\mathcal{L} = \frac{1}{4} F_{ij} F^{ij} + \frac{d-4}{2d} (\nabla_i A^i)^2 - \frac{d-4}{2} S_{ij} A^i A^j + \frac{d-4}{8(d-1)} R A_i A^i,$$

where $S_{ij} = (R_{ij} - R/(2(d-1))g_{ij})/(d-2)$.

It turns out that $\langle T_{ij} \rangle_{[0]}$ has the same Weyl transformation property as S_{ij} and this action with $S_{ij} \rightarrow \langle T_{ij} \rangle_{[0]}$, $d \rightarrow 2$ is equal to \mathcal{A} !

- The analysis and the results for d = 3 are exactly analogous, so we skip all details.
- We only report the following two results:

$$\left\langle \mathcal{J}^{i}\right\rangle = -\frac{3\epsilon}{16\pi G_{4}}A^{i}_{(3)} + \frac{1}{3}\left\langle T_{ij}\right\rangle_{[0]}(\epsilon A_{(0)j}).$$

$$\langle T_{i}^{i} \rangle_{[2]} = A_{(0)i} \langle J^{i} \rangle + \frac{1}{2} A_{(0)}^{i} \langle T_{ij} \rangle_{[0]} A_{(0)}^{j}.$$

< 🗇 > < 🖻 > <

- These results hold for any solution of the bulk equations, for example, the AdS critical point and perturbation around it or the Lifshitz critical point and perturbations around it.
- By functionally differentiating wrt sources we can compute higher point functions, both for the CFT and the Lifshitz theory.
- The "cross-terms" in the 1-point functions encode OPE coefficients.

A (1) > A (1) > A

Recovering Lifshitz invariance

Let us now evaluate the trace Ward identity at the Lifshitz critical point.

In this case,

$$A_{(0)t} = \sqrt{2}, \qquad g_{(0)ij} = \eta_{ij}$$

Then the trace Ward identity leads to

$$\langle T_i^i \rangle = -\epsilon^2 \langle T_t^t \rangle + O(\epsilon^4) \quad \Rightarrow \quad \langle z T_t^t \rangle + \langle T_a^a \rangle = O(\epsilon^4)$$

This is precisely the condition for Lifshitz invariance!

1 Lifshitz models

- 2 Holographic dictionary
- 3 Dual QFT
- 4 Lifshitz black holes
- 5 Conclusions

▲圖 ▶ ▲ 臣 ▶ ▲ 臣

The QFT side: remarks

The Lifshitz theory we obtained is markedly different than any other Lifshitz invariant theory that appeared before.

For example, the scalar theory with action

$$S = \int dt d^3x (\dot{\phi}^2 + \phi (-\partial^2)^z \phi)$$
(1)

which is often used in the literature as an illustrative example (especially when z = 2) does not become of the form we find when $z \sim 1 + \epsilon^2$.

- This suggests that this field theory model is unlikely to share key features of the holographic model.
- None of the condensed matter Lifshitz models are of this form, which leads to the question:
- Is this type of Lifshitz model special to strongly coupled models or not?

> The answer to this question is:

These models are generic. If one deforms any CFT by any dimension *d* vector primary, the theory would flow to a Lifshitz invariant fixed point with $z = 1 + \epsilon^2 + O(\epsilon^4)$.

Whether this fixed point is stable or not depend on the particular CFT/vector primary.

Sketch of proof

Our theory is defined by

$$S = S_{CFT} + \int d^d x \epsilon J^t.$$

where J^i is a conformal vector primary of dimension d.

- ➤ The deformed theory is translational invariant
 ➡ the theory still has a conserved stress-energy tensor T_{ij}.
- > The theory is not Lorentz invariant $\twoheadrightarrow T_{ij}$ is not symmetric.

▶ ◀ ᆿ ▶

Lifshitz invariance

A theory with a conserved stress energy tensor T_{ij} is Lifshitz invariant with dynamical exponent z, if the stress tensor satisfies the trace identity,

$$z\mathcal{T}_t^t + \mathcal{T}_a^a = 0.$$

Proof

The conserved current is given by $l^i = T_{ij}\xi^i$, where $\delta x^i = \xi^i$ is a Lifshitz transformation,

$$\xi^0 = \mathbf{z} x^0, \quad \xi^a = x^a, \quad (a = 1, \dots, d - 1).$$

Taking the divergence one finds.

$$\partial^i l_i = (\partial^i \mathcal{T}_{ij})\xi^j + \mathcal{T}_{ij}\partial^i \xi^j = z\mathcal{T}_t^t + \mathcal{T}_a^a,$$

where we used $\partial_0 \xi^0 = z, \partial_a \xi^b = \delta^a_b$.

Non-relativistic stress energy tensor

- In a Lorentz invariant theory one may compute the stress energy tensor by coupling to a metric g_{ij} and differentiating the action w.t.r. g_{ij}.
- In a non-Lorentz invariant theory one should instead couple to a vielbein e^k_i and obtain the stress energy tensor by

$$T_i^{\hat{k}} = \frac{1}{\det e} \frac{\delta S[e]}{\delta e_{\hat{k}}^i}$$

Back to our model

In our case,

$$S[e] = S_{CFT}[e] + \epsilon \int d^d x \det e e_i^{\hat{t}} J^i.$$

and therefore

$$T_{\hat{k}\hat{l}} = T_{\hat{k}\hat{l}}^{CFT} - \epsilon \left(\eta_{\hat{k}\hat{l}} J^{\hat{l}} + \delta_{\hat{k}}^{\hat{i}} J_{\hat{l}} - \eta_{\hat{m}\hat{l}} e_{\hat{k}}^{j} \left(\frac{\delta J^{i}}{\delta e_{\hat{m}}^{j}} \right) e_{\hat{i}}^{\hat{i}} \right)$$

- Taking the trace and using the fact that Jⁱ is a vector primary of dimension d we find that the stress-energy tensor is traceless.
- The classical theory is a z = 1 non-relativistic CFT.

The quantum theory

Since $\epsilon \ll 1$, we can analyze the quantum theory using conformal perturbation theory.

$$Z[\epsilon] = Z_{CFT} - \epsilon \int d^d x A_{(0)i} \langle \mathcal{J}^i(x) \rangle_{CFT} + \frac{1}{2} \epsilon^2 \int d^d x \int_{|x-y| > \Lambda} d^d y A_{(0)i}(x) A_{(0)j}(y) \langle \mathcal{J}^i(x) \mathcal{J}^j(y) \rangle_{CFT}$$

where $1/\Lambda$ is a UV cut-off.

The first non-trivial effects are at order ε². To compute this we may use the OPE of JⁱJ^j.

< □ > < @ > < E >

.

Renormalization

Inserting the OPE

$$\mathcal{J}_i(x)\mathcal{J}_j(0)\sim \sum C_{ij}^k rac{\mathcal{O}_k}{x^{2d-\Delta_k}},$$

where Δ_k is the dimension of the operator $\mathcal{O}_k,$ one finds infinities when

$\Delta_k \leq d$

> To remove these infinities we need to renormalize the sources of \mathcal{O}_k . [If we do not have couplings to these operators we have to add them at this point.]

This OPE contains the following universal terms

$$\mathcal{J}_i(x)\mathcal{J}_j(0) \sim \frac{I_{ij}}{x^{2d}} + \dots + \mathcal{A}_{ij}{}^{kl}\frac{\mathcal{T}_{kl}}{x^d} + \dots,$$

where $I_{ij} = \delta_{ij} - 2x_i x_j / x^2$.

- > In d = 2, the OPE coefficient A_{ij}^{kl} is completely fixed by conformal invariance.
- > In d > 2, the OPE coefficient A_{ij}^{kl} is fixed up to two constants by conformal invariance.

Renormalization: leading order term

> The leading order term gives a power-law divergence

$$\frac{1}{2}\epsilon^{2}\int d^{d}x \int_{|x-y|>\Lambda} d^{d}y A_{(0)i}(x)A_{(0)j}(y) \frac{I_{ij}}{x^{2d}}$$
$$\sim \epsilon^{2}\int d^{d}x \Lambda^{d}A_{(0)i}A_{(0)}^{i}$$
(2)

/□ > < 글 > < 글

> This is removed by adding the counterterm:

$$S_{ct} \sim \int \sqrt{-g} \gamma^{ij} A_i A_j$$

where $\Lambda = e^{r_0}$.

> This is one of counterterms we found earlier.

Renormalization: subleading order

> The subleading order term gives a logarithmic divergence

$$\frac{1}{2}\epsilon^2 \int d^d x \int_{|x-y|>\Lambda} d^d y A_{(0)i}(x) A_{(0)j}(y) \mathcal{A}_{ij}{}^{kl} \frac{\mathcal{T}_{kl}}{x^d}$$
$$\sim \epsilon^2 \int d^d x \log \Lambda A_{(0)i} A_{(0)j} \mathcal{T}^{ij}$$

We need to renormalize the source of T_{ij}, i.e. the spacetime metric:

$$g_{ij}(x, \Lambda) = \eta_{ij} + \log \Lambda \epsilon^2 A_i A_j = \eta_{ij} + r_0 \epsilon^2 A_i A_j$$

> This is precisely the form of the metric we found earlier.

Beta function and Lifshitz invariance

> It follows that there is beta function,

$$\beta_g^{ij} \equiv \frac{dg_{ij}}{d\log\Lambda} = \epsilon^2 A^i A^j$$

> The dilatation Ward identity is now equal to

 $\langle T_i^i \rangle = \beta_g^{ij} T_{ij}$

- This is precisely the Ward identity we found at strong coupling using holographic renormalization!
- The same argument we gave earlier establishes Lifshitz invariance with $z = 1 + \epsilon^2$.

Stability and consistent truncation

- If there are other singular terms in the OPE, renormalization would induce couplings to relevant operators and the Lifshitz critical point would be unstable.
- The same terms are also linked to the absence of consistent truncation involving the metric and massive vector only.
- For any such term, there would be a cubic coupling in the bulk that is quadratic in the gauge field and linear in the field dual to the corresponding relevant operator: one cannot consistently truncate this field.

1 Lifshitz models

- 2 Holographic dictionary
- 3 Dual QFT
- 4 Lifshitz black holes

5 Conclusions

▲圖 ▶ ▲ 臣 ▶ ▲ 臣

Lifshitz black holes

- In the condensed matter applications one would be primarily interested in the behavior of the system at finite temperature.
- To study this holographically we need black hole solutions with Lifshitz asymptotics.
- To date most such black holes were either obtained numerically or they contain a running dilaton.
- Here we will present analytic solutions with $z \approx 1$.

Lifshitz black holes

We obtain the solution perturbatively in ϵ .

> At order ϵ^0 we just have pure gravity and the solution is the standard neutral black brane

$$ds^{2} = \frac{d\rho^{2}}{\rho^{2}(1 - \frac{\rho_{0}^{d}}{\rho^{d}})} + \rho^{2} \left(-(1 - \frac{\rho_{0}^{d}}{\rho^{d}})dt^{2} + dx \cdot dx \right),$$

> At order ϵ^1 the massive vector is turned on,

$$A_t(y) = \epsilon A_{(0)t} y(1 - \frac{1}{y^d}) \, _2F_1(\frac{1}{d}, \frac{d-1}{d}; 2; 1 - \frac{1}{y^d}),$$

where $y = \rho/\rho_0$. This is the unique solution that has a non-zero source at the boundary and vanishes at the horizon.

Lifshitz black holes

> At order ϵ^2 the massive vector backreacts onto the metric which becomes

$$ds^2 = \frac{dy^2}{c(y)} - dt^2 c(y)b(y)^2 + y^2 dx \cdot dx,$$

where

$$c(y) = (y^2 - \frac{1}{y^{d-2}}) + \Delta c(y);$$
 $b(y) = 1 + \Delta b(y).$

> $\Delta c(y)$ and $\Delta b(y)$ satisfy decoupled first order equations. For example,

$$\partial_{y}(y^{d-2}\Delta c) = -\frac{\epsilon^{2}}{2\rho_{0}^{2}} \frac{y^{d-1}}{y^{2} - y^{2-d}} \Big(A_{t}^{2} + \frac{(y^{2} - y^{2-d})(\partial_{y}A_{t})^{2}}{(d-1)}\Big).$$

A (10) A (10) A (10)

Holographic data

> d = 2

$$\begin{split} \langle \mathcal{J}^t \rangle &= \frac{(\epsilon A_{(0)t})}{32\pi G_3} (1 - 4\log 2), \\ \langle T_{tt} \rangle &= \frac{1}{16\pi G_3} (1 + \frac{1}{2} (\epsilon A_{(0)t})^2 (\tilde{c} + 2\log 2)), \\ \langle T_{xx} \rangle &= \frac{1}{16\pi G_3} (1 + \frac{1}{2} (\epsilon A_{(0)t})^2 (\tilde{c} - 2\log 2 + 2)) \end{split}$$

> They satisfy the correct Ward identity

$$z\langle \mathcal{T}_t^t \rangle + \langle \mathcal{T}_x^x \rangle = \epsilon A_{(0)t} \langle \mathcal{J}^t \rangle.$$

> Similar results hold for d = 3.

< ロ > < 同 > < 回 > < 回 > < 回 > <

1 Lifshitz models

- 2 Holographic dictionary
- 3 Dual QFT
- 4 Lifshitz black holes
- 5 Conclusions

▲圖 ▶ ▲ 臣 ▶ ▲ 臣

- > We show that the Lifshitz solution with $z \approx 1$ is dual to a deformation of a relativistic CFT by the time component of a vector conformal primary of dimension *d*.
- > Such a deformation of a relativistic CFT always leads to a Lifshitz invariant theory with $z \approx 1$.

Conclusions

- We formulated necessary conditions for existence of top-down models: the spectrum of the AdS critical point should have massive vector modes with mass in a specific range.
- This condition would be sufficient if these modes consistently truncate from the rest.
- Consistent truncation is also linked to stability of the Lifshitz critical point.
- > We obtained analytically a Lifshitz invariant black hole.