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Motivation

Point of reference: heavy-ion collision at RHIC/LHC:
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Key question:

Understand the features of (early)
thermalization for an evolving (boost-
invariant) plasma system

What do we mean by thermalization here?
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Thermalization

I At weak coupling the obvious definition would be to require thermal
momentum distributions for quarks and gluons...

I At strong coupling, the picture of a gas of gluons is not really valid
— alternatively require that observables such as 2-point

functions/spatial Wilson loops/ entanglement entropy are the same
as for a thermal system...

explored in the AdS/CFT context

I This is very good for studying relaxation processes where the final
state is some uniform static plasma system — this is not so for the
plasma undergoing expansion

I For an expanding plasma fireball we need local equilibrium — bilocal
probes get contaminated by collective flow

I We adopt an operational definition of (effective) thermalization —
the point when plasma starts being describable by (viscous)
hydrodynamics.
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AdS/CFT, hydrodynamics and nonequilibrium processes

I Hydrodynamics isolates long wavelength effective degrees of
freedom of a theory

I The energy-momentum tensor Tµν is expressed in terms of a local
temperature T and flow velocity uµ

I Tµν is expressed as an expansion in the gradients of the flow
velocities (shown here for N = 4 SYM)

Tµν
rescaled = (πT )4(ηµν + 4uµuν)︸ ︷︷ ︸

perfect fluid

− 2(πT )3σµν︸ ︷︷ ︸
viscosity

+

+ (πT 2)
(

log 2Tµν
2a + 2Tµν

2b + (2− log 2)

(
1
3

Tµν
2c + Tµν

2d + Tµν
2e

))
︸ ︷︷ ︸

second order hydrodynamics

I The coefficients of the various tensor structures are the transport
coefficients. In a conformal theory these are pure numbers times
powers of T .

I Full nonlinear hydrodynamic equations follow now from ∂µTµν = 0
I The above form of Tµν for N = 4 SYM at strong coupling is not an

assumption but can be proven from AdS/CFT Minwalla et.al.
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AdS/CFT, hydrodynamics and nonequilibrium processes

Linearized hydrodynamics
I Look at small disturbances of the uniform static plasma. . .
I If Tµν is described by (1st order viscous) hydrodynamics then one

can derive dispersion relation of long wavelength modes from
hydrodynamic equations:
shear modes:

ωshear = −i
η

E + p
k2

sound modes:

ωsound =
1√
3

k − i
2
3

η

E + p
k2

I If we were to include terms in Tµν with more derivatives (higher
order viscous hydrodynamics), we would get terms with higher
powers of k in the dispersion relations...

I Hypothetical resummed all-order hydrodynamics would predict the
full dispersion relation for these modes ωshear (k), ωsound (k)

What happens in the AdS/CFT description?
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AdS/CFT, hydrodynamics and nonequilibrium processes
I The uniform static plasma system is described as a static planar

black hole
I Small disturbances of the uniform static plasma ≡ small

perturbations of the black hole metric (≡ quasinormal modes
(QNM))

g5Dαβ = g5D,black hole
αβ + δg5Dαβ (z)e−iωt+ikx

I Dispersion relation fixed by linearized Einstein’s equations. Results
for the sound channel

from Kovtun,Starinets hep-th/0506184
I This is equivalent to summing contributions from all-order viscous

hydrodynamics
I But, in addition, there is an infinite set of higher QNM — effective

degrees of freedom not contained in the hydrodynamic description...
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AdS/CFT, hydrodynamics and nonequilibrium processes
Einstein’s equations in AdS/CFT

I contain all-order viscous hydrodynamic modes (with specific values
of all transport coefficients)

I in addition contain the dynamics of genuine nonhydrodynamical
modes

I incorporate their interactions in a fully nonlinear (and unique) way

Consequence:
Einstein’s equations can serve to study nonequilibrium processes in
strongly coupled N = 4 SYM and are an effective tool for exploring
physics beyond hydrodynamics

Question:
In the case of boost-invariant plasma expansion can we unambigously
determine
i) whether these nonhydrodynamical modes are really important
or
ii) whether it would be enough to consider just all-order viscous
hydrodynamic modes
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Fluid/gravity duality versus nonequilibrium physics

The approach of [Bhattacharyya,Hubeny,Minwalla,Rangamani]

I Start from a static black hole with fixed temperature T which
describes a fluid at rest, uµ = (1, 0, 0, 0) with constant energy
density

I Perform a boost to obtain a uniform fluid moving with constant
velocity uµ

I The resulting metric (in Eddington-Finkelstein coordinates) is

ds2 = −2uµdxµdr−r2
(

1− T 4

π4r4

)
uµuνdxµdxν+r2(ηµν+uµuν)dxµdxν

where r =∞ corresponds to the boundary, r = T/π is the horizon
while r = 0 is the position of the singularity.

Promote T and uµ to (slowly-varying) functions of xµ

Caveat: The metric is no longer an exact solution of Einstein’s equations
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Fluid/gravity duality versus nonequilibrium physics

I Perform an expansion of the Einstein equations in gradients of
spacetime fields.

I Find corrections to the metric at first and second order
I Require nonsingularity to fix integration constants
I Read off the resulting energy-momentum tensor Tµν
I Tµν is expressed in terms uµ and T and their derivatives

Tµν
rescaled = (πT )4(ηµν + 4uµuν)︸ ︷︷ ︸

perfect fluid

− 2(πT )3σµν︸ ︷︷ ︸
viscosity

+

+ (πT 2)
(

log 2Tµν
2a + 2Tµν

2b + (2− log 2)

(
1
3

Tµν
2c + Tµν

2d + Tµν
2e

))
︸ ︷︷ ︸

second order hydrodynamics

Question: The above construction, extended to all orders, seems to give
an equivalence between Einstein’s equations and (all-order) viscous
hydrodynamics???
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Fluid/gravity duality versus nonequilibrium physics

I Fluid/gravity duality is an expansion around some specific 0th order
geometry

I There exist interesting examples which are ‘orthogonal’ to
hydrodynamics — cannot be described at all within this framework
Example: isotropisation of uniform anisotropic plasma

Tµν =


ε 0 0 0
0 p‖(t) 0 0
0 0 p⊥(t) 0
0 0 0 p⊥(t)


I Plasma equilibration in heavy-ion collisions is a mixture of both

types of physics...
I The fluid/gravity duality is a perturbative expansion in gradients —

the series does not need to be convergent...
I In the boost invariant setting it is an expansion in 1/τ

2
3 . Does not

work at all around τ = 0
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The equilibration of some global plasma system is difficult to study
because either

— there is no small parameter...

or

— there is a transition between two distinct asymptotic expansions...

generically need Numerical Relativity methods...
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Numerical Relativity in AdS — recent work

I Isotropisation of a uniform plasma system created by an anisotropic
gauge theory metric perturbation (‘gravity wave in 4D’) Chesler, Yaffe

Tµν =


ε 0 0 0
0 p‖(t) 0 0
0 0 p⊥(t) 0
0 0 0 p⊥(t)


I Analogous study of a boost-invariant system created by a gauge

theory metric perturbation at some τ0 > 0 Chesler, Yaffe

I Collision of two planar shockwaves Chesler, Yaffe; Wu, Romatschke

ds2 =
−2dx+dx− + z4f (x−)dx−2 + dx2⊥ + dz2

z2
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Numerical Relativity in AdS — recent work

I Study of evolution from various initial conditions at τ = 0 with
energy-momentum conservation using ADM formalism

Heller, RJ, Witaszczyk

I Scalar field collapse/instability in global AdS Bizoń, Rostworowski

I Study of equilibration of distorted black holes in global AdS using
Generalized Harmonic evolution scheme Bantilan, Gubser, Pretorius

Numerical formulations of Einstein equations used:

1. Characteristic evolution in Eddington-Finkelstein coordinates
Chesler, Yaffe

2. ADM (Arnowitt-Deser-Misner) evolution scheme
Heller, RJ, Witaszczyk

3. GH (Generalized Harmonic) evolution scheme
Bantilan, Gubser, Pretorius

1 : convenient (but caustics..) 2 + 3 : quite involved but very general
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Remaining part of the talk:

Details of our investigation of boost-invariant plasma:

1. The boost-invariant setup

2. The numerical formulation using ADM

3. Physical results
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Boost-invariant flow

Bjorken ’83
Assume a flow that is invariant
under longitudinal boosts and does
not depend on the transverse
coordinates.

I In a conformal theory, Tµ
µ = 0 and ∂µTµν = 0 determine, under the

above assumptions, the energy-momentum tensor completely in
terms of a single function ε(τ), the energy density at mid-rapidity.

I The longitudinal and transverse pressures are then given by

pL = −ε− τ d
dτ
ε and pT = ε+

1
2
τ

d
dτ
ε .

I From AdS/CFT one can derive the large τ expansion of ε(τ) for
N = 4 plasma
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Large τ behaviour of ε(τ)

I Current result for large τ : RJ,Peschanski;RJ;RJ,Heller;Heller

ε(τ) =
1

τ
4
3

− 2

2
1
2 3
3
4

1
τ 2

+
1 + 2 log 2

12
√

3

1

τ
8
3

+
−3 + 2π2 + 24 log 2− 24 log2 2

324 · 2 12 3 14
1

τ
10
3

+. . .

I Leading term — perfect fluid behaviour
second term — 1st order viscous hydrodynamics
third term — 2nd order viscous hydrodynamics
fourth term — 3rd order viscous hydrodynamics...

I As we decrease τ more and more dissipation will start to be
important

Question: If we start from various initial conditions at τ = 0 when does
the above hydrodynamic form of ε(τ) starts being applicable?
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Aim: Study the evolution of ε(τ) all the way from τ = 0 to large τ
starting from various initial conditions and investigate the transition to
hydrodynamic behaviour...

Method: Describe the time dependent evolving strongly coupled plasma
system through a dual 5D geometry — given e.g. by

ds2 =
gµν(xρ, z)dxµdxν + dz2

z2
≡ g5Dαβdxαdxβ

i) use Einstein’s equations for the time evolution

Rαβ −
1
2

g5DαβR − 6 g5Dαβ = 0

ii) read off 〈Tµν(xρ)〉 from the numerical metric gµν(xρ, z)

gµν(xρ, z) = ηµν + z4g (4)
µν (xρ) + . . . 〈Tµν(xρ)〉 =

N2c
2π2
· g (4)
µν (xρ)
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Initial conditions for the evolution of the plasma system

I Our point of departure — start with arbitrary initial conditions and
look for common features/regularities

I In weakly coupled gauge theory, the analog would be to start from
arbitrary momentum distributions of gluons and follow the evolution
until equilibration

I At strong coupling the analog is a specific initial geometry in the
bulk

I However, not unexpectedly, there is no direct quantitative
interpretation in terms of e.g. gluon momenta distributions

This is not the only possible approach...
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Initial conditions for the evolution of the plasma system
Chesler and Yaffe adopted a different way of preparing the initial state:

1. Start from the vacuum of N = 4 SYM (no plasma)

2. Change the physical 4D metric of gauge theory spacetime in a
time-dependent manner

3. This will produce some nonequilibrium state

4. Follow its evolution...

We adopted our approach for the following reasons:
I We want to study the evolution right from τ = 0 with

energy-momentum conservation satisified throughout the evolution
I Throughout the evolution we keep the physical 4D Minkowski metric
I We did not want to mix the equilibration dynamics with the

response of the gauge theory to a change in the physical metric
I We want to study evolution from a wide range of initial conditions
I We already had some information on plasma evolution from τ = 0

from power series solutions of Einstein’s equations (which did not
extend to the hydrodynamic regime)
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I We did not want to mix the equilibration dynamics with the

response of the gauge theory to a change in the physical metric
I We want to study evolution from a wide range of initial conditions
I We already had some information on plasma evolution from τ = 0

from power series solutions of Einstein’s equations (which did not
extend to the hydrodynamic regime)
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Initial conditions for the evolution of the plasma system

I In a previous work [Beuf, Heller, RJ, Peschanski], we analyzed
possible initial conditions in the Fefferman-Graham coordinates

ds2 =
1
z2

(
−ea(z,τ)dτ 2 + eb(z,τ)τ 2dy2 + ec(z,τ)dx2⊥

)
+

dz2

z2

I Note that the initial hypersurface τ = 0 is partly light-like...
I The initial conditions are determined in terms of a single function,

say c0(z). a0(z) = b0(z) are determined through a constraint
equation.

I In [Beuf, Heller, RJ, Peschanski], for each initial condition we
obtained a power series solution of Einstein’s equations leading to

ε(τ) =
26∑

n=0

εnτ
2n + . . .

(with a finite radius of convergence)
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Initial conditions for the evolution of the plasma system

I A typical solution of the constraint equations is

a0(z) = b0(z) = 2 log cos z2 c0(z) = 2 log cosh z2

I There is a coordinate singularity at z =
√
π/2 where

ds2 =
− cos2(z2)dτ 2 + . . .

z2

I This can be cured ala Kruskal-Szekeres by modifying the metric
ansatz but keeping the initial hypersurface identical for comparision
with the power series solutions of [Beuf, Heller, RJ, Peschanski]

I The singularity in c0(z) = 2 log cosh z2 as z →∞ is more dangerous!
I We have to terminate our grid at a finite value of z and impose

some boundary conditions there...
I This may not be a problem if there is an event horizon in between -

but a-priori we do not know where...
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The metric ansatz and numerical formalism

I We use the following metric ansatz

ds2 =
−a2(u)α2(t, u)dt2 + t2a2(u)b2(t, u)dy2 + c2(t, u)dx2⊥

u
+

d2(t, u)du2

4u2

I b(t, u), c(t, u), d(t, u) are the dynamical metric coefficients. u = 0
is the boundary, u > 0 is the bulk.

I We use the ADM formulation of Einstein’s equations
I The initial step requires special care as the hypersurface t = 0 is not

spacelike
I In the ADM formulation we are free to choose how to foliate

spacetime into ‘equal time’ hypersurfaces
I This is done through a choice of lapse function a2(u)α2(t, u)

I Impose boundary conditions on the AdS boundary in order for the
gauge theory metric to be Minkowski. In general t 6= τ (the physical
proper-time). Because of this, does not reduce to trivial Dirichlet
b.c.
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The metric ansatz and numerical formalism

I The key problem is what boundary conditions to impose in the
bulk. For a sample initial profile c0(u) = cosh u, there is a curvature
singularity
at u =∞.

I We use the ADM freedom of foliation to ensure that all
hypersurfaces end on a single spacetime point in the bulk — this
ensures that we will control the boundary conditions even though
they may be in a strongly curved part of the spacetime

I This also ensures that no information flows from outside our region
of integration...

I It is crucial to optimally tune the cut-off u0 in the bulk...
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The metric ansatz and numerical formalism

I Depending on the relation of u0 to the event horizon we can get
quite different behaviours of the numerical simulation

I In order to extend the simulation to large values of τ neccessary for
observing the transition to hydrodynamics we need to tune u0 to be
close to the event horizon.

I Fortunately, this is quite simple in practice...
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The metric ansatz and numerical formalism

black line – dynamical horizon, arrows – null geodesics, colors represent
curvature
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The metric ansatz and numerical formalism

Recall:

ds2 =
−a2(u)α2(t, u)dt2 + t2a2(u)b2(t, u)dy2 + c2(t, u)dx2⊥

u
+

d2(t, u)du2

4u2

I We set the lapse to always vanish at the boundary in the bulk
I Consequently, we set the (nondynamical) function a(u) to

a(u) = cos
(
π

2
u
u0

)
I The remaining part of the lapse, α(t, u) is chosen to be a function

of the metric coefficients

α ∝ dc2

b
or α ∝ bd

1 + u
u0

b2
or α ∝ d

b
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The metric ansatz and numerical formalism

I We use Chebyshev spectral methods for the spatial derivatives
(hence very strong sensitivity to boundary conditions)

I We need very accurate spatial derivatives at the boundary in order
to reliably extract the physical energy density from the numerical
geometry

I For the time evolution we use an adaptive 8th/9th-order
Runge-Kutta method (gnu scientific library)

Numerical checks:

1. We monitor ADM constraints during evolution

2. The energy density ε(τ) extracted from simulations made with
different lapses/cut-offs for the same initial condition should coincide

3. We compare the numerical ε(τ) with the power series solution in its
region of convergence
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Results

I We have considered 29 initial conditions, each given by a choice of
the metric coefficient c(τ = 0, u).

I We have chosen quite different looking profiles e.g.

c1(u) = cosh u

c3(u) = 1 +
1
2

u2

c7(u) = 1 +
1
2u
2

1 + 3
2u
2

c10(u) = 1 +
1
2

u2e−
u
2

c15(u) = 1 +
1
2

u2eu

c19(u) = 1 +
1
2

tanh2
(

u +
1

25
u2
)
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Key physical questions

I When and how does the transition to hydrodynamics
(≡ thermalization/ isotropization) occur?

I To what extent would higher order (even all-order) viscous
hydrodynamics explain plasma dynamics or do we need to
incorporate genuine nonhydrodynamic degrees of freedom in the far
from equilibrium regime

I Does there exist some physical characterization of the initial state
which determines the main features of thermalization and subseqent
evolution?

I What is the produced entropy from τ = 0 to τ =∞ (asymptotically
perfect fluid regime)

It is convenient to eliminate explicit dependence on the number of
degrees of freedom and use an effective temperature Teff instead of ε(τ)

〈Tττ 〉 ≡ ε(τ) ≡ N2c ·
3
8
π2 · T 4eff
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Nonequilibrium vs. hydrodynamic behaviour

I Introduce the dimensionless quantity w(τ) ≡ Teff (τ) · τ
I Viscous hydrodynamics (up to any order in the gradient expansion)

leads to equations of motion of the form

τ

w
d

dτ
w =

Fhydro(w)

w

where Fhydro(w) is a universal function completely determined in
terms of the hydrodynamic transport coefficients (shear viscosity,
relaxation time and higher order ones). For strongly coupled N = 4
plasma it becomes

Fhydro(w)

w
=

2
3

+
1

9πw
+

1− log 2
27π2w2

+
15− 2π2 − 45 log 2 + 24 log2 2

972π3w3
+. . .

I Therefore if plasma dynamics would be given by viscous
hydrodynamics (even to arbitrary high order) a plot of
F (w) ≡ τ d

dτ w as a function of w would be a single curve for all the
initial conditions

I Genuine nonequilibrium dynamics would, in contrast, lead to several
curves...
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Nonequilibrium vs. hydrodynamic behaviour

A plot of F (w)/w versus w for various initial data
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Nonequilibrium vs. hydrodynamic behaviour

I An observable sensitive to the details of the dissipative dynamics
(e.g. hydrodynamics) is the pressure anisotropy

∆pL ≡ 1− pL

ε/3
= 12F (w)− 8

I For a perfect fluid ∆pL ≡ 0. For a sample initial profile we get

I For w = Teff · τ > 0.63 we get a very good agreement with viscous
hydrodynamics

I Still sizable deviation from isotropy which is nevertheless completely
due to viscous flow.
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Entropy

I The AdS/CFT prescription for 〈Tµν〉 is on a very solid ground in the
framework of the AdS/CFT correspondence — in contrast entropy,
especially for nonequillibrium systems is much less understood

I It is even not clear whether an exact local notion makes sense on the
QFT side...

I However, phenomenological notion of local entropy density is widely
used in (dissipative) hydrodynamics

I On the AdS side entropy is obtained from the area element of a
horizon but we have to choose

I the kind of horizon (currently: apparent horizon not event horizon)
I we have to map a point on the boundary to an appropriate point in

the bulk (using null geodesics — but in general there are ambiguities)

I For the boost-invariant setup fortunately the null geodesic
ambiguities are absent as well as ambiguities associated with
defining the apparent horizon...
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Entropy

I We consider the entropy per unit rapidity and unit transverse area in
units of initial temperature introducing a dimensionless entropy
density s through

s =
S

1
2N
2
c π
2T 2eff (0)

I Determine initial entropy from the area of a dynamical horizon at a
point where a null geodesic from τ = 0 intersects the horizon
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Final entropy

I For large proper-time, the dynamics is given by hydrodynamics,
leading to the large τ expansion

Teff (τ)= Λ

(Λτ)1/3

{
1− 1
6π(Λτ)2/3

+ −1+log 2
36π2(Λτ)4/3

+ −21+2π2+51 log 2−24 log2 2
1944π3(Λτ)2+...

}

I We obtain the Λ parameter from a fit to the late time tail of our
numerical data.

I Knowing Λ, we may use the standard perfect fluid expression for the
entropy at τ =∞

sfinal =
Λ2

T 2eff (0)
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Entropy production

Consider the entropy production sfinal − sinitial as a function of sinitial

Recall the complicated nonequilibrium dynamics...
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A numerical criterion for (effective) thermalization

I We want to study systematically the properties of the plasma at the
point when the dynamics becomes describable by viscous
hydrodynamics...

I We adopted a numerical criterion for thermalization∥∥∥∥∥ τ d
dτ w

F 3rd order
hydro (w)

− 1

∥∥∥∥∥ < 0.005
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We looked at the following features of thermalization:

1. The dimensionless quantity w = Teff · τ
2. The thermalization time in units of initial temperature τth · Teff (0)

3. The temperature at thermalization relative to the initial
temperature Tth/Teff (0)
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w = Teff · τ at thermalization

I w at thermalization is approximately constant and for the initial
profiles considered does not exceed w = 0.7. It seems to decrease
for profiles with smaller initial entropy

I N.B. sample initial conditions for hydrodynamics at RHIC
(τ0 = 0.25 fm, T0 = 500 MeV ) assumed in [Broniowski, Chojnacki,
Florkowski, Kisiel] correspond to w = 0.63

I The pressure anisotropy at thermalization is still sizable

∆pL ≡ 1− pL

ε/3
= 12F (w)− 8 ' 12Fhydro(w)− 8 ∼ 0.72− 0.73
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τth · Teff (0) at thermalization

I Thermalization time in units of the initial effective temperature
Teff (0)

I Again we see a clean dependence on the initial entropy sinitial
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Temperature at thermalization
I It is interesting to consider the ratio of the temperature at

thermalization to the initial effective temperature
I This gives information on which part of the cooling process occurs in

the far from equilib-
rium regime and which part occurs during the hydrodynamic evolution

I Note: for initial profiles with large sinitial , the energy density initially
rises and only then falls −→ even for Tth/Teff (0) ∼ 1 there is still
sizable nonequilibrium evolution

I For profiles with small initial entropy most of the cooling is of
a nonequilibrium nature.
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Conclusions

I AdS/CFT provides a very general framework for studying
time-dependent dynamical processes

I The AdS/CFT methods do not presuppose hydrodynamics so are
applicable even to very out-of-equilibrium configurations

I Even though genuine nonequilibrium dynamics is very complicated,
we observed surprising regularities

I Initial entropy seems to be a key physical characterization of the
initial state determining the total entropy production and
thermalization time and temperature

I For w = Tth · τth > 0.7 we observe hydrodynamic behaviour but
with sizeable pressure anisotropy (described wholly by viscous
hydrodynamics)

I We implemented ADM evolution using spectral methods, freezing
the evolution at some interior point by forcing the lapse to vanish
there
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