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1. Simplest Top-down Fermi Surface constructions

The simplest charged black holes in Ad.S are purely bosonic backgrounds. To “see”
the fermions in the dual description, bounce one more fermion off the normal state
black hole and look for Green’s function singularities:

Glw, k) = (Or(w, H)Ol(~w, ~k) ) ~ i

Tk —kp) — éw — hoew?r

when k~kr and w = 0.

e Asingularity in G(w,k)atw =0and g =k
finite kK = kp defines the presence of a K
Fermi surface.

guasi-
particle,
Quw>0

e v is Fermi velocity.

e Assuming vp > 1/2, low-energy

dispersion relation is w ~ vp(k — k). _
. quasi-
o If v > 1/2orif €7 is nearly real,

quasi-particles’ width is much smaller
than their energy.



Non-Fermi liquids from D-branes, 7-17-12 4 1 Simplest Top-down Fermi Surface constructions
The AdS/CFT calculation follows [lee 0809.3402; Liu, McGreevy, and Vegh 0903.2477;
Cubrovic, Zaanen, and Schalm, 0904.1993]:

O(w,k) O'(-w,~k)

e Asw — Oand k — kp, we want

N AdS5 to see dissipative effects disappear.

e Equation solved is a variant of
Dirac equation.

e Results from AdS5 give Green’s
function in a 3 + 1-dimensional

N ++4+4+4+4+++ field theory.

Fermi surfaces in boundary theory correspond to fermion normal modes in the bulk.

Significant technical difficulties surround the derivation of the appropriate fermion
equation of motion [DeWolfe, Rosen, SSG, 1112.3036]: in AdS5-Reissner-Nordstrom,

1 1

| 5 ,
(zv”Vﬂ+zv“au—ﬁ+ZfMV’y“)X—O.
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But final results (for Ad.S5-RN) are simple: find two Fermi surfaces, with

k
NS where 14 is chemical potential for fermion charge.

Butw ~ (k — kr)%: a
very non-Fermi-liquid.
Two conundrums:

e Super-Yang-Mills theory has charged bosons as well as charged fermions. Why
don’t the bosons suck up all the charge in a condensate?

adjoint scalars.
charge +1

gluon, charge 0
adjoint fermion, adjoint fermions
charge +3/2 j /; charge —-1/2

e When 7" — 0, the charged black holes retain non-zero entropy, S o< VIN?u?.
Huge violation of Nernst’s Law. What is the ground state?
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The plan of the rest of Part I of the talk:

e Minimal gauged supergravity. D = 4, N' = 2 is simple and provides a useful

warmup, but no Fermi surfaces.

e More gauged supergravity. DD = 4, N/ = 8 leads to simple equations and
reveals a Fermi surface.

e Yet more gauged supergravity. D = 5, N' = 8 is extremely complicated but

gives the simplest final results.

e Dual field theory. I will speculate on the interpretation of the meaning of Ad.S;
results in light of scaling arguments and Luttinger-style counting.

Why so much gauged supergravity?
e Gauged SUGRA embeds into various string theory backgrounds, including Ad.S’s x
S°.
e SUGRA fixes the correct fermion equations on symmetry principles.

e Solving these equations means we are computing actual correlators in known
(SUSY) field theories.
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1.1. D =4, N = 2 gauged supergravity
We couple two Majorana gravitini 1}, to an SO(2) gauge field A7) = €7 A,;:
D, = Vb, — gAY

The lagrangian and SUSY transformations are deformations of ungauged SUGRA
[Freedman and Das, 1977]:

1 L, .
Lsucra = _iR - E(F,ﬁf +3g°
— Y5, (07V, = gAT ) =y, (B — s F) b
— 2gyi o, + 1’
0€qy = —iEi’yasz 5Aff — ¢l f}
6¢f} _ <5ijvp o gAZj)Ej _ %OWFZ%%@' + %g’ypei + ¢26i )
The t)* and 1)?¢ have some subtle y-matrix structure.

Supergravity dimensional analysis in any D looks like this: [g,,] = [A,] = [¢] = 0,
0, =19l =1, W] = [x] = —ld =1/2, L] = 2.
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Consider gravitino two-point function in extremal AdS,-Reissner-Nordstrom:

r? . L? dr? r
ds2:§(fdt2—dx2)—57 Aozu(l—?())
I 1 NEI
=1-424+32 L=— — .
/ 73 i rd 2¢ a L

e In Lsycra, only the quadratic terms in @DL matter since we are after the two-point
function G of the dual operator S’ ~ tr AD,, X, with Ag = 5/2.

e There’s a scaling form valid for all w, k:

L? . . ~ k
Gs(wa k) — _2,M2A573G5((;J, ]f) W = g, k = -,
K p u
where Iqycra = # | d*z/g Lsucra. Usually we quote Gg(w, k) with L =

kK=r1y=1.

G s(w, /%) has no free parameters and can be uniquely determined by solving diff
EQs in AdS,-Reissner-Nordstrom.

e Details are challenging because 1/, has lots of components and one must be
careful about gauge-fixing.
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No Fermi surface singularities

were found |Gauntlett, Sonner, and 200 20door
Waldram, 1106.4694 & 1108.1205;

Belliard, Gubser, and Yarom, 150 10doo}
1106.6030]; however, Gauntlett et
al. exhibited (see figure)

-15 -10 -05 00 05 1.0

A(w k)

e Phonino resonances that get
sharp as £ — 0, with
w ~ — [ (relative to expected
Fermi energy w = 0), at N5 -0 -05 00 05 10 s
T ~ 1 (upper panel). | | w/p

S50

0.020

e Power law depletion of
spectral measure A(w, k) 7
near w = 0 for 7' =~ 0 (lower 4
panel). i

5 0015}

0.010¢

A(wk)

0.005

0.000

A(w k)

[Tk f

e Power v, = 5 T 2,2 1S ol

always real, in contrast to

bottom-up constructions :
/1.2 2 e

Where I/k? ~ k - q can be —01.5 -1.0 -0.5 00 0.5 1.0 1.5

imaginary. w/u
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1.2. More gauged supergravity: D =4, N/ =8

D = 4, N = 8 gauged supergravity [de Wit and Nicolai, 1982]:

e A semi-pedagogical introduction can be found in [de Wit, hep-th/0212245].

e Field content is: graviton g, 8 gravitini ¢}, 28 gauge fields A’/, 56 Majorana
spinors x/*, and 70 real scalars ¢"/*,

e Eight-valued indices i, j, ... characterize either the gauge group SO(8) or the
internal symmetry group SU (8).

e Solutions of D = 4, N/ = 8 can be lifted to solutions of 11-d SUGRA on a
(possibly deformed) S”.

e Scalars parametrize E7(;)/SU(8) and indicate how the S” is deformed.

e By specializing to trivial scalars (i.e. round S”) we are able to ignore difference
between SU(8) and SO(8) indices.

e We turn on just one gauge field, a, = A}f = —Ail.

e By an SO(8) triality rotation one can describe this equivalently as A)? = A =
A2 = AT®. Before the triality rotation, ¢ is spinorial wrt S”.
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Here are the main equations for setting up fermions in RNAdS, with only a,, = A}f

non-zero:
D, Xijr = vuka + 3gA," i Xgkjm (even for more general gauge fields)
L= ——R — —foW + 69" + L1 (specialized to round S7)
1 —
L= 12)(”""( YD, — D, ") Xii (The Dirac kinetic term for ;)
1
b (F ;;Z]Oﬂ“’” + h.c. ) (Eventually can ignore this F'*O™ bit...
+uvij \/i tjklmnpq — v . : : :
(O — —me] PN kim0 Xnpq ...which looks like Pauli couplings...
1 - g
- §¢pk0“”’y’)xwk + (@Dz term) ...and x?) mixing) .

To see that you can drop F'*O™, note that 7§ = 12, so none of klm or npq are 1 or

2: thus Xpim» Xnpg and also x7* = x1?*_ are all uncharged.

The upshot: Form x = X,i + 2X2;% and find simple massless Dirac equation,

1
’)/'u (VM—ECLM)X_O
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1
’)/'u (VM—EGM)X_O

This equation is well-analyzed in the bottom-up literature [Liu, McGreevy, and Vegh,
0903.2477; Faulkner et al, 0907.2694; Hartman and Hartnoll, 1003.1918]. There is a Fermi sur-

face, near which

h
Gr= T T where £, = k — kpand hy > 0
kF ~ (0.9185 (Wlth k=1L= Ty — 1)
vy, = 0.2393 < 1/2 rather different from Landau-Fermi liquid

vr = 0.0285 (mod 27vr)  Really small!

So if the nearest quasi-normal frequency to the origin is wony = w, — ¢, then

[ 1

w_* — tan 211: - — 53 for k, > 0 (quasi-particles)
[ 1

— = tan JrET — for k, < 0 (quasi-holes) .

W, 2, 2.8
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1.3. Yet more gauged supergravity: D =5 N =8

D = 5, N =8 gauged supergravity [Gunaydin, Romans, and Warner, 1986] has a similarly
intricate structure, with gauge group SO(6). Realized as type IIB SUGRA on S°.

With A)? = A% = A’° = a,,, find (up to a Chern-Simons term that doesn’t matter)

1 3 3g* r? L? dr?
L=—-R-"f +2 4= (fdf’ —di®) — =—
4 4f“” 4 L2 (f ) r? f
f=1-320 b, 20 t Vory (1 _ 18 -
L r2 I=7
Follows from SO(6) group Follows (up to sign) from Really have to know some
theory for the most highly dimension of dual operator, supergravity to get this term
charged fermion. A =5/2for tr \X. straight.

~_ | _—

<7ky“Vﬂ + ny“au o + fW’YW> x=0.
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5! 1 7
Av, ha, — — 4 —f, A" — 0
(w wt T = o+ e )X
(Similar equations were analyzed in [Edalati et al, 1012.3751].) Final results:
hy )

GR = /{L — hQGWFuﬂVkF where ]fF = kF,j: =2+ 7§ (/‘i =L = Ty = 1)
Vg = 1/12 So quasi-particle dispersion relation is w, o< kS

I 1
vr = 0.0126 So — @ for quasi-particles and quasi-holes.

Wy

1 1
Also observe a rapidly vanishing residue near Fermi surface, Z ~ (k)™ = k7.
® k. were determined numerically: diff EQ is complicated, and I have no clue
how to express the normal mode wave-function in closed form.
e Small v, signals that kz , are close to an oscillatory region with imaginary v.

e Small v owes to AdS, effects: Per [Faulkner et al, 0907.2694] (slightly adjusted),

Yp = arg (e”\?q — 6_2””’@> /A arg (41 — e_m/G)

where ¢ = 5/2. So it matters that ¢ is somewhat large.
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1.4. Field theory speculation
Dual to AdS5x.S”is N = 4 super-Yang-Mills, whose R-symmetry group is SO(6).
e We specialized from the start to the U(1) C SO(6) which is the diagonal com-
bination of the three U(1)’s of CSA: A)? = A% = A,

e Gauginos in 4 of SO(6) and scalars in the 6 give rise to the following pattern of
U(1) charges:

gluon, charge 0
adjoint fermion adjoint fermions
charge +3/2 charge —-1/2
adjoint scalars.

charge +1

e The way to construct a ¢ = 5/2 operator is O, = tr A.X. Note Ap_ = 5/2 as
promised. The equality ¢ = Ao _signals that this is a BPS operator.

e You can’t turn on a chemical potential for only the fermions: for any choice
U(1) C SO(6), some scalars will be charged.
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In some settings [Huijse and Sachdev, 1104.5022; Igbal, Liu, and Mezei, 1110.3814; Huijse,
Sachdev, and Swingle, 1112.0573], singularities in holographic Green’s functions are un-
derstood as signaling a Fermi surface of A.X mesinos.

I am suspicious of a mesino interpretation in our particular setting for three reasons:

e N = 4 super-Yang-Mills doesn’t confine at finite ¢ as far as I can tell, so it’s
not clear mesinos should exist.

e If they do exist, I don’t see why AX mesinos would be preferred over X X
mesons as charge carriers.

e (0,01) ~ N? soif you cut the amplitude to find out what states O, can
produce, they’re almost certainly colored.
More precisely: (O, (z)O1(0)) ~ N?/x for & < 1/ is a non-renormalized,
BPS protected result, and N? scaling applies equally to residue at w = 0, k =
kr, so O(N?) things can be produced by O, near Fermi surface.

I’d like to consider the following alternative interpretation:

The singularity in <O><Oj<> i1s due to a gaugino Fermi surface, co-existing with a
scalar condensate which (at large V) leaves the U(1) symmetry unbroken.
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Large N allows U(1) to remain unbroken even with non-zero scalar condensate:

X, X,
X1 X1
Symmetry broken Symmetry unbroken at large N

A common worry is that scalar condensate can run away along flat directions. But
perhaps this is not relevant at large /V. Here’s why:
e Only a subleading fraction of directions satisfy [X !, X”/] = 0.

e Since RN AdS5 is finitely far from SUSY limit, it’s probably more representative
to think of non-commuting directions.

e In non-commuting directions, condensate is limited by V' ~ ¢* tr[ X', X /]2,
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So—plausibly—the singularity at k = kp, with residue ~ N?, owes to diagrams
roughly like this:

singular: at k=k_
—_—t =
gaugino

fermi surface

) )

k:(? Wlth
finite probability
X [ scalar X
condensate

|
I O(N?) intermediate states
|

If the above diagram summarizes the right idea, then we should be able to compare
total charge density to a Luttinger count of gauginos derived from k..
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Charge density from thermodynamics

9f

jtotal A 2 With/{z:L:TO:l.

Charge density from a Luttinger-style count:

charge of Degeneracy
the gaugino, at each Fermi kp+ =2=% 1/\@ gy =g_ = N2?
Q= +3/ 2 surface l l
. 1 5 ;
Jfermions = QAgh A2 (g4|krsl” + g-1kr-|*)
Fermi surfaces k| <|kr ‘ n

11N ho ordered that?
= = ota who ordered that?
T o2 \/243‘7”1

At least this supports the picture of a finite fraction of charge in the scalar con-
densate; but why should the fraction be so small? Did we get g. right? Maybe
g+ < N?? Maybe g_ = —N? if Fermi sea is a thick shell? Other gauginos?

Don’t consider the matter settled before someone can come and calculate k. and
gs in field theory!
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2. Fermi surfaces for unequal charge black holes

Given that holographic Fermi surfaces exist in string theory, why continue with more
ornate cases?

e Zero-point entropy is very bothersome.

® W, X /{i is far from real CM phenomena.

e The scalar condensate and the gaugino interpretation are guesses; can we gather
more field theory data to help our intuition?

The rest of the talk will be devoted to D3-branes with angular momentum in direc-
tions perpendicular to their world-volume:

X, X, X,
2 -, -,
® X —® X —® X

N|{D3s 3
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Setting J; = J, and J, = J, = J. will be general enough. Five-dimensional
description is the “2+1-charge” black hole in AdS}, based on

(OX)? 8X? 4

Lyos = —R
’ Toxe T +2X4L2
o X8f,uuf'uy - FFMVF'LW - QGMVPGTf,uVFpUAT .

e X is a scalar in the 20’ with m?L? = —4 which describes how oblate the S° is
in the X{-X, v.s. X3-X,-X;5-X; directions.

e f., = 0,a, — 0,a, describes .J; charge.
o [, =0,A, — 0,A, describes .J, charge.
e We’ll avoid situations where the Chern-Simons term is needed.

e L. is atruncation of D = 5, N/ = 8 supergravity, and we’ll consider quadratic
fermion equations derived from the same theory.

e We’ll restrict attention to extremal black holes. Up to rescalings, they are parame-
trized by the ratio of chemical potentials, j1z = fi1/ .
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Partial summary of results:
e There are several different Fermi 6. - - | 4
X : Marglnal Eerml ! !
Suriaces. ,; Liquid regime | a
. . [ I II
e The most interesting one has i / 3QBH! N
. 2+ I ® /A
kFHlaSMR—)OWIthTH_l' ke . ec0oee 00 o o o o0 ‘},!,Q’./ |
[ g, !
e In this limit and entro or , v/ '
1> py f ! Uscillatary 4
— O _2; \\ ! :
i S : i
e Green’s function shows Marginal I R e 77 P
. . . . 0.0 0.2 0.4 0.6 0.8 10
Fermi Liquid behavior, v, — 1/2
from below. HR
° — () limit is related to a
Reo Kr

109

0.1

rq=1/10

0.001 ¢

ru=1/100
105+

107F et et

10—9 L

Coulomb branch state with
non-zero X; and X,.

e This state is a superconductor
wrt a,, and an insulator wrt A ,.

e Conductivities in the MFL
regime show a Drude peak for
a, and near-insulator behavior

for A,
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The plan of the rest of Part II of the talk:

e Bosonic backgrounds. Thermodynamics is a bit intricate and exhibits some in-

stabilities.

e Fermions from D = 5, N/ = 8 supergravity. Hard work with assorted group
structures.

e Finding the Fermi surfaces. Numerics supplemented with near-horizon analy-
S1S.

e The MFL regime. Analytic results for Coulomb branch solution, superconduct-
ing v.s. insulative behavior, some puzzles.

Overall impression: In addition to providing a “field guide” to various Fermi surface
phenomena exhibited by D3-branes, we focus in on an MFL regime which is close
(in some sense) to a SUSY vacuum state of N/ = 4 super-Yang-Mills.

We haven’t gotten very far in understanding the field theory side.
Scalar condensate is definitely important; not so sure about mesinos versus gauginos.

Zero-point entropy is almost gone.
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2.1. Bosonic backgrounds

We want to study charged black branes in the Poincaré patch:
2B

ds® = &* [—=h(r)dt* + dz; + dzy + doj) + %drz
ro1 q 1 Q?
A(r) zlogz+610g (1+ﬁ) +§log <1+?
roo1 q 2 Q)
B(r) = —logz—glog <1+ﬁ> —§log <1+F
2( .2 2\ (12 22 2 2\ 1/6
iy =1 - ST L X = ()
ra(r* +¢*)(r* + @?) r2 + Q
2 2 2 | 2
2Lrg/T% + @ \ 17+ ¢

O(r) = Vi 0 (riﬂLQQ —1)
2[//']_[ r? + Q2 ’

where to obtain extremal black holes we would set

1 |
ry = 1%14 +8¢°Q* — 14"
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Some thermodynamic quantities of interest:

1
5= oV h )0+ QP
_ _ qlrg + @) _ovag| - V2OVt
H1 = 2@5 = — Mo = 2 2(1) == —
bdy Lryg+/13 + ¢ bdy Lry
1
U = #_ at extremality.

H2 2
Ve ()
TH
¢ and () are length parameters, related to the conserved charge densities p, and p4:

S S
Po =0 pa=—Q.
I'H T'H

Expressed in terms of p,, p4, and the energy density, s is not uniformly concave,
which means there are Gregory-Laflamme instabilities if charges are too large |Gub-

S

ser, hep-th/9810225; Gubser and Cvetic, hep-th/9903132], e.g. if p, > o when p4 = 0.

All black holes of interest to us are on the unstable side of Gregory-Laflamme sta-
bility line. Are the extremal ones dynamically unstable? Not sure.
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2.2. Fermions from D = 5, ' = 8 supergravity

Scalar coset in D = 5, N' = 8 is Eg)/USp(8), and fermions are conveniently
expressed in terms of U Sp(8) representations: ¢y, in the 8 and Y in the 48:

8
48 = (3) —8 because Y% =yl and Q™ =0.

We focus on the spin-1/2 fields. They satisfy a symplectic Majorana condition,
Xabc _ C()Zabc)T where >—<abc _ (Xabc)t)/o and (’Y“)T _ O,yuc—l .

To compare with /' = 4 super-Yang-Mills we need to understand the S O(6) group
content.

USp(8) D SO(6) sothat 8=4+4.
For y*¢, 48 = 20 + 20 + 4 + 4, and

X20 ~ Tr(AX)  with  m=—

X4~ Tr(AF,)  with  m=—.
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If SO(6) were unbroken, then 8 = 4 + 4 and 48 = 20 + 20 + 4 + 4 would take
us a long way toward figuring out which x¥ modes don’t mix with gravitinos.

U(l)y x U(1), x U(1). C SO(6) is unbroken, and carefully tracking the charges
helps identify decoupled x modes and their explicit duals.

Practice a little charge counting:

111 11
Zy =X, +iXy = 200 A= Ay = e
“maximal” X(%’%’%) — Tr\ 2, X(%’_%’_%) — Tr X\ Z;
(214141 eight charge choices, various Tr AX and

“overlapping” —
ppmg - X three-fold degenerate Tr AF', operators
“Maximal” fermions (24 in all) are the ones where one U (1) charge is +3/2. They
can’t mix with each other because they all have distinct (q,, ¢, ¢.). And they can’t
mix with gravitini because 4 + 4 has all U(1) charges +1/2.

Of the “overlapping” fermions, with (¢, ¢», ¢.) quantum numbers identical to grav-
itinos, 8 indeed mix with gravitinos (super-Higgs), while the other 16 decouple com-

pletely.
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The upshot: There are 8 massive gravitinos, which we didn’t study (!), plus
40 decoupled spin-1/2 fields, each of which satisfies an equation of motion of the

form
[W”W —g <m1X S —) +gqay"a, + gy A,

X4
+ ip1X4foy"” — zﬁF ﬂ’“’] x =0,

where g = % and (my, ma, q1, @2, P1, P2) are parameters which differ among the 40
cases. Two interesting cases:

NP my | me | q1 | G2 | P1 | P2 type | Dual operator
x(222) —2 3|2 —+| 3 | maximal | Tr\ Z
xo2) 1l 113 1|—1|—5| maximal| TrA;Z
To get hold of m, . . ., ps, one needs several terms in D = 5, A = & lagrangian:
L = 2 abc MD Zg —abc A L —Q T de_|_ F ab.— jn%
X 12 ,u,Xabc 2 bede 45 bd+ ce 8 ny Xacd”/ Xb

a1, 2 / \ mi, ma / \ P1s D2
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2.3. Finding the Fermi surfaces

We want to find singularities in two-point functions of operators dual to x, e.g. Tr A.X.

Let’s briefly rehearse some well-established methods, e.g. from [Faulkner et al, 0907.2694].

Wy
v,
Wy
Wy

Y = 6—2Ah—1/46—iwt+ikxqj U —

where
1 1
ulr) = o+ g0+ gasd) o) =26 (plxw +p2ﬁarq>) |

Near the boundary, for [mL| # 1/2, we have
Uop ~ Au(k)r™ + B, (k)yr—™ 1 U ~ Cok)r™ ' 4+ Dy (k)r— ™"
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while for mL = 1/2 we have
U, ~ Co(k)r Y2 logr + D, (k)r 2.
A spinorial Green’s function G, (k) ~ (O,(k)O,(—k)) can be defined through
Dy(k) = Golk) Au(k)

A singularity occurs when A — 0 without D — 0. (C' ~ A and B ~ D always).
Corresponds to a normal mode of .

Near-horizon analysis is equally important and equally familiar: AdS, x R? region
with new scaling exponents:

2
ds* = %(—dTQ +d¢*) + K2d7” a,=— A, =—

where

.
r—rg=— t=K.1

S

and (K, K., K, e, e;) are somewhat complicated combinations of ¢, ), 77, and

L.
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Singularities occur at w = 0, and allowed solution in AdS; x R?is
U, o< (" where v, = /m2L: — g*(qier + qes)?

B2 2K, ) 1
@ k:k_(_l) L% plXH "‘Z?QX—?{

mi =m*(Xy) +

Two contrasting cases:
e ;. imaginary: purely infalling mode, non-zero flux into the horizon at w = 0,

can’t be a normal mode. “Oscillatory.”
e 1, real and positive: W, — 0 as ( — oo, which is 7 — 7. “Normalizable.”

311 3 11
X(Q’i’i) X(i’_§7§)
15 T l‘\ T T T T T T T T “ T T T T N T ] [ T T T T T T T T T T T T T T
e i o st 1)2 | |
10 A 3QBH! o) J [ | ¥
[N | vy - 41 ! @
Results e | e : [ from below 30BH )
th 50 \\ >80 0_o0 000" - k s / | . /9"
Wi 1 ke \'\\. Oscillatory ‘ F 0 eeceo 00 o o o oo//Oj"g_.?-f”
— 1. 0 ~ ; ; 7 A2
'H : e el < ; i i | Oscillatory
I e 1 2L ¢ g
5 | ® i L "\\ :
: E\\. - : .\T\\‘
00 0z  oa os Tos Tio o T 0z o4 06 o8 10
MR MR

(For three-charge black hole, 3QBH, ry = \/%'ro due to change in definition of 7.)
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Each point is a normalizable bulk fermion mode, indicating a Fermi surface.

parameters
Zero m13 m29 ql’ q25p13p2
e
field theory:
N=4 SYM

O=TrAX (A=5/2)
or TrAF,_ (A=7/2)



Non-Fermi liquids from D-branes, 7-17-12 33 2.4 The MFL regime

2.4. The MFL regime

We found 0 < v, < 1/2 for all Fermi surfaces we found: all are non-Fermi liquids,
where Fermi velocity is not formally defined.

h

k. — iw — hoelrrw?vr

GR:

close to the Fermi surface, with &k, = k—kp.

MFL limit is where v;, — 1 / 2 from below, so that Fermi velocity is almost defined:

h
GR% — ! .
ki + cwlogw + ciw

MFL theory has had notable successes in describing normal state of cuprates near
optimal doping [Varma, Littlewoord, Schmitt-Rink, Abrahams, Ruckenstein 1989], but its mi-
croscopic underpinnings are not well understood.

What’s going on as we approach the MFL limit in our construction?

e 7" = ( is held fixed—by construction.
e Convenient to hold ¢ = 1 fixed too. Thus rg — 0. Also set L = 4G5 = 1.

e s~ 2ry — 0and Q =~ ry — 0.
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e p, ~2ry — Oand py =~ 2r7, — 0.
® p./paisbig, but up = 11/ s is small: Weird.
e AdS, x R?region gets squeezed, since it goes out only to ~ 27.

e Outer geometry converges essentially to Coulomb branch solution.
rp=0.1

h

amost Coulomb branch

(0

-05F

e Basically, take the SUSY Coulomb branch solution at finite ¢ and “dope” with a
little bit of ()—but remember, p, and p4 are the conserved charge densities.

2,

leo
l\’)\)—l
l\.’)\)—l

e Can demonstrate analytically that kp / rp at small 7y for Y2~

° X(%’%’%) has finite kp / o and v, < 1 / 2 (non-MFL, but co-existing with MFL).
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The Coulomb branch solution has a long history

The main things to know are:
e The 5-d geometry lifts to the background of a uniform disk of D3-branes spread
uniformly in the X;-X, directions out to a radius q.
e Two-point functions characteristically exhibit a continuum above a gap A, =
q/L?. Surprising because BPS spectrum extends down continuously to 0.
In particular, fermion two-point functions exhibit the gap A,.

Is this an insulator band-gap? (Remember we haven’t “doped” yet.) Or is it a super-
conducting gap?

The claim: The Coulomb branch state is an insulator wrt A, and a superconductor
wrt a,.

Superconductivity is subtle to see in 5-d because the only scalar involved (our friend
X)) is neutral—like a dilaton.

Let’s finish with an examination of conductivities to demonstrate the claim.
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Conductivities are simple for the Coulomb branch because the linear perturbations
a, = e "“'b,(r) A, = e ' B,(r)

decouple from all other perturbations. (Usually h,, couples, but here the back-
ground has no charge.)
3r? — ¢° WL 3 w2 L4
3 4+ q2r 4 g2 r r 4 g2
Solutions are easy:
| I <1+\/1—w2) I (3+\/1—w2)
2 2
b,=—B, = r
X6 I(1+v1—w?)
l+v1—w? 3+V1—w?
2F1< 5 ; 5 ;1‘|‘V1_W2§_T2)

14+v1—w? <

where we’ve taken either the more regular solutions at 7 — 0, or the purely infalling
ones.

How can b, possibly describe a superconductor while B, = X°b, describes an
insulator?
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Expand both at large  and small w to get low frequency conductivity. ¢ = L = 1.

1 1+21
b, = (1 — —) + ﬂuﬂ + O(w") + O(1/rh)

72 42
1+ 2logr ,
——Ww

B, =1
+ e

+ OWw) + O(1/r).

e The “5”w? term gets canceled by S, o [ d'z (f2, +2F2,).

r

e We then read off Green’s function from b, = 1 + G (w) /212

) lin%) G (w) = —2 while lin”(l) Gl (w) = 0.

Now we can extract the low-frequency conductivity:

') GRo)
i(w+ie)  i(w + i€)

o(w) =

— GR(0) [—fmi - Wé(w)]

So the — T%, coming precisely from 1/ X5, is just what we need to go from insulative
behavior for A, to superconducting behavior for a,,.
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Full spectral measure shows hard-gapped s-wave superconductivity for a,,:

Vo — 1
Reo,(w) = 2md(w) + %H(wz — 1) tanh %

w? —1

Reoy(w) = mw O(w?® — 1) tanh T 5

Reco

°°°°°°

We also worked out
"""" B conductivities in the MFL

101

0.1

ool =110 S regime: small 75 quantifies slight
ol MEY100 e “doping” of Coulomb branch

I L configuration.

wE et e

wor e e e Gauge field perturbations

10 | | | w now mix with each other and
0.001 0.01 0.1 1 .
the metric.

e Small conductivity is mostly A,,; large one is mostly a,.

e §(w) behavior partially broadens to a Drude peak, but we’re not sure we under-
stand the full small w behavior when 77 # 0.
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3. Summary

e There are various Fermi surfaces in charged black holes dual to N = 4 super-
Yang-Mills.

e They are hard to find because supergravity is complicated. But sometimes kp
and v, are nice numbers.

e After initial study of gravitinos, we focused entirely on decoupled spin-1/2 par-
ticles.

e The charged black holes have some weird thermodynamics, including Gregory-
Laflamme instabilities.

e We found a Marginal Fermi Liquid regime approaching a SUSY vacuum state
(on the Coulomb branch) at zero temperature, along a “doping” axis. Could a
field theory construction of MFL be within reach?

e The Coulomb branch state is a hard-gapped s-wave superconductor.

e O(N?) scaling of two-point functions suggests that the Fermi surfaces are for
adjoint fermions—Ilike gauginos? But we’re having trouble accounting for full
range of Fermi surface behaviors without some recourse to bound states.
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