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Part I:    Equilibrium AdS/CMT

• One focus: use holography to analyse the equilibrium behaviour of 
CFTs when held at finite temperature and charge density and/or in a 
uniform magnetic field and try to make contact with different phases  
that are seen in condensed matter

• Approach:  

• Construct all AdS black hole solutions with the relevant 
asymptotic behaviour 

• Calculate the free energies and deduce the phase diagram

• Hard!  
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Questions:

• What type of phases are possible?  

• What kind of zero temperature ground states are possible?

• Do we find interesting new emergent scaling behaviour in 
the far IR? eg Lifshitz, Schrodinger, ..., something new??

• Transport?

Top-down solutions of D=10/11 supergravity preferable   

AdS/CMT has certainly led to new insights into string/M-theory - 
including rich new classes of black hole solutions
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• Key ingredient for superfluidity: charged bulk fields that can 
spontaneously break a global U(1) symmetry 

• s-wave superfluids have            order parameter                                                
Use charged bulk scalar fields. [Gubser][Hartnoll,Herzog,Horowitz]
[Gauntlett,Sonner,Wiseman][Gubser,Herzog,Pufu,Tesileanu]                                                                                                                                                                                                

• p-wave superfluids have             order parameter                                  
Seen in eg         , heavy fermions, organics,                      

In D=4,5 use SU(2) gauge fields. Take the background to be charged 
with respect to                           and then spontaneously break the 
U(1) [Gubser]

In D=5 can use a charged self-dual two-form [Aprile,Franco,Rodriguez,Russo]           

• These black hole solutions have been found by solving ODEs            

                                               

                                                              

                                                    

U(1) ⇢ SU(2)

He3 Sr2RuO4

l = 0

l = 1

Superfluid Phases
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• The above examples have been found for CFTs at finite chemical 
potential with respect to the global U(1) symmetry. The black holes 
are electrically charged

• Holographic superconductivity can also occur for CFTs in a magnetic 
field. 

• Examples with bulk charged scalars                        
[Almuhairi,Polchinksi][Donos,Gauntlett,Pantelidou]   

• Examples with bulk charged vectors 
[Ammon,Erdmenger,Kerner,Strydom][Almuhairi,Polchinksi]
[Donos,Gauntlett,Pantelidou] - connections with condensation of  rho 
mesons in QCD? [Chernodub]

• Both occur for N=4 d=4 SYM and N=8 d=3 SYM and there is an 
interesting interconnection with supersymmetry...

• Inferred using a linearised analysis -  to construct back reacted 
black holes need to solve PDEs
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Spatially Modulated Phases

• In condensed matter there is a variety of phases that are spatially 
modulated, spontaneously breaking translation invariance. 

• For example: charge density waves and spin density waves.

• The modulation is fixed by an order parameter associated with 
non-zero momentum. 

• Spatially modulated superconducting phases are also possible. FFLO 
phase is a variation of BCS. Perhaps seen in some heavy fermions 
(eg                   ) and some organic superconductors

CeCoIn5
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• Spatially modulated black holes are possible        

• d=3 or d=4 CFTs at finite chemical potential with respect to U(1) and 
we find examples of spatial modulated phases        
[Nakamura,Ooguri,Park][Donos,Gauntlett]                                      
[Domokos,Harvey][Bergman,Jokela,Lifschytz,Lippert]                                   

• Also find spatial modulation when d=3 or d=4 CFT is placed in a 
magnetic field [Donos,Gauntlett,Pantelidou]

• Examples have spatially modulated currents. Can also have 
[Donos,Gauntlett,Pantelidou]

• Charge density waves  

• Spatially modulated superfluids. Specifically p-wave with a 
helical order 

•  Top-down examples in D=10,11 supergravity 
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• Spatially modulated phases are not exotic. Typical?

• The spatially modulated phases above have been inferred using a 
linearised perturbative analysis. Generically to go beyond this one 
needs to solve PDEs.....many interesting questions here

• An interesting exception[Donos,JPG]: back reacted black holes that 
describe d=3+1 p-wave superfluids with a helical structure. The D=5 
gravity model has a metric, a gauge-field and a charged two-form

• The solutions are spatially homogeneous with a helical structure. 
More precisely there is a Bianchi             symmetry and we 
constructed black holes by solving ODEs!

• At zero temperature the black holes become domain wall solutions 
and interpolate between AdS5 in the UV and a new scaling solution in 
the IR with helical symmetry (c.f. [Iizuka,Kachru,....])

V II0

Thursday, 19 July 12



Thursday, 19 July 12



Thursday, 19 July 12



Part 2:   Non equilibrium Dynamics

• Studying the far from equilibrium dynamics of any system is a very 
challenging problem

• Receiving much interest not least because of new experiments e.g. 
in the context of cold atoms

• Can we use AdS/CFT to obtain new insights?

• Basic idea is very simple: analyse time dependent black hole 
solutions. 

• Technically challenging because it requires solving non-linear PDEs. 
[.........][Chesler,Yaffe][Murata][Bizon,Rostworowski][Garfinkle,Pando Zayas]
[Bantilan,Pretorius,Gubser][Buchel,Lehner,Myers][Heller,Janik,Witaszczyk][......]
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• Quantum quench

• Start with a state of initial Hamiltonian that is abruptly changed e.g.

How does the sate evolve? 

• a) Nature of thermalisation? Relaxation times?

• b) Universal behaviour near critical points?

• Here we will study a quantum quench of superfluids. Analyse in the 
context of AdS/CFT but discover some universal features that apply 
more broadly

H = H0 + g(t)H g(t) = g✓(t)
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Quantum quench of a BCS superconductor

• Abruptly switch on pairing interactions in a BCS setting [Barankov,Levitov]

• Approximations: collisionless, no thermal dissipation, no vortex 
production

H =
X

p,�

✏pa
†
p,�ap� � �(t)

2

X

q,p

a†p"a
†
�p#a�q#aq"

�(t) = �s, t < 0

�(t) = �, t � 0

BCS Hamiltonian

B-L showed this is an integrable system
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Fermi gas with time-dependent pairing interaction hosts several different dynamical states. Coupling
between the collective BCS pairing mode and individual Cooper pair states can make the latter either
synchronize or dephase. We describe transition from phase-locked undamped oscillations to Landau-
damped dephased oscillations in the collisionless, dissipationless regime as a function of coupling
strength. In the dephased regime, we find a second transition at which the long-time asymptotic pairing
amplitude vanishes. Using a combination of numerical and analytical methods we establish a continuous
(type II) character of both transitions.
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Recent discovery of BCS pairing in fermionic vapors
[1], made possible by control of interactions in trapped
cold gases [2], has renewed interest in quantum collective
phenomena [3]. Advanced detection techniques and long
coherence times in vapors enable time-resolved studies of
new collective modes, such as spin waves [4] and the BCS
pairing mode [5].

Interaction between a collective mode and constituting
particles is key for our understanding of dynamics in
various systems, from plasma to quantum gases. One of
the most surprising of these phenomena is Landau damp-
ing, which occurs in a collisionless regime via direct dis-
sipationless energy transfer from the collective mode to
single particles. Its nondissipative and thus reversible char-
acter [6] leads to a variety of regimes, notably to quenching
of the damping, first explored in plasma physics [7].
Remarkably, a linearly damped mode can regrow and
transform to a stationary oscillatory Bernstein-Greene-
Kruskal mode. This fascinating prediction was confirmed
experimentally only recently [8].

Naturally, the richness of these nonlinear phenomena
makes it tempting to look for their analogs in cold gases.
Collisionless damping in cold gases was considered, in the
linear regime, for optical excitations [9], spin waves
[10,11], and excitations in optical lattices [12]. Motivated
by the work on fermion superfluidity [1,5], here we focus
on the pairing dynamics of fermions [13–17] induced by a
sudden change of interaction. The collisionless regime
becomes practical in this case due to long relaxation times
!" ! !! " @=! [13], where ! is the BCS gap, and !" ’
@EF=!2 is the two-fermion collision time estimated at the
energy ’ ! near the Fermi level. The pairing mode of a
small amplitude oscillates at a frequency 2!=@ and exhib-
its collisionless dephasing [18]. These conclusions were
extended recently to the nonlinear regime [19].

This behavior changes drastically as the perturbation
increases. The main result of this work, as summarized in
Fig. 1, is prediction of a dynamical transition resulting
from competition between synchronization and collision-
less dephasing, taking place as a function of the initial

pairing gap, !s. We found three qualitatively different
regimes (A, B, and C) with the critical points at !AB "
e##=2!0 and !BC " e#=2!0, where !0 is the equilibrium
pairing amplitude in the final BCS state. Below the A-B
transition, !s <!AB, individual Cooper pair states syn-
chronize and the pairing amplitude oscillates between !$
and !# without damping. In contrast, in the interval
!AB % !s < !BC the pairing amplitude is Landau damped
and exhibits decaying oscillation, saturating at an asymp-
totic value, !a, with nonmonotonic dependence on !s. A
second transition occurs at !s " !BC. The dynamics be-
comes overdamped at !s >!BC, and !&t' decreases to
zero without oscillations. The oscillation amplitude and the
asymptotic value !a vanish continuously at the critical
points A-B and B-C, as in a type II transition. We demon-
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FIG. 1 (color online). Three regimes of the pairing dynamics
vs the initial gap value !s: numerical (open circles) and
analytical (line). In synchronized phase (A), !s <!AB, the
pairing amplitude oscillates between !# and !$. In the de-
phased regime (B;C), the pairing amplitude saturates to a
constant value, !a, when !AB % !s <!BC, and decreases to
zero at !s ( !BC. Dashed line: The stationary gap value !&T)'
reached in a closed system after equilibration.
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• B-L Dynamical phase diagram

Strength of quench

Final pairing gap

• Region A: persistent oscillations in a final superfluid state

• Region B: power-law decay to final superfluid state

• Region C: power-law decay to unbroken phase final state
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• What happens if we relax the assumptions and consider the role of 
collisions, thermal damping, non-BCS, strong coupling ...

• What survives?

• Explore using AdS/CFT
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S =

Z
d

4
x

�
R+ 6� F

2 � |D |2 �m

2| |2
�

D = d � iqA 

THE MODEL  [Hartnoll,Herzog,Horowitz] 

 $ O

AdS4 vacuum is dual to a d=2+1 CFT with a global U(1) symmetry
 

For simplicity we choose �(O) = 2m2 = �2q = 2

Order parameter for superfluid
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• The electrically charged AdS-RN black hole

• Describes CFT at chemical potential      and temperature T

ds

2 = �gdt

2 + g

�1
dr

2 + r

2(dx2 + dy

2)

A = �dt

� = µ(1� r+
r
)

g = r2 � (r2 + µ2)
r+
r

+
r2+µ

2

r2

 = 0

Unbroken phase black holes

µ
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• Spatially homogeneous and isotropic

A = �dt

Superfluid phase black holes

 =
 1

r
+
 2

r2
+ . . .

 =  (r) 2 R

ds

2 = �ge

��
dt

2 + g

�1
dr

2 + r

2(dx2 + dy

2)

g = r2 + . . . � = µ� q

r
+ . . .� = 0 + . . .

 1 $ adding a source to CFT  2 $ hOi

Superfluid black holes have  1 = 0
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Note solutions for this bottom up model are singular at T= 0

Superfluid phase transition

(The top-down examples [JPG,Sonner,Wiseman] have an emergent 
AdS4 at T=0)
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The dynamical quench from the superfluid phase

No source

No source

No sourceNo sourceNo source

Gaussian pulse of 
field dual to 

Initial superfluid black hole 
solution

Final black hole solution

AdS4 boundary

t = 1

t = �1

O

T = 0.5Tc
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• 5 real variables

• 8 PDEs: 5 evolution equations and 3 constraint equations

Use ingoing Eddington Finklestein coordinates

z = 0Asymptotic AdS4 boundary is at 

ds

2 = z

�2
⇥
�F dv

2 � 2 dvdz + S

2(dx2
1 + dx

2
2)
⇤

A = Av(v, z)dv  =  (v, z)

[Kinoshita,Murata,Tanahashi]

Consider homogeneous and isotropic quenches

F = F (v, z) S = S(v, z)
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• Asymptotic expansion

S(v, z) = 1� 1
4 | 1|2z2 + S̃(v)z3 . . .

F (v, z) = 1� 1
2 | 1|2z2 + F̃ (v)z3 + . . .

 (v, z) = z 1(v) + z2 2(v) + . . .

Av(v, z) = µ(v)� z⇢(v) + . . .

 1(v) = �e�10v2

• Apply a sharply peaked Gaussian pulse with strength 

hOi ⇠  2 � µ 1

• Subtlety in holographic renormalisation

�

hJti ⇠ ⇢+ @vµ

• Quench satisfies: hJti|initial = hJti|final
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Results

Re( )

At late times it settles down to an equilibrium black hole solution
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Dynamical phase diagram

Strength of quench
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The final black hole is indeed an equilibrium black hole

The quench adds energy and heats the superfluid

0
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I II III

Further analysis reveals that        corresponding to the 
quench       is an emergent dynamical temperature scale 

T⇤
�⇤

Tf/Tc

Tf/Tc
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Region I: Small quenches give rise to damped oscillations to a 
final superfluid black hole

Thursday, 19 July 12



Region II: Larger quenches give rise to a decayed approach 
to a final superfluid black hole
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Region III: Larger quenches still give rise to a decayed approach 
to the unbroken phase
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Recent discovery of BCS pairing in fermionic vapors
[1], made possible by control of interactions in trapped
cold gases [2], has renewed interest in quantum collective
phenomena [3]. Advanced detection techniques and long
coherence times in vapors enable time-resolved studies of
new collective modes, such as spin waves [4] and the BCS
pairing mode [5].

Interaction between a collective mode and constituting
particles is key for our understanding of dynamics in
various systems, from plasma to quantum gases. One of
the most surprising of these phenomena is Landau damp-
ing, which occurs in a collisionless regime via direct dis-
sipationless energy transfer from the collective mode to
single particles. Its nondissipative and thus reversible char-
acter [6] leads to a variety of regimes, notably to quenching
of the damping, first explored in plasma physics [7].
Remarkably, a linearly damped mode can regrow and
transform to a stationary oscillatory Bernstein-Greene-
Kruskal mode. This fascinating prediction was confirmed
experimentally only recently [8].

Naturally, the richness of these nonlinear phenomena
makes it tempting to look for their analogs in cold gases.
Collisionless damping in cold gases was considered, in the
linear regime, for optical excitations [9], spin waves
[10,11], and excitations in optical lattices [12]. Motivated
by the work on fermion superfluidity [1,5], here we focus
on the pairing dynamics of fermions [13–17] induced by a
sudden change of interaction. The collisionless regime
becomes practical in this case due to long relaxation times
!" ! !! " @=! [13], where ! is the BCS gap, and !" ’
@EF=!2 is the two-fermion collision time estimated at the
energy ’ ! near the Fermi level. The pairing mode of a
small amplitude oscillates at a frequency 2!=@ and exhib-
its collisionless dephasing [18]. These conclusions were
extended recently to the nonlinear regime [19].

This behavior changes drastically as the perturbation
increases. The main result of this work, as summarized in
Fig. 1, is prediction of a dynamical transition resulting
from competition between synchronization and collision-
less dephasing, taking place as a function of the initial

pairing gap, !s. We found three qualitatively different
regimes (A, B, and C) with the critical points at !AB "
e##=2!0 and !BC " e#=2!0, where !0 is the equilibrium
pairing amplitude in the final BCS state. Below the A-B
transition, !s <!AB, individual Cooper pair states syn-
chronize and the pairing amplitude oscillates between !$
and !# without damping. In contrast, in the interval
!AB % !s < !BC the pairing amplitude is Landau damped
and exhibits decaying oscillation, saturating at an asymp-
totic value, !a, with nonmonotonic dependence on !s. A
second transition occurs at !s " !BC. The dynamics be-
comes overdamped at !s >!BC, and !&t' decreases to
zero without oscillations. The oscillation amplitude and the
asymptotic value !a vanish continuously at the critical
points A-B and B-C, as in a type II transition. We demon-
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FIG. 1 (color online). Three regimes of the pairing dynamics
vs the initial gap value !s: numerical (open circles) and
analytical (line). In synchronized phase (A), !s <!AB, the
pairing amplitude oscillates between !# and !$. In the de-
phased regime (B;C), the pairing amplitude saturates to a
constant value, !a, when !AB % !s <!BC, and decreases to
zero at !s ( !BC. Dashed line: The stationary gap value !&T)'
reached in a closed system after equilibration.
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• The three regions of B-L survive the inclusion of collisions, thermal 
affects and also in a strongly coupled set up

• Region I: Persistent oscillations in B-L replaced with exponentially 
damped oscillations

• Region II: power-law damped oscillations in B-L replaced with decay

•        is an analogue of the B-L dephasing transition�⇤
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• The late time behaviour should be governed by linear response theory, 
which is determined by the quasi-normal modes of the black hole

• Provides excellent check of numerics and also leads to key insight into 
where the emergent temperature        comes from

• Recall that the QNMs are linearise perturbations with ingoing boundary 
conditions at the black hole event horizon and are normalisable at the 
AdS boundary

• They are functions of complex      . For stable black holes they lie in the 
lower half plane

• The late time dynamics should be governed by the dominant quasi-
normal modes i.e. the QNMs that are closest to the real axis

                                

Quasi normal modes

T⇤

!
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• For the homogeneous and isotropic quenches we only consider the 
QNMs at zero momentum

• Consider perturbations about the equilibrium black holes

• Only consider sector involving 

• Diffeomorphisms and U(1) gauge symmetry dealt with by defining gauge 
invariant variables and we consider

       

        with               

 (v, z) =  0(z) + � (v, z)

gab(v, z) = gab,0(z) + �gab(v, z)

A(v, z) = A0(z) + �A(v, z)

! 2 C

��I(v, z) = e�i!v�!
I (z)

� 
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The QNM pole-dance

Start with QNMs at                and follow motion as we decrease T > Tc T
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The QNM pole-dance

Start with QNMs at                and follow motion as we decrease T > Tc T
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T > Tc
T = Tc

T = T⇤ T < T⇤T⇤ < T < Tc
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• Notice symmetry under                    . This comes from time-
reversal invariance of the system

• The QNM at             is the Goldstone mode. The one sailing down 
the imaginary axis is the amplitude mode                

• The late time dynamics is determined by the dominant QNMs - the 
ones that lie closest to the real axis

• Roughly, expect the real part of the QNMs are associated with 
oscillations and the imaginary part with decay

• More precisely we have

     where       corresponds to the dominant QNMs

                                

|hO(t)i| = |hOif +Ae�i!t|

!

! ! �!⇤

! = 0
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• The dominant QNMs have 

• But                      so

                                

|hO(t)i| = |hOif +Ae�i!t|
= |A|eIm(!)t

hOif = 0

Region III:                 decayed approach to a final unbroken phase 
black hole

Re(!) 6= 0 Im(!) 6= 0

T > Tc
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• The dominant QNMs have 

• Now                      so

                                

Region II:                           decayed approach to a final superfluid 
phase black hole

Im(!) 6= 0Re(!) = 0

hOif 6= 0

T⇤ < T < Tc

|hO(t)i|2 = |hOif +Ae�i!t|2

= |hOif |2 + |A|2e2Im(!)t

+ 2eIm(!)tRe[hOifA⇤]
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• The dominant QNMs have 

• Now                      so

Region I:                 damped oscillations approaching a final 
superfluid phase black hole

Im(!) 6= 0

hOif 6= 0

T < T⇤

Re(!) 6= 0

|hO(t)i|2 = |hOif +Ae�i!t|2

= |hOif |2 + |A|2e2Im(!)t

+ 2eIm(!)t
⇣
Re[hOifA⇤

] cos[Re(!)t]

�Im[hOifA⇤
] sin[Re(!)t]

⌘
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• The main features, including the new dynamical temperature scale      
in the superfluid phase are captured by the QNMs

• Expect similar results for other holographic superfluids both in 
d=2+1 but also in 3+1

• The results also have significance for non-holographic systems!

• Recall that the location of QNMs correspond to the location of the 
poles  of the retarded Green’s function for the operator        in the 
dual CFT

• Thus ANY system that has poles in the retarded Greens function as 
we have here will give rise to the same late time linear response 
under a quench

                                

Universality

O

T⇤
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T > Tc T = Tc T⇤ < T < Tc T = T⇤ T < T⇤

• Key point: the pole structure below is the generic structure we expect 
for a time-reversal invariant system that breaks a continuous 
symmetry

• The precise value of         will depend on the details of the system - in 
principle could be zero. 

• The phenomenon should also be seen if a local symmetry is broken

• Can this been seen in experiment? eg Cold atom experiments

                                

T⇤
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• We have used AdS/CFT to obtain the far from equilibrium dynamics 
of a strongly coupled superfluid under a quantum quench

• Determined the dynamical phase diagram and explained how its 
late-time features are determined by the structure of QNMs

• Top down model of [JPG,Sonner,Wiseman]. This model captures infinite 
class of CFTs and can quench from arbitrary low temperature. Work 
in progress.

• A universal picture has emerged which covers holographic and non-
holographic systems that have time-reversal invariance and assuming 
spatial homogeneity and isotropy. 

• Can we calculate        in a weakly coupled theory? 

• Can the phenomenology be verified experimentally?

Final Comments

T⇤
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• Gauge-choice for

 1(v) = �e�10v2

• Evolution equations imply

• Conclude that quench conserves charge

Im( 2 �D 1) = 0 D = @v � 2iµ

µ

• Our quench                                is real

⇢̇ = �4Im[ ⇤
1( 2 �D 1)]
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Recent discovery of BCS pairing in fermionic vapors
[1], made possible by control of interactions in trapped
cold gases [2], has renewed interest in quantum collective
phenomena [3]. Advanced detection techniques and long
coherence times in vapors enable time-resolved studies of
new collective modes, such as spin waves [4] and the BCS
pairing mode [5].

Interaction between a collective mode and constituting
particles is key for our understanding of dynamics in
various systems, from plasma to quantum gases. One of
the most surprising of these phenomena is Landau damp-
ing, which occurs in a collisionless regime via direct dis-
sipationless energy transfer from the collective mode to
single particles. Its nondissipative and thus reversible char-
acter [6] leads to a variety of regimes, notably to quenching
of the damping, first explored in plasma physics [7].
Remarkably, a linearly damped mode can regrow and
transform to a stationary oscillatory Bernstein-Greene-
Kruskal mode. This fascinating prediction was confirmed
experimentally only recently [8].

Naturally, the richness of these nonlinear phenomena
makes it tempting to look for their analogs in cold gases.
Collisionless damping in cold gases was considered, in the
linear regime, for optical excitations [9], spin waves
[10,11], and excitations in optical lattices [12]. Motivated
by the work on fermion superfluidity [1,5], here we focus
on the pairing dynamics of fermions [13–17] induced by a
sudden change of interaction. The collisionless regime
becomes practical in this case due to long relaxation times
!" ! !! " @=! [13], where ! is the BCS gap, and !" ’
@EF=!2 is the two-fermion collision time estimated at the
energy ’ ! near the Fermi level. The pairing mode of a
small amplitude oscillates at a frequency 2!=@ and exhib-
its collisionless dephasing [18]. These conclusions were
extended recently to the nonlinear regime [19].

This behavior changes drastically as the perturbation
increases. The main result of this work, as summarized in
Fig. 1, is prediction of a dynamical transition resulting
from competition between synchronization and collision-
less dephasing, taking place as a function of the initial

pairing gap, !s. We found three qualitatively different
regimes (A, B, and C) with the critical points at !AB "
e##=2!0 and !BC " e#=2!0, where !0 is the equilibrium
pairing amplitude in the final BCS state. Below the A-B
transition, !s <!AB, individual Cooper pair states syn-
chronize and the pairing amplitude oscillates between !$
and !# without damping. In contrast, in the interval
!AB % !s < !BC the pairing amplitude is Landau damped
and exhibits decaying oscillation, saturating at an asymp-
totic value, !a, with nonmonotonic dependence on !s. A
second transition occurs at !s " !BC. The dynamics be-
comes overdamped at !s >!BC, and !&t' decreases to
zero without oscillations. The oscillation amplitude and the
asymptotic value !a vanish continuously at the critical
points A-B and B-C, as in a type II transition. We demon-
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FIG. 1 (color online). Three regimes of the pairing dynamics
vs the initial gap value !s: numerical (open circles) and
analytical (line). In synchronized phase (A), !s <!AB, the
pairing amplitude oscillates between !# and !$. In the de-
phased regime (B;C), the pairing amplitude saturates to a
constant value, !a, when !AB % !s <!BC, and decreases to
zero at !s ( !BC. Dashed line: The stationary gap value !&T)'
reached in a closed system after equilibration.
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• B-L Dynamical phase diagram

Strength of quench

Final pairing gap

• Region A: persistent oscillations - final superfluid state

• Region B: power-law decay to final superfluid state

• Region C: power-law decay to unbroken phase final state
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Quantum quench of a BCS superconductor

• Abruptly switch on pairing interactions in a BCS setting [Barankov,Levitov]

• Approximations: collisionless, no thermal dissipation, no vortex 
production
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