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Hawking Radiation vs Unitarity
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INCONSISTENT WITH UNITARY EVOLUTION



Horizon is smooth
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■ Classically, the black hole horizon is a smooth region of spacetime

R2
µνρσ ∼ 1

M4

■ A freely falling observer does not feel anything when crossing the horizon
of a big black hole

■ Horizon is featureless (looks like “empty space”)



Information Paradox
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■ For unitarity: final state must carry information of initial state

■ (In some sense) Hawking quanta are created near the horizon

■ If horizon is featureless and we have locality, how is information
transferred to outgoing radiation?



Information Paradox
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Quantum Cloning on the nice slices

C

A



Information Paradox
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We have tension between

■ Unitarity

■ Locality

■ Equivalence Principle (smooth horizon)

CAN SMALL CORRECTIONS RESOLVE THE PARADOX?



Information Paradox
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Will try to argue that the answer is YES

“Small” amount of non-locality is sufficient to restore unitarity and at the
same time preserve the smoothness of the horizon



Modification of black hole geometry?
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■ Proposals to modify interior of black hole:
-Fuzzballs (Mathur, ...)
-Firewalls (Almheiri, Marolf, Polchinski, Sully – “AMPS”)
-Rami’s talk ?....
-....

-interior black hole geometry 6= Schwarzschild solution

-infalling observer feels deviations from GR/burns-up when crossing the
horizon



Free infall or not?
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Does an infalling observer notice something when crossing the horizon or not?



AdS/CFT correspondence
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Quantum Gravity in AdS ⇔ large N gauge theory in lower dimensions



AdS/CFT correspondence
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Black Hole in AdS ⇔ Quark-Gluon Plasma (QGP) in gauge theory



Black Holes in AdS/CFT
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Main goals:

■ Is the region behind the horizon encoded in the boundary CFT?

■ Understand what happens to an observer falling into a black hole

■ Address the information paradox



An infalling observer in AdS
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■ Consider a big black hole in AdS and an observer freely falling towards it

■ The observer performs local experiments

■ We will reconstruct these experiments from the boundary gauge theory

■ We will argue that the results of these experiments are the same as those
of semi-classical GR



Reconstructing local observables in empty AdS
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In AdS/CFT we know that

“S-matrix elements” in AdS ⇔ Correlation functions in CFT

Local bulk correlators in AdS ⇔ ?



Reconstructing local observables in empty AdS
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Our first goal:

Construct local bulk observables from CFT

(based on earlier works: Banks, Douglas, Horowitz, Martinec, Bena,
Balasubramanian, Giddings, Lawrence, Kraus, Trivedi, Susskind, Freivogel
Hamilton, Kabat, Lifschytz, Lowe, Heemskerk, Marolf, Polchinski, Sully...)



Reconstructing local observables in empty AdS
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■ Large N CFTs contain in their spectrum generalized free fields i.e.
(composite) local operators O(x) whose correlators factorize

〈O(x1)...O(x2n)〉 = 〈O(x1)O(x2)〉 ... 〈O(x2n−1)O(x2n)〉+ . . .

■ Factorization ≈ “superposition principle”. However, the operators O do
not satisfy any linear equation of motion in the CFT.

■ Hence, they are not free fields, but rather generalized free fields

■ Excitations created by O behave like ordinary free particles in a higher
dimensional AdS spacetime



Reconstructing local observables in empty AdS
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■ First we define the Fourier modes of O
ω,~k

by

O(t, ~x) =

∫
dtd~x

(
O

ω,~k
e−iωt+i~k~x + h.c.

)

■ Conformal invariance fixes the 2-point function to be

〈O(t, ~x)O(0,~0)〉 =
( −1

t2 − ~x2 − iǫ

)∆

■ From this we find
O

ω,~k
|0〉 = 0, ω > 0

and (using large N factorization)

[O
ω,~k
,O†

ω′,~k′
] = N θ(ω2 − ~k2)(ω2 − ~k2)∆−d/2δ(ω − ω′)δ(~k − ~k′)



Reconstructing local observables in empty AdS
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■ From this commutation relation we see that the modes O
ω,~k

create a
freely generated Fock space of excitations.

■ For an ordinary free field we have dispersion relation ω2 = ~k2 +m2.

■ For the generalized free fields, excitations labeled by the independent
parameters ω and ~k.

■ ⇒ excitations behave like ordinary particles in higher dimensional AdS
space



Reconstructing local observables in empty AdS
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■ Consider AdS in Poincare patch

ds2 =
−dt2 + d~x2 + dz2

z2

■ and a scalar field satisfying �φ = m2φ.

■ We take m2 to be related to the conformal dimension ∆ of O by

∆ =
d

2
+

√
m2 + d2/4

■ For each value of ω,~k we find a solution of the Klein-Gordon equation of
the form

f
ω,~k

(t, ~x, z) = e−iωt+i~k~xzd/2J∆−d/2(

√
ω2 − ~k2z)



Reconstructing local observables in empty AdS
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■ We construct non-local CFT operators as

φCFT(t, ~x, z) =

∫

ω>0
dω d~k

(
O

ω,~k
f
ω,~k

(t, ~x, z) + h.c.
)

Notice that while these are labeled by the coordinate z, they are really
operators in the CFT. They are smeared, nonlocal operators.

■ Using the previous results we can show that they satisfy

�
AdS

φCFT = m2 φCFT

and
[φCFT(t, ~x, z) , φCFT(t

′, ~x′, z′)] = 0

for points (t, ~x, z) and (t′, ~x′, z′) spacelike with respect to the AdS
metric.



Reconstructing local observables in empty AdS
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■ From the point of view of the CFT, coordinate z is an ”auxiliary”
parameter, which controls the smearing of the operators

■ We can explicitly see how AdS space emerges from the lower dimensional
CFT, as the combination of the coordinates t, ~x together with the extra
parameter z



Reconstructing local observables in empty AdS
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We can also interchange the order of the Fourier transforms to write

φCFT(t, ~x, z) =

∫
dt′d~x′ K( t, ~x, z ; t′, ~x′)O(t′, ~x′)

where K is some kernel — sometimes called the transfer function.

Subtleties: 1/N expansion, gauge invariance....



Black Holes in AdS
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BH formed by collapse ≈ Typical (QGP) pure state |Ψ〉

Eternal Black Hole in AdS ≈ Thermal ensemble in gauge theory



CFT Correlators at finite temperature
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We use the notation

〈A1...An〉β =
1

Z(β)
Tr

(
e−βHA1...An

)

■ At large N thermal correlators factorize

〈O(x1)...O(x2n)〉β = 〈O(x1)O(x2)〉β . . . 〈O(x2n−1)O(x2n)〉β + . . .

■ Of course 〈O(x1)O(x2)〉β 6= 〈0|O(x1)O(x2)|0〉

■ Factorization can fail if we scale the parameters of the correlator with N
(for example: number of insertions, distances xi, dimension of operators
etc.)



CFT Correlators at finite temperature
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Ret

Imt

■ Consider the 2-point function Gβ(t, ~x) = 〈O(t, ~x)O(0,~0)〉β
■ Satisfies the KMS condition

Gβ(t− iβ, ~x) = Gβ(−t,−~x)
■ In Fourier space

Gβ(−ω,~k) = e−βωGβ(ω,~k)



CFT Correlators at finite temperature
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■ If we again define the Fourier modes O
ω,~k

by

O(t, ~x) =

∫
dtdd−1x

(
O

ω,~k
e−iωt+i~k~x + h.c.

)

■ we find that they satisfy an oscillator algebra

[O
ω,~k

, O†

ω′,~k′
] =

(
Gβ(ω,~k)−Gβ(−ω,~k)

)
δ(ω − ω′)δ(~k − ~k′)

■ but now the (canonically normalized) oscillators are thermally populated

〈Ô†

ω,~k
Ô

ω,~k
〉β =

1

eβω − 1

(this is the CFT analogue of the “thermal atmosphere” of the black hole)



Reconstructing the region outside the black hole
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■ Consider a black hole in AdS given by the metric

ds2 =
−h(z)dt2 + dx2 + h−1(z)dz2

z2
, h(z) = 1− zd

zd0

■ Look for solutions of the Klein-Gordon equation of the form

f
ω,~k

(t, ~x, z) = e−iωt+i~k~xψ
ω,~k

(z)

■ For every (ω,~k) there is a unique solution, normalizable at the boundary
z = 0.

■ These are the usual ”Schwarzschild modes” that we get when we quantize
a scalar field near a black hole. We relate

f
ω~k
(t, ~x, z) ⇔ O

ω,~k



Reconstructing the region outside the black hole
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■ As before, we can write nonlocal CFT operators

φCFT(t, ~x, z) =

∫

ω>0
dωd~k

(
O

ω,~k
f
ω,~k

(t, ~x, z) + h.c.
)

■ which behave like local fields around a black hole

(�−m2)φCFT = 0

[φCFT(t, ~x, z) , φCFT(t
′, ~x′, z′)] = 0 , for spacelike points

■ and more generally

〈φCFT(P1)...φCFT(Pn)〉β = 〈φgravity(P1)...φgravity(Pn)〉Hartle Hawking



Reconstructing the region outside the black hole
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■ We have understood how to reconstruct the region outside the black hole
from the point of view of the gauge theory

■ We can write local observables in gravity as non-local operators in the
gauge theory



Falling behind the horizon
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■ Penrose diagram of (eternal) AdS black hole

■ Cauchy slice for points in II is Σ1 ⊕ Σ2

■ To reconstruct local operator at P we need both modes on Σ1 and Σ2

Modes on Σ1 ⇔ O
ω,~k

Modes on Σ2 ⇔ ?



Falling behind the horizon
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■ Maldacena: eternal black hole = 2 copies of CFT in entangled state

■ In this formalism, modes on Σ2 are the operators Õ
ω,~k

in the second copy
of the CFT

■ Do we really need the two entangled copies?

■ If we work with a single CFT, what is the meaning of the operators
Õ

ω,~k
?



Pure states and thermalization
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In eternal AdS black hole:

2nd CFT ∼ “heat bath”

A pure state |Ψ〉 in an isolated system may “look thermal”,
without the need for an external heat bath

The large N N = 4 SYM “self-thermalizes”



Coarse-graining and doubling of operators
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■ Consider complicated (ergodic) system in pure state |Ψ〉. Intuitive
expectation ⇒ system ”thermalizes”

■ For some observables {Oi}- called coarse-grained observables, their
correlators on |Ψ〉 come close to thermal correlators

〈Ψ|O1..On|Ψ〉 ≈ Tr
(
e−βHO1...On

)

(example: single trace operators in large N gauge theory)

■ This is not true for all observables, there are also fine grained
observables which do not thermalize

■ To simplify the language let us assume that the Hilbert space (expanded
around |Ψ〉) has the form

H = Hcoarse ⊗Hfine

■ Hfine plays the role of a heat bath for Hcoarse



Coarse graining and doubling of operators
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SMALL SUBSYSTEM IS MIRRORED IN HEAT BATH

■ For us the Quark-Gluon-Pasma is the heat bath

■ The glueball operators Oi are the coarse-grained observables

■ They are mirrored in the QGP, which leads to new operators Õi (special
“collective excitations” of the QGP)



Coarse graining and doubling of operators
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■ Every state |Ψ〉 can be written as

|Ψ〉 =
∑

ij

cij |Ψc
i〉 ⊗ |Ψf

j 〉

where |Ψc
i〉, |Ψf

j 〉 are orthonormal basis of Hcoarse and Hfine respectively

■ We can choose Schmidt basis

|Ψ〉 =
∑

i

ai|Ψ̂c
i 〉 ⊗ |Ψ̂f

i 〉

■ If Hcoarse thermalizes, it means that the reduced density matrix

ρcoarse = Z−1
c e−βHcoarse

■ which means we can redefine our orthonormal basis such that

|Ψ〉 =
∑

i

e−
βEc

i
2√
Zc

|Ψ̂c
i〉 ⊗ |Ψ̂f

i 〉



Coarse graining and doubling of operators
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■ The state |Ψ〉 can be written as

|Ψ〉 =
∑

i

e−
βEc

i
2√
Zc

|Ψ̂c
i〉 ⊗ |Ψ̂f

i 〉

■ Consider a coarse-grained operator acting on Hcoarse as

O =
∑

ij

aij |Ψ̂c
i〉 ⊗ 〈Ψ̂c

j |

■ Then we define a new operator

Õ =
∑

ij

a∗ij |Ψ̂f
i 〉 ⊗ 〈Ψ̂f

j |

acting on the fine-grained Hilbert space.



Coarse graining and doubling of operators
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■ We started with a set of coarse-grained operators Oi

■ The operators Õi constructed as above, have the properties

1. The operator algebra Õi is isomorphic to that of Oi

2. Operators Oi commute with operators Õi



Coarse graining and doubling of operators
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■ At large N , correlation functions of the mirrored operators Õ on a pure
state, agree with those of analytically continued operators

O(t+ iβ/2)

and in particular correlators computed with the “thermofield doubling”

■ However the Õ, as operators acting on pure states, were defined via
the coarse/fine-grained decomposition



Fine-grained observables
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■ The “tilde operators” are very special: they are fine-grained observables

■ They are state-dependent operators, will not “click correctly” with
different microstate |Ψ′〉 (which may be a good thing....)

■ Among all possible fine-grained operators, the “tilde operators” are
selected/protected via their entanglement with the coarse-grained ones

■ They are “very sparse operators”



Coarse graining and doubling of operators
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SMALL SUBSYSTEM IS MIRRORED IN HEAT BATH

■ For us the Quark-Gluon-Pasma is the heat bath

■ The glueball operators Oi are the coarse-grained observables

■ They are mirrored in the QGP, which leads to new operators Õi

■ This mirroring involves the fine-degrees of freedom



Falling behind the horizon
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Modes on Σ1 ⇔ O
ω,~k

Modes on Σ2 ⇔ Õ
ω,~k

where Õ
ω,~k

are the Fourier transforms of the mirrored operators Õ



Local operators behind the horizon
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Using both O
ω,~k

and Õ
ω,~k

we can write local observables behind the
horizon of the black hole.

φCFT(t, ~x, z) =

∫

ω>0
dωd~k

[
O

ω,~k
g
(1)

ω,~k
(t, ~x, z) + Õ

ω,~k
g
(2)

ω,~k
(t, ~x, z) + h.c.

]

here g(1),(2) are solutions of the Klein-Gordon equation in region II

In the large N limit, correlators of φCFT(t, ~x, z) on a typical pure state |Ψ〉
(corresponding to a black hole microstate) agree with those computed in
semiclassical gravity.

We have reconstructed both the exterior and the interior of the black
hole from the dual gauge theory



Fate of the infalling observer
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Using the operators φCFT we can reconstruct the experiments of the infalling
observer

MAIN CONCLUSION: For a big AdS black hole, an infalling semi-classical
observer does not notice anything special when crossing the horizon

In contradiction to (fuzzball) and firewall proposals.



Various subtleties
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■ Sensitivity to pure state |Ψ〉?

■ Including 1/N corrections?

■ Spread of transfer function as we approach the horizon?

■ Sensitivity to late times - Poincare recurrences?

If large N expansion at finite temperature holds, we can argue that they are
under control.



The information paradox
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■ We argued that horizon is smooth.

■ Mathur and AMPS argue that free infall cannot be compatible with
unitary evaporation

■ Sharpened version of information paradox (strong subadditivity argument)

What does our construction teach us about the information
paradox?



Black Hole Complementarity
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Black Hole interior is not independent Hilbert space, but highly scrambled
version of exterior

C

A

In our construction:

■ Exterior of black hole ⇒ operators O (single trace operators)

■ Interior of black hole ⇒ operators Õ (special, QGP operators)

■ In low-point correlators O, Õ seem to be independent

■ If we act with too many (order N2) of O’s we can “reconstruct” the Õ’s
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THANK YOU



“Asymptotic” version of the information paradox
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■ Hawking’s computation ⇒ mixed (thermal) state ρHawking

■ Starting from pure state |Ψ〉 we end up with mixed state ρHawking

■ Inconsistent with unitary evolution in Quantum Mechanics



“Asymptotic” version of the information paradox
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However, consider what happens when a normal object burns (say a piece of
coal)

■ Outgoing photons seem to be thermal to a very good approximation.

■ How is unitarity preserved? Where is the information of the original piece
of coal stored in the outgoing radiation?

■ ANSWER: It is encoded in very small correlations (entanglement) between
the outgoing photons.

■ While final state looks like a thermal density matrix ρthermal in reality it
is a pure state.

SMALL CORRECTIONS TO LEADING THERMAL
APPROXIMATION CAN RESTORE UNITARITY
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“Asymptotic” version of the information paradox

51 / 65

■ Imagine that outgoing photons can be in 2 states. For N photons we have

2N states

■ Density matrix of outgoing radiation is of size 2N × 2N .

■ Consider
ρexact = ρthermal + 2−Nρcorrection

where ρcorrection ∼ O(1).

■ Can easily check that ρexact of this form, can correspond to a pure state

EXPONENTIALLY SMALL CORRECTIONS CAR RESTORE
UNITARITY



Resolution of (asymptotic version of) the information paradox
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■ Hawking’s computation is only the leading order result

■ We certainly expect corrections to the leading order computation, from
quantum gravity effects (saddle points etc.)

■ Even extremely small corrections are able to restore unitarity due to the
large number of particles



Sharpened version of the information paradox (Mathur,
AMPS)
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Consider the process of Hawking radiation

■ A: old radiation, far from black hole
■ B: newly created Hawking particle, outgoing
■ C: ingoing partner of B



Sharpened version of the information paradox (Mathur,
AMPS)
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Consider the entropy of radiation A as a function of time

SA = −Tr (ρA log ρA)

If initial state is pure then SA must go to zero after complete evaporation of
the black hole



Sharpened version of the information paradox (Mathur,
AMPS)
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In the beginning adding a B to A increases the entropy i.e. we expect

SAB > SA

but eventually this must turn around and for an old black hole we expect

SAB < SA



Sharpened version of the information paradox (Mathur,
AMPS)
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Consider the process of Hawking radiation

■ For information recovery: B must be entangled to A

■ For free infall: B must be entangled to C

■ Are these two statements compatible?



Sharpened version of the information paradox (Mathur,
AMPS)
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Strong subadditivity theorem: for 3 independent systems A,B,C we have

SAB + SBC ≥ SA + SC

For the Hawking pair production we have SBC ≈ 0 and SC > 0 which would
imply

SAB > SA

For unitarity: after Page time we need SAB < SA ⇒ PARADOX



Proposed resolution
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■ In our language the C’s are fine-grained operators defined via their
entanglement with coarse grained operators

■ After Page time the early radiation A plays the role of the heat bath

■ Hence C’s are “highly scrambled” combinations of A’s

Systems A,B,C are not really independent

⇓

Strong subadditivity theorem cannot be applied to A,B,C



Consistent with locality
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■ System C is not independent, but rather a highly scrambled version of
(part of) A

■ Locality for simple measurements is preserved. For P1 inside horizon
and P2 outside

[φ(P1) , φ(P2)] ≈ 0

up to very small corrections.

■ If W is a complicated operator acting outside the horizon which measures
many of the As then we allow

[φ(P1) , W ] 6= 0



Coarse-grained vs fine-grained observables
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■ Fine-grained are “sparse” (very few nonzero eigenvalues)

■ Coarse-grained are “not-sparse“

The fact that C’s are fine-grained (state-dependent) makes it easier to
simultaneously satisfy

[φ(A), φ(C)] ≈ 0

while at the same time C ⊂ A.

(spin chain toy-model + scrambling)



On complementarity
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How we understand complementarity

■ There is a large Hilbert space describing both the interior and the exterior
of the black hole

■ We can construct operators acting on this Hilbert space and describing
observables outside the black hole

■ We can construct operators acting on the same Hilbert space and
describing observables inside the black hole

■ For few, light observables, they approximately commute.

■ But not for too accurate measurements, or measurements involving too
many insertions



Summary
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■ Local bulk physics from CFT: local observables both outside and inside
the black hole

■ Infalling observer: does not notice anything special

■ Interior of black hole: coarse-grained observables effectively doubled in
fine grained degrees of freedom. Black hole interior is a combination of
both.

■ Information paradox: small corrections can restore unitarity.

■ Strong subadditivity argument (Mathur, AMPS): A,B,C are not
independent systems. C is a highly scrambled rewriting of A

■ Non-locality: The amount of non-locality required is small...



Future directions
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■ Dynamics, ”stability“ of fine-grained operators

■ Thermalization

■ Meaning of singularity

■ 1/N corrections etc.

■ Bounds on non-locality, toy model

■ ...
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■ Consider (sub)-algebra of ”coarse observables“ A. Select Cartan basis and
corresponding projection operators Pa, a = 1, ..n.

■ A typical pure state |Ψ〉 can be expanded as

|Ψ〉 =
n∑

a=1

ca|a〉Ψ, |a〉Ψ =
Pa|Ψ〉

||Pa|Ψ〉||

For typical states ca ≈ 1/
√
n.

■ By acting with ”coarse observables“ in A, we can map states with
eigenalues {a} into eigenvalues {b}, without acting on the ”fine degrees
of freedom“. This defines ”transition operators“ Ta→b (made out of the
A’s) (example: spin-flip)

■ In this way we get a set of n2 states

|b; a〉Ψ ≡ Ta→b|a〉Ψ
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■ For given typical pure state |Ψ〉 we associate an n2 dimensional Hilbert
space HΨ (subset of the full Hilbert space), spanned by the (almost
orthogonal)

|b; a〉Ψ

■ Original state

|Ψ〉 =
∑

ca|a; a〉Ψ
■ In this notation, coarse grained operators O ∈ A act as

O =
∑

bb′,a

Obb′ |b; a〉Ψ Ψ〈b′; a|

Õ =
∑

aa′

(Oaa′,b)
∗|b; a〉Ψ Ψ〈b; a′|
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