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Quantum Quench

• Suppose we have a many-body system, described by a quantum 
field theory, whose parameters (like couplings or masses) are 
time dependent – e.g. going between constant values at early 
and late times

• If the system starts out in a ground state at early times what is 
the fate of the system at late times ?



• This is of course an old problem in quantum mechanics and in 
quantum field theory - which has applications to many areas of 
physics - cosmological particle production, black hole radiation 
…….

• In recent years this problem has attracted a lot of attention due 
to two related reasons.



• The first relates to the question of thermalization

• Does the system evolve into a steady state at late times ? If so 
does the state resemble a thermal state ?

• What is the characteristic time scale for this to happen ?



• The second issue relates to dynamics near quantum critical 
phase transitions.

• In this case, simple scaling arguments indicate that there are 
some properties of the excited state which reflect universal 
behavior characteristic of the critical point.

• Some of these arguments are adaptations of the classic 
arguments of Kibble and Zurek for thermal phase transitions.

• For example, suppose near a critical point the coupling changes 
in a linear fashion

• The energy gap vanishes as

• z  is the dynamical critical exponent and      is the correlation 
length exponent.



• Then if one makes a scaling assumption one finds that for any 
operator with a scaling dimension      the one point function 
behaves as

• For example the density of defects is

• Unlike in equilibrium critical phenomena, there is no convincing 
conceptual framework which justifies this scaling assumption.



• For general two dimensional field theories which are suddenly 
brought to a critical point, Calabrese and Cardy used powerful 
techniques of 2d conformal field theories to show that, e.g.

• Here       is a length scale which characterizes the non-critical 
theory from which we quench the system,       is the conformal 
dimension of the operator.

• The expressions show that ratios of relaxation times for different 
operators are universal.

• Similar results for entanglement entropy.
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• Much of the recent interest in quantum quench comes from the 
fact that the response of systems to time dependent couplings 
can be now experimentally measured in cold atom systems.

• On the other hand there are very few theoretical tools to study 
this in strongly coupled systems, particularly near quantum 
critical points.

• Can we use AdS/CFT to understand this kind of phenomena ?

• While it is rather unlikely that one will be able to model real 
systems by gravity duals, one may be able to understand any 
universal behavior which underlie such phenomena.



Quench, Black Holes and Singularities

• In the AdS/CFT correspondence, boundary values of fields in the 
bulk of AdS are couplings of the dual field theory

• Thus quantum quench in a field theory would be represented by 
time dependent solutions in the bulk 

Time dependent 
Coupling in QFT

Non-normalizable
mode in bulk



• When the rate of variation of the boundary coupling is large
enough, one expects black holes to form.

• Janik; Chesler and Yaffe;  Bhattacharyya and Minwalla; ………….

Variation in this
time range



• In other regimes one can form regions of large string frame 
curvature

• The ‘t Hooft coupling is large and constant at early and late 
times and dips to a small value at intermediate times

• The rate is slow enough that a black hole does not form so long 
as ‘t Hooft coupling is large.

• At intermediate times, curvatures are large – like in a space-like 
singularity.
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• When the slowness parameter       is much smaller than        , 
standard textbook adiabatic expansion works – the state is then 
basically the instantaneous ground state.

• The interesting case, however is             

• In this case while the standard adiabatic expansion fails, there is 
different kind of adiabatic expansion based on coherent states. 
This can be used to argue that there is a smooth passage 
through the “singularity”. 

(A. Awad, S.R.D., A. Ghosh, J.H. Oh and S. Trivedi)



• For issues of thermalization the scenarios of black hole 
formation are relevant.

• Boundary correlators at late times will become thermal – with a 
temperature equal to the Hawking temperature of the black 
hole being formed. The time scale for relaxation to this thermal 
state is larger for larger length scales, but faster than what one 
might have expected.

(Abajo-Arrastia, Aparicio & Lopez;  Ebrahim & Headrick; 
Balasubramanian et.al.)

• Thus, in this case, the quench leads to thermalization – this is 
manifested in the bulk as black hole formation.

• As is usual in applications of AdS/CFT, a difficult quantum
problem in a strongly coupled field theory has been mapped to 
an easier classical problem in gravity.



Probe Limits

• One of our motivations to study this problem is to understand 
dynamics near a critical point.

• Critical points at nonzero and zero temperatures have been 
extensively studied in AdS/CFT.

• A large and interesting class of such transitions can be studied in 
the probe approximation – this includes holographic 
superconductors, chiral symmetry breaking transitions etc.

• In this approximation, a subset of “bulk” fields can be decoupled 
from gravity in a consistent fashion – and their backreaction to 
gravity can be ignored.



Probe Branes

• One class of examples concern a small number       of D-branes in 
the bulk  AdS (Karch and Randall, Karch and Katz).

• These branes introduce hypermultiplets in the boundary gauge 
theory, which in general live on a subspace of the original gauge 
theory – a defect QFT.

• For example a set of  D5 branes
wrapping                      in                                                       (3,5) 
strings lead to hypers which  live                                               llive
in 2+1 dimensions.

• Turning on a magnetic field along                                                   
the D5 brane leads to a chiral
symmetry breaking transition.

(Jensen,Karch,Son and Thompson)



• When the number of such branes is small,                      the 
dynamics of the brane can be treated separately, and their 
backreaction to the background metric can be ignored.

• In the dual field theory this means that hypermultiplet loops are 
suppressed – and one can – to the leading order - treat the 2+1 
dimensional defect field theory in its own right.

Other examples in 

Probe Wraps Dual defect CFT 

dimensions

D1 0+1 

D3 1+1 

D5 2+1

D7 3+1



Probe Bulk Fields

• Another class of probe fields arise in more “phenomenological” 
models. 

• An important case concerns holographic superconductors –
charged scalar fields in the background of AdS black branes. 
When the charge is large, the backreaction of the scalar on the 
background metric can be ignored – under suitable conditions 
the field can condense, leading to superfluidity in the boundary 
field theory.

(Gubser; Hartnoll, Herzog and Horowitz)

• We will deal with an even simpler example  involving a neutral 
scalar later.



• In these situations we can ask what happens if we perform a 
quantum quench.

• For example, suppose we have a probe brane in pure AdS –
initially in equilibrium. This corresponds to the vacuum state of 
the defect field theory.

• If we now start a quantum quench, viz. change a coupling of the 
theory – what happens in the future ? Does the system 
thermalize ?



• In our previous discussion (not in probe approximation) we 
found that under suitable circumstances a black hole is formed –
this signals thermalization.

• In the probe approximation, the background geometry cannot 
change   – so if the hypermultiplet sector of the field theory 
thermalizes, what does this mean in the bulk ?



Formation of Apparent Horizon

• We will show that in a large class of such quenches, there is a 
different mechanism which signals thermalization.

• In these examples, a time dependent coupling in the dual defect 
field theory leads to an induced metric which has an apparent 
horizon.

• Fluctuations of the brane feel this induced metric. An apparent 
horizon leads to Hawking radiation of these fluctuations.

• (S.R.D., T. Nishioka and T. Takayanagi)

• The phenomenon is similar to dumb holes – where fluctuations 
around a time dependent solution in a nonlinear field theory 
behave as if they are propagating in a metric with a horizon.



Rotating D1 Branes

• Consider the                   metric written in the form

• - Poincare Patch

• ,                           - Global

• The D1 brane wraps the            directions.

• Introduce Edddington-Finkelstein coordinate

• There are solutions                with 

r

t

x

Recall      is an angle on       - we have a rotating D1 brane



• The equation satisfied by               is

• Where 

• This looks rather complicated. However

are trivially solutions. We choose  

• The induced worldsheet metric for a solution which is an 
arbitrary function           is

• This is Vaidya-type metric, with an apparent horizon at 



• For the Poincare patch, there is an apparent horizon  for any 

• For global AdS, there is a threshold. For uniform rotation, there 
is a horizon only when 

• When                          at late retarded times, the apparent horizon 
asymptotes to an event horizon at



• For a quench-like situation, we want a non-zero           for a 
relatively short period of time, e.g.

• There is an apparent horizon at   

but no event horizon.



Fluctuations around rotating D1 

• The apparent horizon on the world-sheet is perceived by 
fluctuations around the rotating D1 solution. 

• Denote the fluctuations by 

• The quadratic action for the fluctuations is given by

• Where           is the induced metric on the world-sheet evaluated 
on the classical solution



• If the spin is constant,                         it is clear that the Unruh 
vacuum correlators will be thermal with a temperature

• The end-point of the string in fact performs characteristic 
Brownian motion. For        fluctuations

• For         fluctuations, one needs a UV cutoff leading to a finite 
mass of the entire string,      - and one gets

Ballistic

Diffusive

(Lawrence & Martinec)



• Such Brownian motion has been shown for a string in the 
presence of a black brane by

Son & Teaney;

de Boer, Hubeny, Rangamani & Shigemori

• In their case the black brane background induces a non-trivial 
metric on the worldsheet – leading to this effect.

• In our case, we do not have a black brane – just pure 

• However,  a similar induced metric appears because of the 
nontrivial solution of a nonlinear theory. (cf. Acoustic Black Holes ).

• In fact for constant rotation of the D1 the induced metric is 
exactly that for a string in BTZ black hole background.

• In the dual theory, the time dependent coupling produces this 
thermal effect – though only in the hypermultiplet sector.



• Even if there is no event horizon, hawking pairs are created at 
the apparent horizon and arrive at the boundary at some later 
time.  The temperature perceived in the boundary field theory is 
that characteristic of the apparent horizon at an earlier time.



• Even if there is no event horizon, hawking pairs are created at 
the apparent horizon and arrive at the boundary at some later 
time.  The temperature perceived in the boundary field theory is 
that characteristic of the apparent horizon at an earlier time.

• For a large     , this may be estimated by geometric optics

• The temperature on the boundary is given by

• Where    has to be obtained as a function of      by solving 

• At large times, the temperature goes to zero as expected in a 
scale invariant fashion, 



Description in the CFT

• The 0+1 dimensional defect CFT has 2 complex scalars in the 
fundamental of             ,

• The 3 complex adjoint scalars of the N=4 theory                
correspond to cartesian coordinates in the transverse       . Let 
the scalar corresponding to the               plane be       . 

• Then the solution           corresponds to a source term

• (Diaconescu)



• We can check this by going to the Coulomb branch  - i.e. 
separating one D3 brane from the others. Then this leads to a 
mass for the hypermultiplet fields

Mass due
to open string

R

(N-1) D3

D1 Brane

Single D3



Gauge Fields on D3 and Conductivity

• Another  imanifestation is provided by D3 branes in the                     
geometry, dual to a 2+1 dimensional field theory.

• There is a uniformly rotating  solution together with a 
worldvolume gauge field – this has a worldvolume event 
horizon. This leads to an electrical conductivity  for charge 
carriers in the boundary field theory



Gauge Fields on D3 and Conductivity

• There is a uniformly rotating  solution together with a 
worldvolume gauge field

• The constant        is related to the charge density 

• Solving the linear equation for         perturbations obtain the 
electrical conductivity   



Other Examples
• 2+1 dimensional field theory dual to D5 branes in 

• Uniformly rotating D5 obtained earlier by Evans and Threlfall

• In this case the situation is best described in the following 
coordinates in 

• The D5 brane is wrapped on 

• The coordinate     is the distance between the D3 and D5 branes.

• Thus               is dual to a time dependent mass           of hypers.

• Construct the bulk solution for              with a mass



Plot of                  . The zero of this quantity 
is the location of the apparent horizon.  
Hairpin zero near  t = 1/r

Plot of 



Quench of chemical potential

• One interesting application of this mechanism of formation of 
apparent horizons on brane worldvolumes is the understanding 
of thermalization of the meson sector in N=2 gauge theories –
Iizuka, Hashimoto and Oka

• By introducing quarks via a source for the worldvolume gauge 
field one gets a time dependent electric field – this corresponds 
to a time dependent chemical potential

• Fluctuations of the brane in this background perceive an induced 
metric which has an apparent horizon.



Quench across critical points

• So far our examples did not involve a critical point.

• In the rest of the talk we will concentrate on quench across 
critical points.

• (P. Basu and S.R.D – arXiv:1107.xxxx)



Condensation of a neutral scalar

• A rather simple “phenomenological” model of a holographic 
phase transition is provided by a neutral scalar field in              
black brane background – (Iqbal, Liu, Mezei and Si)

• The background metric is

• The lagrangian density for the scalar field is

• When the  coupling     is large, the field can be treated in a probe 
approximation.



• The equation of motion is

• The asymptotic form of the solution is

• Want to look for solutions with vanishing      . Then        
determines the one point function. 

• There is always the solution                     which has 

• When the mass lies in the range,

there is a critical temperature below which this solution is 
unstable.



• Exactly at           there is a time independent solution of the 
linearlized equation of motion 

• This is the zero mode which will play a key role soon.

• For a smaller value of          there is a new solution of the full 
nonlinear equations of motion – the asymptotic behavior of this 
new solution determines the expectation value of the order 
parameter.

• At any non-zero temperature the transition is mean-field



• Exactly at zero temperature the transition is Berezinski-
Kosterlitz-Thouless type

• This case is rather subtle – we will not consider this for the 
moment.

(Iqbal et.al.)



• This phase transition is similar to that in holographic 
superconductors, which involve a charged field in a charged 
black brane background.

• However a similar instability and condensation mechanism 
happens for neutral scalars  in a charged black brane background

• This has been suggested as a toy model for antiferromagnetic
transitions.

• We will have no comment on this interpretation, but  will simply 
use this as a convenient model to study quntum quench across 
the critical point.



• One way to explore the dynamics of the critical point  is to 
consider a time dependent mass             which passes          at 
some time, chosen to be              , e.g.

• Suppose we start at early times in the ordered phase, so that the 
scalar field has a static solution                      .

• The idea is to use this as the initial condition for time evolution 
of the field.

• The boundary condition is the same as before – a vanishing         , 
since we have not turned on a source for       itself.



• Another way to study the critical point is to work exactly at       
but introduce a source for the order parameter  of the form

• Such that 

• Then at              we can cross the critical point.

• In this case, we have to change the boundary condition on the 
dual bulk field and impose 

J

t



• Suppose at the initial time the rate of change of          is slow
enough (how slow – we will quantify this soon). We would then 
expect that the solution can be obtained in an adiabatic 
expansion.

• For a given static solution                      this is given by

• Where     is a slowness parameter introduced to keep track of  
the adiabatic expansion by rescaling time.

• The lowest order      satisfies the ODE

• where



• When the mass-square equals           adiabaticity fails because of 
two related reasons

• (1)  The operator      has a zero mode – so the Green’s 
function does not exist.

• (2) The      derivatives of       themselves blow up, since as 
we saw

• The condition for adiabaticity is in fact

• In the critical region, and for the rate      small at early times, the 
dynamics is in fact dominated by the zero mode. This has to be 
now treated in an exact fashion – not in an adiabatic 
approximation.



A Digression – Landau-Ginsburg

• To understand the dynamics of this zero mode let us forget 
about AdS/CFT for the moment and consider the problem of a 
spatially homogeneous Landau-Ginsburg field whose equations 
of motion is

• and the time dependent mass term is exactly what we had

• In equilibrium, there would be a critical point when 



We will start in the ordered phase with adiabatic initial conditions

• And track the dynamics of the order parameter by solving this 
equation 

Amplitude saturates



Adiabatic
solution



• At early times the order parameter has small oscillations around 
the adiabatic solution.

• At time                  the order parameter starts deviating from the 
adiabatic solution.

• At time                 the order parameter hits a zero. This is after the 
mass-squared has crossed zero. 

• After that time, for a while the order parameter oscillates with 
amplitude and a period .

• The late time amplitude saturates to a constant and goes as           

• The temperature at which the average order parameter drops to 
zero is in fact higher than the equilibrium critical temperature.
This may be related to similar effects known in the condensed 
matter literature for a long time, explored in holographic phase 
transitions by Bao, Dong, Silverstein and Torraba.



• Close to            the equation of motion becomes

• In terms of a new time      and a new order parameter   

this becomes

• Therefore

• This explains the scaling properties described above



• This kind of analysis can be extended to situations where         
goes to zero as some higher power of   

• This behavior is universal – and follows from arguments similar 
to Kibble-Zurek scaling.

• The late time amplitude is however not universal – this depends 
on the  details of how the mass saturates at late times. In this 
particular case this may be explained by solving the linearized
equation (which is valid at late times) in a WKB approximation 
and matching the solution to the critical solution.



• A different passage across the critical point involves an external 
time dependent source for the order parameter ( a time 
dependent external magnetic field) while the temperature is 
tuned to exactly the critical temperature.

• Now the equation is

• If the source has the behavior

• The critical region solution scales as



Back to AdS/CFT

• In the holographic context, the role of the field      is played by 
the zero mode of the operator

• The equation of motion  satisfied by this mode in the critical 
region is similar to the Landau-Ginsburg problem



• The higher modes become stiff in this region. They satisfy 
equations of the form (in rescaled variables)

• The second term is large – and basically kills all dynamics.

• Beyond the critical region, these modes start to play a role. In 
fact at late times, the field oscillates around zero and the mass 
becomes constant – thus the solutions are in fact the 
quasinormal modes

• The imaginary part of their frequencies then imply that the 
amplitude of late time oscillations decay – unlike our Landau 
Ginsburg example.



• We are solving the nonlinear equation numerically

• Our results are consistent with what I described, but so far too 
noisy to check these expectations accurately.



To Summarize

• We described a mechanism for thermalization in probe brane
theories – viz. formation of apparent horizons in induced metric
on worldvolume.

• We have explored quench dynamics near critical points in a class 
of theories with holographic phase transitions.



• So far the model(s) we studied had mean field exponents. The 
power laws in the critical region follow directly from LG – no 
need for holography.

• The decay of the late time amplitude is of course absent in 
standard LG theory.

• We regard our investigations as a viability study – since the same 
techniques can be used for transitions with holographic duals 
which have non-mean-field exponents.




