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Fields can be localized on (extended) solitons in QFT:

  there are many  spin-0  and  spin-1/2  examples

  Goldstone modes
  e.g. superconducting

strings

Can also localize  abelian  “spin-1” fields

Josephson 
junctions

Renormalizability requires  D ≤ 4 =⇒ d ≤ 3
which severely restrict the possibilities.  



In string theory  D=10 and          UV completionE

  can do some 
calculations without

infinities 

non-abelian  spin-1 gauge fields   localized on D-branes

but what about  spin 2 ?

Einstein’s theory is  much harder to “tinker” with ...... 

so more room



This is closely related to the questions:

Can the graviton have mass?

Can it be a resonance?

Are sectors “hidden” from gravity possible ?

Other IR modifications of Einstein equations ?

The subject has a long history, to which I will not 
try to do justice here .....

see also Slava Mukhanov’s talk



van Dam, Veltman, Zakharov ‘70

In  Minkowski spacetime, the answer seems to be NO

An important obstruction is the  vDVZ discontinuity

Notice that for the photon the answer is  YES

Indeed, the particle data group quotes the experimental bound:

mγ < 10−18eV

 range > 109 km ∼ 1 light hour but could be finite!



To understand the difference, consider the linearized Lagrangian
 for a massive spin-1 particle:  

Introducing a spurious field Aµ = A′
µ +

1
m

∂µφ and taking                     gives:m→ 0

L = −1
4
(∂µA′

ν − ∂νA′
µ)2 + A′

µjµ − 1
2
∂µφ∂µφ +

1
m

∂µφjµ

L = −1
4
(∂µAν − ∂νAµ)2 − m2

2
AµAµ + Aµjµ

= LMaxwell −
1
2
∂µφ∂µφ

The dangerous last term drops out, provided the e-m current is conserved, 
so that the extra scalar mode decouples. 



Now repeat the exercise for a massive spin-2 field.   

The (ghost-free) massive Pauli - Fierz Lagrangian is:

LEH = −1
2
∂µhνλ ∂µhνλ + ∂µhνλ ∂νhµλ − ∂µhµν ∂νhλ

λ +
1
2
∂νhλ

λ∂νhρ
ρ + hµνTµν

LPF = LEH −
m2

2
(
hνλ hνλ − (hρ

ρ)
2
)

where   

with    ∂µTµν = 0



Introduce again  compensators to restore gauge invariance:  

invariant under

Inserting in            gives a free massless spin-1 field, and a  two-derivative

δhµν = ∂µξν + ∂νξµ

δAµ = −mξµ + ∂µΛ
δφ = −Λ

LPF

Lagrangian mixing          and            .φ h′
µν

PF was precisely devised for 
this ! 

hµν = h′
µν +

1
m

(∂µAν + ∂νAµ) +
2

m2
∂µ∂νφ

−mΛ



h′
µν = h′′

µν + ηµνφRedefining fields to remove the mixing   (                                 )    finally gives: 

LPF = LEH −
1
2
FµνFµν − 3 ∂µφ ∂µφ + φ T ρ

ρ

The residual  coupling is different for light, than for massive matter;   

thus the Pauli-Fierz theory does not give Einstein’s theory when    m→ 0

If we set  Newton’s law to its measured form, 

 light bending = 3/4 of measured effect

 ....    so however tiny the mass, it is ruled out ! 



The story looks more promising  in AdS:    

The vDVZ  discontinuity is absent  if      mgr < 1/LAdS

a simple “model”, possibly embed-able  in string theory   ∃

Supersymmetry can protect the required hierarchy   

Karch-Randall

Kogan - Mouslopoulos - Papazoglou; 
Porrati  

Of course, we don’t seem to live in AdS spacetime !   

OK, take attitude that anything one can learn about IR 
gravity is interesting, and proceed.  



   KK reduction for spin 2    

Interested in warped-(A)dS geometries,   

d̂s2 = e2A(y)ḡµν(x) dxµdxν + ĝab(y) dyadyb

M̄4 = AdS4, M4, dS4

k = −1, 0, 1



ds2 = e2A (ḡµν + hµν) dxµdxν + ĝab dyadyb ,

Consider (consistent reduction to) metric perturbations   

hµν(x, y) = h[tt]
µν (x)ψ(y)with   

where   (!̄(2)
x − λ) h[tt]

µν = 0 and ∇̄µh[tt]
µν = ḡµνh[tt]

µν = 0 .

Pauli-Fierz (λ = m2 + 2k)



RMN −
1
2
gMNR = TMNLinearize the Einstein equations   

−e−2A

√
[ĝ]

(∂a

√
[ĝ] ĝabe4A∂b) ψ = m2ψ

to find the Schrodinger problem :  

1√
ĝ

(∂M

√
ĝ ĝMN∂N ) hµν(x, y) = 0 .

This is  equivalent to a scalar-Laplace equation in d dimensions :  



Important:  the linearized equation depends only on the geometry, not   
                  on the detailed matter-fields  that created it. 

Csaki, Erlich, Hollowood, Shirman 

Localization of spin-2 can only come from geometry 

CB, JE 

The wavefunction norm is

||ψ|| 2 ≡
∫

dd−4y
√

[ĝ] e2A |ψ|2



The would-be massless graviton has ψ(y) = constant

It is normalizable  iff   the transverse volume is finite 

Why can’t the warp factor “help”? 

When it does, infinity is an apparent horizon, so 

--   geometry should be made geodesically complete

--  or should supplement quantum theory with boundary 
conditions at horizon  (“IR brane”)



In the cases 

M4 = M4 or dS4

the energy conditions show (at least in codim = 1) that  the warp factor A 
is monotonic, so it cannot turn around to form an effective “graviton trap” 

M4 = AdS4But for    localization, and a tiny AdS graviton mass  

 cannot be a priori ruled out.  



   Karch-Randall model    

IKR = − 1
2κ 2

5

∫
d4x dy

√
g

(
R +

12
L2

)
+ λ

∫
d4x

√
[g]4 ,

Starting point is 5D Einstein action plus a thin 3-brane 

ds2 = L2cosh2

(
y0 − |y|

L

)
ḡµνdxµdxν + dy2 y0 = L arctanh

(
κ 2

5 λL

6

)

The solution is:

,     where

It describes two (large) slices of  AdS5  glued along a AdS4  brane

with radius
!2 = e2A(0) = L2 cosh2

(y0

L

)
.

One can tune             to make              λL
!

L
! 1



Cut away green slices, then glue the white ones in a
symmetric fashion. Gives two 4D boundaries glued across 

two 3D defects (domain walls). 

∂AdS5∂AdS5
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 as                is gradually tuned up     !/L

e2A ≡ f 2
4 = L2cosh2

(
y0 − |y|

L

)
Warp factor 



Spectrum :

8πGN ! κ2
5/L

VNewton + ∆V ! −GNm1m2

r
(1 + γ

L2

r2
+ · · · )

4D parameters: as in usual KK

unlike standard KK!

L
∼ 1031 − 1062so

- a nearly-constant, nearly massless mode

- two towers of AdS5 modes

m2
0 !

3L2

2!2

m2 ! (2n + 1)(2n + 4) n = 0, 1, · · ·



These masses are in units of the AdS4 radius

so  states with                      mediate long-range interactions. m2 ! o(1)

What “saves the day” is that the AdS5 states live at the

bottom of the warp-factor well . Their wavefunctions are

  exponentially suppressed at the brane position

Furthermore,    

∫
ψ0ψ

†ψ != universal

so the nearly-massless graviton has non-universal couplings
 to the other fields !



   The exact  (super)gravity  solutions   

Karch and Randall proposed to embed their model in IIB string theory, 
by inserting 5-branes in the                            geometry of D3-branes.AdS5 × S5

The exact geometry of these configurations  was discovered recently by  
D’Hoker, Estes and Gutperle

Try to understand whether graviton in these geometries is localized.



The  solutions are  AdS4 × S2 × S2 fibrations over a surface              .    
∑

They depend on two  harmonic functions                    subject to certain h1, h2

global consistency conditions.  

ds2 = f2
4 ds2

AdS4
+ f2

1 ds2
S2
1
+ f2

2 ds2
S2
2
+ 4ρ2dzdz̄ ,

f8
4 = 16

N1N2

W 2
f8
1 = 16h8

1
N2W 2

N3
1

f8
2 = 16h8

2
N1W 2

N3
2

, ,

e4φ =
N2

N1

W = ∂h1∂̄h2 + ∂̄h1∂h2 = ∂∂̄(h1h2) ,

N1 = 2h1h2|∂h1|2 − h2
1W , N2 = 2h1h2|∂h2|2 − h2

2W .

metric :

dilaton :

where :

There are also  3-form and 5-form backgrounds, and 1/4 unbroken supersymmetry.



The harmonic functions for this choice are:

The solutions of interest have          = infinite strip
with                obeying N or D conditions, possibly 

with isolated singularities on the boundary, e.g.  

h1, h2

∑

AdS5 × S5AdS5 × S5

NS5

D5

h1 =
[
−iα sinh(z − β)− γ ln

(
tanh

(
iπ

4
− z − δ

2

))]
+ c.c.

h2 =

[
α̂ cosh(z − β̂)− γ̂ ln

(
tanh

(
z − δ̂

2

))]
+ c.c.



The simplest  Janus solution                       is a  dilaton domain wall 

e2φ± =
∣∣∣∣
α2

α1

∣∣∣∣ e±∆φL4 = 16 |α1α2| cosh∆φ

radius of asymptotic dilaton jumpAdS5 × S5

γi = 0

The spectral equation reduces to a ODE with 4 regular singular points 
(Heun’s equation)  which can be solved with fast numerics

The results are not particularly exciting:
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AdS5 × S5

There is one free parameter,  (tanh
∆φ

2
)2 ≡ ξ−1 ∈ [0, 1)

∆φ =∞

The only interesting limit is one in which a linear-dilaton dimension 
decompactifies, and the geometry becomes   

AdS4 × Rφ ×w S̃5



!5 0 5
X

2

4

6

8

10
f4

!5 0 5 X
0.6

0.7

0.8
f1

!5 0 5 X
0.6

0.7

0.8
f2

∆φ = 0 , 1 ,  4, 10



The “problem” is that  the dilaton has no (super)potential, so its
domain wall spreads to infinite thickness.

Adding one type of 5-branes does not help: the dilaton adjusts to
(       ly)  small or large value, so as to minimize 5-brane tension.

The only interesting limit is one with both NS5 and D5 charges, 

∞

 and with   
Q5

Q3
! 1 .

Inspection of the geometry shows that this creates a bubble of 

almost factorized                         geometry in the central region.  AdS4 ! K

The                       regions 
are much more curved

AdS5 ! S5
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Actually the limit                       is smooth,  transverse space compactifies:Q3 → 0
 the asymptotic regions                         go over to smooth                  caps

These                                 solutions must be  gravity duals to   

AdS5 × S5 AdS4 ×D6

3-dimensional  (super)conformal field theories

Which ones ?

AdS4 ! K



By studying the flat-space configurations,  Gaiotto and Witten 
have proposed the existence of a class of interacting SCFTs in 

three dimensions that they called

T ρ̂
ρ (SU(N))

They are in 1-to-1 corrspondence with solutions of Nahm’s equations:

dXa

dt
= iεabc[Xb, Xc]

on the interval, with boundary conditions that are simple poles,

Xa ∼ Ja

t

N-dimensional generators
 of SU(2)



This problem has been solved by Kronheimer and Nakajima

One can associate a partition of  N with each choice of  the Ja

e.g.       :   12 = 5 + 3 + 3 + 1 ρ

K & N have shown that solutions exist iff ρT > ρ̂

where these are the two partitions at the interval ends. 



N1 N2

M1 M2 M3

N3

The underlying gauge theories are described by linear quivers

U(N1)× U(N2)× U(N3)× · · ·



= 1 + . . . + 1︸ ︷︷ ︸
M1

+ 2 + . . . + 2︸ ︷︷ ︸
M2

+ . . . + . . . .

ρ : N = l1 + . . . + lk linking numbers of D5-branes 

ml+1 = ml −Ml :  transposed Young tableau

Nj = Nj−1 + mj − l̂j for j = 2, · · · k̂ − 1 .

ranks of gauge groups

The quiver data can be read from the partitions:



NS5
D5

D3

1 1

22

for example:

N = 6 ; ρ = (2, 2, 1, 1) ; ρ̂ = (3, 2, 1)



supersymmetry ⇐⇒ ρ̂T ≥ ρ , and irreducibility ⇐⇒ ρ̂T > ρ .

General result  (by moving branes): 

When the inequality is saturated, the quiver breaks down to 
disjoint pieces.



δ1 δ2

δ̂1δ̂2

−∞ ∞

. . . . . .

. . . . 

x

y

δq

δ̂q̂

h1 =

[
−iα sinh(z − β)−

q∑

a=1

γa ln
(

tanh
(

iπ

4
− z − δa

2

))]
+ c.c.

h2 =

[
α̂ cosh(z − β̂)−

q̂∑

b=1

γ̂b ln

(
tanh

(
z − δ̂b

2

))]
+ c.c.



Qinv(a)
D3 =

∫
Ca

F5 −B2 ∧ F3 +
∫
Ca

F3 ∧B2

∣∣∣
z=∞

Q̂inv(b)
D3 =

∫
Ĉb

F5 + C2 ∧H3 −
∫
Ĉb

H3 ∧ C2

∣∣∣
z=−∞

D3-brane Page charges in fivebrane stacks:

= 28π3

(
α̂ γa sinh(δa − β̂)− 2 γa

q̂∑

b=1

γ̂b arctan(eδ̂b−δa)

)

= 28π3

(
α γ̂b sinh(δ̂b − β) + 2 γ̂b

q∑

a=1

γa arctan(eδ̂b−δa)

)
.



N (a)
D3 = −N (a)

D5

∑q̂
b=1 N̂ (b)

NS5
2
π arctan(eδ̂b−δa) ,

N̂ (b)
D3 = N̂ (b)

NS5

∑q
a=1 N (a)

D5
2
π arctan(eδ̂b−δa)

Compute the linking numbers: 

l(a) ≡ −N (a)
D3

N (a)
D5

and l̂(b) ≡ N̂ (b)
D3

N̂ (b)
NS5

.

Prove                      using the fact that  acrtanθ ≤ π/2ρT > ρ̂



The interesting limits                        correspond to severing

one (or more) link, by taking  Ni → 0

ρ̂ ! ρT

This corresponds to factorizing the 5-brane singularities.

....    more on blackboard
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   Holographic comment   

on massive AdS gravity theories:

CFT spectrum defect CFT spectrum

hh

3 + ε

! 1

3

decoupling

conserved e-m tensor



Two important observations:



Thank you


