Can Gravity be Localized?

based on : CB, J. Estes, arXiv:1103.2800 [hep-th]
B. Assel, CB, J. Estes, J. Gomis, 1106.xxxx

also: O. Aharony, L. Berdichevsky, M; Berkooz, I. Shamir, arXiv:1106.1870 [hep-th]
C. Bachas, ETH 06/11

Fields can be localized on (extended) solitons in QFT:
there are many spin-0 and spin-1/2 examples

Can also localize abelian"spin-1" fields

$$
\underset{\substack{\text { Josephson } \\ \text { junctions }}}{ }
$$

Renormalizability requires $D \leq 4 \Longrightarrow d \leq 3$ which severely restrict the possibilities.

In string theory $\mathrm{D}=10$ and \exists UV completion so more room

\uparrow
can do some calculations without infinities

non-abelian spin-1 gauge fields localized on D-branes
but what about spin 2 ?

Einstein's theory is much harder to "tinker" with

This is closely related to the questions:

Can the graviton have mass?

Can it be a resonance?

Are sectors "hidden" from gravity possible ?
Other IR modifications of Einstein equations?

The subject has a long history, to which I will not try to do justice here

In Minkowski spacetime, the answer seems to be NO
An important obstruction is the vDVZ discontinuity
van Dam, Veltman, Zakharov ‘70

Notice that for the photon the answer is YES

Indeed, the particle data group quotes the experimental bound:

$$
\begin{gathered}
m_{\gamma}<10^{-18} \mathrm{eV} \\
\text { range }>10^{9} \mathrm{~km} \sim 1 \text { light hour } \quad \text { but could be finite! }
\end{gathered}
$$

To understand the difference, consider the linearized Lagrangian for a massive spin-1 particle:

$$
\mathcal{L}=-\frac{1}{4}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)^{2}-\frac{m^{2}}{2} A_{\mu} A^{\mu}+A_{\mu} j^{\mu}
$$

Introducing a spurious field $\quad A_{\mu}=A_{\mu}^{\prime}+\frac{1}{m} \partial_{\mu} \phi \quad$ and taking $\quad m \rightarrow 0 \quad$ gives:

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{4}\left(\partial_{\mu} A_{\nu}^{\prime}-\partial_{\nu} A_{\mu}^{\prime}\right)^{2}+A_{\mu}^{\prime} j^{\mu}-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{m} \partial_{\mu} \phi j^{\mu} \\
& =\mathcal{L}_{\text {Maxwell }}-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi
\end{aligned}
$$

The dangerous last term drops out, provided the e-m current is conserved, so that the extra scalar mode decouples.

Now repeat the exercise for a massive spin-2 field.
The (ghost-free) massive Pauli - Fierz Lagrangian is:

$$
\mathcal{L}_{\mathrm{PF}}=\mathcal{L}_{\mathrm{EH}}-\frac{m^{2}}{2}\left(h^{\nu \lambda} h_{\nu \lambda}-\left(h_{\rho}^{\rho}\right)^{2}\right)
$$

where

$$
\mathcal{L}_{\mathrm{EH}}=-\frac{1}{2} \partial_{\mu} h^{\nu \lambda} \partial^{\mu} h_{\nu \lambda}+\partial^{\mu} h^{\nu \lambda} \partial_{\nu} h_{\mu \lambda}-\partial_{\mu} h^{\mu \nu} \partial_{\nu} h_{\lambda}^{\lambda}+\frac{1}{2} \partial_{\nu} h_{\lambda}^{\lambda} \partial^{\nu} h_{\rho}^{\rho}+h_{\mu \nu} T^{\mu \nu}
$$

with

$$
\partial_{\mu} T^{\mu \nu}=0
$$

Introduce again compensators to restore gauge invariance:

$$
h_{\mu \nu}=h_{\mu \nu}^{\prime}+\frac{1}{m}\left(\partial_{\mu} A_{\nu}+\partial_{\nu} A_{\mu}\right)+\frac{2}{m^{2}} \partial_{\mu} \partial_{\nu} \phi
$$

$$
\begin{array}{ll}
& \delta h_{\mu \nu}=\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu} \\
\text { invariant under } & \delta A_{\mu}=-m \xi_{\mu}+\partial_{\mu} \Lambda \\
& \delta \phi=-m \Lambda
\end{array}
$$

Inserting in $\mathcal{L}_{\mathrm{PF}}$ gives a free massless spin-1 field, and a two-derivative Lagrangian mixing ϕ and $h_{\mu \nu}^{\prime}$.

Redefining fields to remove the mixing $\left(h_{\mu \nu}^{\prime}=h_{\mu \nu}^{\prime \prime}+\eta_{\mu \nu} \phi\right) \quad$ finally gives:

$$
\mathcal{L}_{\mathrm{PF}}=\mathcal{L}_{\mathrm{EH}}-\frac{1}{2} F_{\mu \nu} F^{\mu \nu}-3 \partial_{\mu} \phi \partial^{\mu} \phi+\phi T_{\rho}^{\rho}
$$

The residual coupling is different for light, than for massive matter; thus the Pauli-Fierz theory does not give Einstein's theory when $m \longrightarrow 0$

If we set Newton's law to its measured form, light bending $=3 / 4$ of measured effect

The story looks more promising in AdS:
 The vDVZ discontinuity is absent if
 $m_{\mathrm{gr}}<1 / L_{\mathrm{AdS}}$
 Kogan - Mouslopoulos - Papazoglou; Porrati}
\exists a simple "model", possibly embed-able in string theory
Karch-Randall

Supersymmetry can protect the required hierarchy

Of course, we don't seem to live in AdS spacetime!

OK, take attitude that anything one can learn about IR gravity is interesting, and proceed.

KK reduction for spin 2

Interested in warped-(A)dS geometries,

$$
\widehat{d s^{2}}=e^{2 A(y)} \bar{g}_{\mu \nu}(x) d x^{\mu} d x^{\nu}+\hat{g}_{a b}(y) d y^{a} d y^{b}
$$

$$
\begin{gathered}
\overline{\mathcal{M}}_{4}=\operatorname{AdS}_{4}, \mathbb{M}_{4}, \mathrm{dS}_{4} \\
k=-1,0,1
\end{gathered}
$$

Consider (consistent reduction to) metric perturbations

$$
\begin{aligned}
& d s^{2}=e^{2 A}\left(\bar{g}_{\mu \nu}+h_{\mu \nu}\right) d x^{\mu} d x^{\nu}+\hat{g}_{a b} d y^{a} d y^{b} \\
& \text { with } \quad h_{\mu \nu}(x, y)=h_{\mu \nu}^{[\mathrm{tt}]}(x) \psi(y)
\end{aligned}
$$

where $\quad\left(\bar{\square}_{x}^{(2)}-\lambda\right) h_{\mu \nu}^{[\mathrm{tt}]}=0 \quad$ and $\quad \bar{\nabla}^{\mu} h_{\mu \nu}^{[\mathrm{tt}]}=\bar{g}^{\mu \nu} h_{\mu \nu}^{[\mathrm{tt}]}=0$.

$$
\text { Pauli-Fierz } \quad\left(\lambda=m^{2}+2 k\right)
$$

Linearize the Einstein equations $\quad R_{M N}-\frac{1}{2} g_{M N} R=T_{M N}$
to find the Schrodinger problem :

$$
-\frac{e^{-2 A}}{\sqrt{[\hat{g}]}}\left(\partial_{a} \sqrt{[\hat{g}]} \hat{g}^{a b} e^{4 A} \partial_{b}\right) \psi=m^{2} \psi
$$

This is equivalent to a scalar-Laplace equation in d dimensions :

$$
\frac{1}{\sqrt{\hat{g}}}\left(\partial_{M} \sqrt{\hat{g}} \hat{g}^{M N} \partial_{N}\right) h_{\mu \nu}(x, y)=0
$$

Important: the linearized equation depends only on the geometry, not on the detailed matter-fields that created it.

Csaki, Erlich, Hollowood, Shirman

CB, JE

Localization of spin-2 can only come from geometry

The wavefunction norm is

$$
\|\psi\|^{2} \equiv \int d^{d-4} y \sqrt{[\hat{g}]} e^{2 A}|\psi|^{2}
$$

The would-be massless graviton has $\quad \psi(y)=$ constant It is normalizable iff the transverse volume is finite

Why can't the warp factor "help"?

When it does, infinity is an apparent horizon, so
-- geometry should be made geodesically complete
-- or should supplement quantum theory with boundary conditions at horizon ("IR brane")

In the cases

$$
\mathcal{M}_{4}=\mathbb{M}_{4} \quad \text { or } \quad \mathrm{dS}_{4}
$$

the energy conditions show (at least in codim =1) that the warp factor A is monotonic, so it cannot turn around to form an effective "graviton trap"

But for $\mathcal{M}_{4}=\operatorname{AdS}_{4} \quad$ localization, and a tiny AdS graviton mass cannot be a priori ruled out.

Karch-Randall model

Starting point is 5D Einstein action plus a thin 3-brane

$$
I_{\mathrm{KR}}=-\frac{1}{2 \kappa_{5}^{2}} \int d^{4} x d y \sqrt{g}\left(R+\frac{12}{L^{2}}\right)+\lambda \int d^{4} x \sqrt{[g]_{4}},
$$

The solution is:

$$
d s^{2}=L^{2} \cosh ^{2}\left(\frac{y_{0}-|y|}{L}\right) \bar{g}_{\mu \nu} d x^{\mu} d x^{\nu}+d y^{2}, \quad \text { where } \quad y_{0}=L \operatorname{arctanh}\left(\frac{\kappa_{5}^{2} \lambda L}{6}\right)
$$

It describes two (large) slices of AdS5 glued along a AdS4 brane with radius

$$
\ell^{2}=e^{2 A(0)}=L^{2} \cosh ^{2}\left(\frac{y_{0}}{L}\right)
$$

One can tune λL to make $\frac{\ell}{L} \gg 1$

Cut away green slices, then glue the white ones in a symmetric fashion. Gives two 4D boundaries glued across two 3D defects (domain walls).

Warp factor $\quad e^{2 A} \equiv f_{4}{ }^{2}=L^{2} \cosh ^{2}\left(\frac{y_{0}-|y|}{L}\right)$ as $\quad \ell / L$ is gradually tuned up

4D parameters: $\quad 8 \pi G_{N} \simeq \kappa_{5}^{2} / L \longleftarrow$ as in usual $K K$

$$
\begin{gathered}
V_{\text {Newton }}+\Delta V \simeq-\frac{G_{N} m_{1} m_{2}}{r}\left(1+\gamma \frac{L^{2}}{r^{2}}+\cdots\right) \\
\text { so } \quad \frac{\ell}{L} \sim 10^{31}-10^{62} \quad \text { unlike standard } K K
\end{gathered}
$$

Spectrum : - a nearly-constant, nearly massless mode $m_{0}^{2} \simeq \frac{3 L^{2}}{2 \ell^{2}}$

- two towers of AdS5 modes

$$
m^{2} \simeq(2 n+1)(2 n+4) \quad n=0,1, \cdots
$$

These masses are in units of the AdS 4 radius
so states with $m^{2} \simeq o(1)$ mediate long-range interactions.

What "saves the day" is that the AdS5 states live at the bottom of the warp-factor well. Their wavefunctions are exponentially suppressed at the brane position

Furthermore, $\quad \int \psi_{0} \psi^{\dagger} \psi \neq$ universal
so the nearly-massless graviton has non-universal couplings to the other fields !

The exact (super)gravity solutions

Karch and Randall proposed to embed their model in IIB string theory, by inserting 5-branes in the $A d S_{5} \times S^{5}$ geometry of D3-branes.

The exact geometry of these configurations was discovered recently by D'Hoker, Estes and Gutperle

Try to understand whether graviton in these geometries is localized.

The solutions are $A d S_{4} \times S^{2} \times S^{2}$ fibrations over a surface $\quad \sum$
They depend on two harmonic functions h_{1}, h_{2} subject to certain global consistency conditions.
metric : $\quad d s^{2}=f_{4}^{2} d s_{\mathrm{AdS}_{4}}^{2}+f_{1}^{2} d s_{\mathrm{S}_{1}^{2}}^{2}+f_{2}^{2} d s_{\mathrm{S}_{2}^{2}}^{2}+4 \rho^{2} d z d \bar{z}$,

$$
\begin{aligned}
& \qquad f_{4}^{8}=16 \frac{N_{1} N_{2}}{W^{2}}, \quad f_{1}^{8}=16 h_{1}^{8} \frac{N_{2} W^{2}}{N_{1}^{3}}, \quad f_{2}^{8}=16 h_{2}^{8} \frac{N_{1} W^{2}}{N_{2}^{3}} \\
& \text { dilaton : } \quad e^{4 \phi}=\frac{N_{2}}{N_{1}} \\
& \text { where: } \quad W=\partial h_{1} \bar{\partial} h_{2}+\bar{\partial} h_{1} \partial h_{2}=\partial \bar{\partial}\left(h_{1} h_{2}\right), \\
& N_{1}=2 h_{1} h_{2}\left|\partial h_{1}\right|^{2}-h_{1}^{2} W, \quad N_{2}=2 h_{1} h_{2}\left|\partial h_{2}\right|^{2}-h_{2}^{2} W .
\end{aligned}
$$

There are also 3 -form and 5 -form backgrounds, and $1 / 4$ unbroken supersymmetry.

The solutions of interest have $\quad \sum=$ infinite strip with h_{1}, h_{2} obeying N or D conditions, possibly with isolated singularities on the boundary, e.g.

NS5

D5

The harmonic functions for this choice are:

$$
\begin{aligned}
h_{1} & =\left[-i \alpha \sinh (z-\beta)-\gamma \ln \left(\tanh \left(\frac{i \pi}{4}-\frac{z-\delta}{2}\right)\right)\right]+\text { c.c. } \\
& h_{2}=\left[\hat{\alpha} \cosh (z-\hat{\beta})-\hat{\gamma} \ln \left(\tanh \left(\frac{z-\hat{\delta}}{2}\right)\right)\right]+\text { c.c. }
\end{aligned}
$$

The simplest Janus solution $\quad \gamma_{i}=0 \quad$ is a dilaton domain wall

$$
L^{4}=16\left|\alpha_{1} \alpha_{2}\right| \cosh \Delta \phi
$$

radius of asymptotic $A d S_{5} \times S^{5}$

The spectral equation reduces to a ODE with 4 regular singular points (Heun's equation) which can be solved with fast numerics

The results are not particularly exciting:

There is one free parameter, $\quad\left(\tanh \frac{\Delta \phi}{2}\right)^{2} \equiv \xi^{-1} \in[0,1)$

The only interesting limit is one in which a linear-dilaton dimension decompactifies, and the geometry becomes

$$
A d S_{4} \times \mathbb{R}_{\phi} \times_{w} \tilde{S}^{5}
$$

$$
\Delta \phi=0,1,4,10
$$

The "problem" is that the dilaton has no (super)potential, so its domain wall spreads to infinite thickness.

Adding one type of 5-branes does not help: the dilaton adjusts to ($\infty \mathrm{ly}$) small or large value, so as to minimize 5-brane tension.

The only interesting limit is one with both NS5 and D5 charges, and with $\frac{Q_{5}}{Q_{3}} \gg 1$.

Inspection of the geometry shows that this creates a bubble of almost factorized $A d S_{4} \ltimes K$ geometry in the central region.

warp factor

sphere radii

Actually the limit $Q_{3} \rightarrow 0$ is smooth, transverse space compactifies: the asymptotic regions $A d S_{5} \times S^{5}$ go over to smooth $\operatorname{AdS} S_{4} \times \mathcal{D}_{6}$ caps

These $A d S_{4} \ltimes K$ solutions must be gravity duals to 3-dimensional (super)conformal field theories

Which ones ?

By studying the flat-space configurations, Gaiotto and Witten have proposed the existence of a class of interacting SCFTs in three dimensions that they called

$$
T_{\rho}^{\hat{\rho}}(S U(N))
$$

They are in 1-to-1 corrspondence with solutions of Nahm's equations:

$$
\frac{d X^{a}}{d t}=i \epsilon_{a b c}\left[X^{b}, X^{c}\right]
$$

on the interval, with boundary conditions that are simple poles,

$$
X^{a} \sim \frac{J^{a}}{t} \longleftarrow \quad \begin{gathered}
\text { N-dimensional generators } \\
\text { of } \operatorname{SU}(2)
\end{gathered}
$$

This problem has been solved by Kronheimer and Nakajima

One can associate a partition of N with each choice of the J^{a}

$$
\text { e.g. } \rho: \quad 12=5+3+3+1
$$

$\mathrm{K} \& \mathrm{~N}$ have shown that solutions exist iff $\quad \rho^{T}>\hat{\rho}$
where these are the two partitions at the interval ends.

The underlying gauge theories are described by linear quivers

The quiver data can be read from the partitions:

$$
\begin{gathered}
\rho: \quad N \quad l_{1}+\ldots+l_{k} \quad \text { linking numbers of D5-branes } \\
=\underbrace{1+\ldots+1}_{M_{1}}+\underbrace{2+\ldots+2}_{M_{2}}+\ldots+\ldots \\
m_{l+1}=m_{l}-M_{l} \quad: \text { transposed Young tableau } \\
N_{j}=N_{j-1}+m_{j}-\hat{l}_{j} \quad \text { for } \quad j=2, \cdots \hat{k}-1
\end{gathered}
$$

for example:

$$
N=6 ; \rho=(2,2,1,1) ; \hat{\rho}=(3,2,1)
$$

General result (by moving branes):
supersymmetry $\Longleftrightarrow \hat{\rho}^{T} \geq \rho, \quad$ and irreducibility $\Longleftrightarrow \hat{\rho}^{T}>\rho$.

When the inequality is saturated, the quiver breaks down to disjoint pieces.

$$
\begin{aligned}
h_{1} & =\left[-i \alpha \sinh (z-\beta)-\sum_{a=1}^{q} \gamma_{a} \ln \left(\tanh \left(\frac{i \pi}{4}-\frac{z-\delta_{a}}{2}\right)\right)\right]+c . c . \\
h_{2} & =\left[\hat{\alpha} \cosh (z-\hat{\beta})-\sum_{b=1}^{\hat{q}} \hat{\gamma}_{b} \ln \left(\tanh \left(\frac{z-\hat{\delta}_{b}}{2}\right)\right)\right]+c . c .
\end{aligned}
$$

D3-brane Page charges in fivebrane stacks:

$$
\begin{aligned}
Q_{D 3}^{\operatorname{inv}(a)} & =\int_{\mathcal{C}_{a}} F_{5}-B_{2} \wedge F_{3}+\left.\int_{\mathcal{C}_{a}} F_{3} \wedge B_{2}\right|_{z=\infty} \\
& =2^{8} \pi^{3}\left(\hat{\alpha} \gamma_{a} \sinh \left(\delta_{a}-\hat{\beta}\right)-2 \gamma_{a} \sum_{b=1}^{\hat{q}} \hat{\gamma}_{b} \arctan \left(e^{\hat{\delta}_{b}-\delta_{a}}\right)\right) \\
\hat{Q}_{D 3}^{\operatorname{inv}(b)} & =\int_{\hat{\mathcal{C}}_{b}} F_{5}+C_{2} \wedge H_{3}-\left.\int_{\hat{\mathcal{C}}_{b}} H_{3} \wedge C_{2}\right|_{z=-\infty} \\
& =2^{8} \pi^{3}\left(\alpha \hat{\gamma}_{b} \sinh \left(\hat{\delta}_{b}-\beta\right)+2 \hat{\gamma}_{b} \sum_{a=1}^{q} \gamma_{a} \arctan \left(e^{\hat{\delta}_{b}-\delta_{a}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
N_{D 3}^{(a)} & =-N_{D 5}^{(a)} \sum_{b=1}^{\hat{q}} \hat{N}_{N S 5}^{(b)} \frac{2}{\pi} \arctan \left(e^{\hat{\delta}_{b}-\delta_{a}}\right), \\
\hat{N}_{D 3}^{(b)} & =\hat{N}_{N S 5}^{(b)} \sum_{a=1}^{q} N_{D 5}^{(a)} \frac{2}{\pi} \arctan \left(e^{\hat{\delta}_{b}-\delta_{a}}\right)
\end{aligned}
$$

Compute the linking numbers:

$$
l^{(a)} \equiv-\frac{N_{D 3}^{(a)}}{N_{D 5}^{(a)}} \quad \text { and } \quad \hat{l}^{(b)} \equiv \frac{\hat{N}_{D 3}^{(b)}}{\hat{N}_{N S 5}^{(b)}}
$$

Prove $\rho^{T}>\hat{\rho}$ using the fact that $\quad \operatorname{acrtan} \theta \leq \pi / 2$

The interesting limits $\quad \hat{\rho} \simeq \rho^{T}$ correspond to severing
one (or more) link, by taking $\quad N_{i} \rightarrow 0$
This corresponds to factorizing the 5-brane singularities.
.... more on blackboard

Holographic comment

on massive AdS gravity theories:

decoupling
defect CFT spectrum

Two important observations:

Thank you

