### Mass hierarchies in string theory and holography

#### I. Antoniadis

#### CERN

## Sixth Crete Regional Meeting on String Theory Milos, Greece, 19 - 26 June 2011

- Motivations and mass hierarchy
- Strings, branes and extra dimensions (flat and warped)
- Gravity scale and number of species
- Low string coupling and linear dilaton background
- Main accelerator signatures

## BSM physics: driven by mass hierarchy problem

Higgs mass: very sensitive to high energy physics  $m_H \sim UV$  cutoff  $\Lambda$ why gravity is so weak compared to the other interactions?  $\Lambda = M_P$ 

Possible answer (alternative to supersymmetry): Low UV cutoff  $\Lambda \sim \text{TeV}$ 

- low scale gravity  $\Rightarrow$  large extra dimensions, warped dimensions
- low string scale  $\Rightarrow$  low scale gravity, ultra weak string coupling

Experimentally testable framework:

- spectacular model independent predictions
- radical change of high energy physics at the TeV scale explicit model building is not necessary at this moment

## Framework of type I string theory ⇒ D-brane world I.A.-Arkani-Hamed-Dimopoulos-Dvali '98

- gravity: closed strings propagating in 10 dims
- gauge interactions: open strings with their ends attached on D-branes

Dimensions of finite size: *n* transverse 6 - n parallel calculability  $\Rightarrow R_{\parallel} \simeq l_{\text{string}}$ ;  $R_{\perp}$  arbitrary

 $M_P^2 \simeq \frac{1}{g_s^2} M_s^{2+n} R_{\perp}^n$   $g_s = \alpha$ : weak string coupling Planck mass in 4 + *n* dims:  $M_*^{2+n}$ 

small  $M_s/M_P$  : extra-large  $R_{\perp}$ 

 $M_{s} \sim 1~{
m TeV} \Rightarrow R_{\perp}^{n} = 10^{32} \, l_{s}^{n}$  [12]

 $R_{\perp} \sim .1 - 10^{-13}$  mm for n = 2 - 6 [5]

distances  $< R_{\perp}$  : gravity (4+*n*)-dim  $\rightarrow$  strong at 10<sup>-16</sup> cm [6]

## Braneworld

2 types of compact extra dimensions:

• parallel  $(d_{\parallel})$ :  $\lesssim 10^{-16}$  cm (TeV) • transverse ( $\perp$ ):  $\lesssim 0.1$  mm (meV)



#### Adelberger et al. '06



 ${\it R}_{\perp} \lesssim$  45  $\mu{\rm m}$  at 95% CL

• dark-energy length scale pprox 85 $\mu$ m [3]

# Gravitational radiation in the bulk $\Rightarrow$ missing energy



Angular distribution  $\Rightarrow$  spin of the graviton

| <b>Collider bounds on</b> $R_{\perp}$ in mm |                   |                    |                      |
|---------------------------------------------|-------------------|--------------------|----------------------|
|                                             | <i>n</i> = 2      | <i>n</i> = 4       | <i>n</i> = 6         |
| LEP 2                                       | $4.8	imes10^{-1}$ | $1.9	imes10^{-8}$  | $6.8	imes10^{-11}$   |
| Tevatron                                    | $5.5	imes10^{-1}$ | $1.4	imes10^{-8}$  | $4.1 	imes 10^{-11}$ |
| LHC                                         | $4.5	imes10^{-3}$ | $5.6	imes10^{-10}$ | $2.7 	imes 10^{-12}$ |

### **Randal Sundrum models**

spacetime = slice of AdS<sub>5</sub> :  $ds^2 = e^{-2k|y|}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^2$   $k^2 \sim \Lambda/M_5^3$ 



• exponential hierarchy:  $M_W = M_P e^{-2kr_c}$   $M_P^2 \sim M_5^3/k$   $M_5 \sim M_{GUT}$ 

• 4d gravity localized on the UV-brane, but KK gravitons on the IR  $m_n = c_n \ k \ e^{-2kr_c} \sim \text{TeV}$   $c_n \simeq (n + 1/4)$  for large n $\Rightarrow$  spin-2 TeV resonances in di-lepton or di-jet channels [17] [18]

- weakly coupled for  $m_n < M_5 e^{-2kr_c} \Rightarrow k < M_5$
- viable models: SM gauge bosons in the bulk, Higgs on the IR-brane
- AdS/CFT duals to strongly coupled 4d field theories composite Higgs models, technicolor-type  $g_{YM} = M_5/k > 1$

#### Other accelerator signatures

• Large TeV dimensions seen by SM gauge interactions

 $\Rightarrow$  KK resonances of SM gauge bosons I.A. '90

$$M_n^2 = M_0^2 + \frac{n^2}{R^2}$$
;  $n = \pm 1, \pm 2, \dots$ 

string physics and possible strong gravity effects

Massive string vibrations  $\Rightarrow$  e.g. resonances in dijet distribution

$$M_j^2 = M_0^2 + M_s^2 j$$
; maximal spin :  $j + 1$ 

higher spin excitations of quarks and gluons with strong interactions Anchordoqui-Goldberg-Lüst-Nawata-Taylor-Stieberger '08

production of micro-black holes?

Giddings-Thomas, Dimopoulos-Landsberg '01

String-size black hole energy threshold :  $M_{
m BH}\simeq M_s/g_s^2$ 

Horowitz-Polchinski '96, Meade-Randall '07

- $\bullet$  string size black hole:  ${\it r_H} \sim {\it l_s} = {\it M_s^{-1}}$
- black hole mass:  $M_{\rm BH} \sim r_H^{d-3}/G_N$   $G_N \sim I_s^{d-2}g_s^2$

weakly coupled theory  $\Rightarrow$  strong gravity effects occur much above  $M_s$ ,  $M_*$  $g_s \sim 0.1$  (gauge coupling)  $\Rightarrow M_{\rm BH} \sim 100 M_s$ 

Comparison with Regge excitations :  $M_n = M_s \sqrt{n} \Rightarrow$ 

production of  $n \sim 1/g_s^4 \sim 10^4$  string states before reach  $M_{
m BH}$  [3]

extra U(1)'s and anomaly induced terms
 masses suppressed by a loop factor
 new Chern-Simons type interactions
 usually associated to known global symmetries of the SM
 (anomalous or not) such as (combinations of)
 Baryon and Lepton number, or PQ symmetry

## More general framework: large number of species

N particle species  $\Rightarrow$  lower quantum gravity scale :  $M_*^2 = M_p^2/N$ 

Dvali '07, Dvali, Redi, Brustein, Veneziano, Gomez, Lüst '07-'10 derivation from: black hole evaporation or quantum information storage Pixel of size L containing N species storing information:



localization energy  $E\gtrsim N/L 
ightarrow$ Schwarzschild radius  $R_s=N/(LM_p^2)$ 

no collapse to a black hole :  $L \gtrsim R_s \Rightarrow L \gtrsim \sqrt{N}/M_p = 1/M_*$ 

 $M_* \simeq 1 \text{ TeV} \Rightarrow N \sim 10^{32}$  particle species !

## 2 ways to realize $N = 10^{32}$ lowering the string scale

Large volume compactifications SM on D-branes [3]

 $N = R_{\perp}^n I_s^n$  : number of KK modes up to energies of order  $M_* \simeq M_s$ 

•  $N \sim$  effective number of string modes contributing to the BH bound Dvali-Lüst '09. Dvali-Gomez '10

 $N_s = \frac{1}{g_s^2}$  with  $g_s \simeq 10^{-16}$  SM on NS5-branes I.A.-Pioline '99, I.A.-Dimopoulos-Giveon '01

in this case gravity does NOT become strong at  $M_s$ 

Both ways are compatible with the general string relation:

$$M_P^2 = \frac{1}{g_s^2} V_6 M_s^8$$
  $V_6$ : internal 6*d* compactification volume

puzzle as  $g_s \rightarrow 0$ :

- $M_*$  remains finite  $\Rightarrow$  Quantum Gravity effects in a free theory  $M_*^2 = M_p^2/N \simeq M_s^2/(g_s^2 N) \sim M_s^2$  since  $N \simeq 1/g_s^2$
- forward 4pt amplitude does not decouple

e.g. 
$$\sum_{\text{string states } X} |q\bar{q} \rightarrow X|^2 \sim g_s^2 \times N \sim \mathcal{O}(1)$$
 at  $M_*$ 

solution: log corrections  $N(M_*) \sim 1/(g_s \ln g_s)^2$   $M_* \sim M_s |\ln g_s|$ 

string density of states: 
$$N(M_*) \sim \left(rac{M_*}{M_s}
ight)^{-d} e^{eta M_*/M_s}$$

 $M_*^2 = \frac{M_s^2}{g_s^2 N} v_6 \leftarrow 6d \text{ volume in string units}$  $\Rightarrow \frac{1}{g_s \sqrt{N}} = \frac{1}{\beta} \ln N - \frac{d}{\beta} \ln \ln N + \dots$ 

## What is LST ? Decouple gravity from NS5-branes

Analogy from D3-branes : decouple gravity  $\Rightarrow M_s \rightarrow \infty, \, g_s$  fixed

 $\rightarrow$  (conformal) Field Theory (CFT)

simplest case: 4d  $\mathcal{N} = 4$  super Yang Mills SU(N)

parameters: number of branes N, gauge coupling  $g_{YM}$ 

NS-5 branes:  $M_s$  finite,  $g_s \rightarrow 0 \rightarrow$  (little) String Theory without gravity

simplest case: 6d LST (non-chiral IIA or chiral IIB)

massless sector: 6d SU(N) of vectors (IIA) or tensors (IIB)

at a non-trivial fixed point

parameters: number of branes N, string scale  $M_s$ 

# How to study LST ? Using gauge/gravity duality

Gravity background : near horizon geometry (holography) Maldacena '98 Analogy from D3-branes :  $AdS_5 \times S^5$ 

parameters: AdS radius  $r_{AdS}M_s, g_s \leftrightarrow N, g_{YM}$ 

supergravity validity:  $r_{AdS}M_s >> 1$ ,  $g_s << 1 \Rightarrow$  large N,  $g_{YM}^2N$ 

 $\rightarrow$  model independent part :  $AdS_5$ 

NS-5 branes :  $(\mathcal{M}_6 \otimes R_+) \times SU(2) \equiv S^3$ 

linear dilaton background in 7d flat string-frame metric  $|\Phi|=-lpha|y|$ 

Aharony-Berkooz-Kutasov-Seiberg '98

parameters:  $M_s$ ,  $\alpha$  (or  $S^3$  radius)  $\leftrightarrow N$ 

sugra validity: small  $\alpha \Rightarrow \text{large } N$ 

compactify to  $d = 4 \left( \mathcal{M}_6 
ightarrow \mathcal{M}_4 
ight) \Rightarrow g_{YM} \sim 2 \mathsf{d}$  volume

 $\rightarrow$  model independent part : linear dilaton

### Put gravity back but weakly coupled

"cut" the space of the extra dimension  $\Rightarrow$  gravity on the brane

Analogy from D-branes  $\rightarrow$  2 possibilities:

- flat space  $\Rightarrow$  large extra dimensions AADD '98
- curved space from gravity back reaction  $\Rightarrow$  slice of  $AdS_5$

RS, H. Verlinde '99

NS-5 branes : linear dilaton on an interval  $y \in [0, r_c]$ 

$$S_{bulk} = \int d^4x \, dy \sqrt{-g} \, e^{-\Phi} \left( M_5^3 R + M_5^3 (\nabla \Phi)^2 - \Lambda \right)$$
$$S_{vis(hid)} = \int d^4x \sqrt{-g} \, e^{-\Phi} \left( L_{SM(hid)} - T_{vis(hid)} \right)$$

Tuning conditions:  $T_{vis} = -T_{hid} \leftrightarrow \Lambda < 0$  [7]

## Linear dilaton background IA-Arvanitaki-Dimopoulos-Giveon '11

$$g_s^2 = e^{-lpha|y|}$$
 ;  $ds^2 = e^{rac{2}{3}lpha|y|} \left(\eta_{\mu
u} dx^\mu dx^
u + dy^2
ight) \leftarrow$  Einstein frame [7]

 $z \sim e^{\alpha y/3} \Rightarrow$  polynomial warp factor + log varying dilaton



• exponential hierarchy:  $g_s^2 = e^{-\alpha|y|}$   $M_P^2 \sim \frac{M_5^3}{\alpha} e^{\alpha r_c}$   $\alpha \equiv k_{RS}$ 

- 4d graviton flat, KK gravitons localized near SM
- SM particles cannot be in the bulk

bulk gauge bosons: exp suppressed couplings

## LST KK graviton phenomenology

• KK spectrum : 
$$m_n^2 = \left(\frac{n\pi}{r_c}\right)^2 + \frac{\alpha^2}{4}$$
;  $n = 1, 2, ...$ 

 $\Rightarrow$  mass gap + dense KK modes  $\alpha \sim 1$  TeV  $r_c^{-1} \sim 30$  GeV

• couplings : 
$$\frac{1}{\Lambda_n} \sim \frac{1}{(\alpha r_c)M_5}$$

 $\Rightarrow$  extra suppression by a factor  $(\alpha r_c) \simeq 30$ 

• width : 
$$1/(\alpha r_c)^2$$
 suppression  $\sim 1$  GeV

 $\Rightarrow$  narrow resonant peaks in di-lepton or di-jet channels

• extrapolates between RS and flat extra dims (n = 1)

 $lpha \gtrsim (0.1\,{
m mm})^{-1} \sim 10^{-2}$  eV from microgravity experiments

 $\Rightarrow$  distinct experimental signals

#### Bounds on the LST parameter space



exclusion by (1) perturbativity (2) Tevatron with 5.4  $fb^{-1}$  data (3) LHC 14 TeV with 10  $fb^{-1}$  (4) diphoton at Tevatron 5.4  $fb^{-1}$  • what happens at the scale  $M_* \simeq M_s \ln g_s$  ?

parametrically higher than  $M_s$  but much lower than  $M_p$ 

- where are the 10<sup>32</sup> states in linear dilaton dual theory?
- model building with NS5 branes

## Conclusions

Mass hierarchy  $\Rightarrow$  testing strings at the TeV ?

- Well motivated theoretical framework with many testable experimental predictions new resonances, missing energy
- Several realizations with different signatures flat large extra dimensions, exp warped metrics, tiny string coupling and linear dilaton background
- Stimulus for micro-gravity experiments and accelerator searches
- But: unification has to be dropped
  - physics is radically changed above string scale