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Holography

â Any gravitational theory is expected to be holographic, i.e. it
should have a description in terms of a non-gravitational theory
in one dimension less.

â If gravity is indeed holographic, one should be able to recover
generic features of quantum theories through gravitational
computations.

â One of the most basic such features is the UV behavior of the
quantum theory: the UV divergences of a local QFT are local.

â Via the UV/IR connection, any gravitational theory dual to a local
QFT must have local IR divergences.
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Holography and asymptotics

â Indeed, in the cases we understand holography, i.e. for
asymptotically AdS spacetimes and spacetimes conformal to
that, one can prove that the divergences are local in boundary
data. [Henningson, KS (1998)], [Kanitscheider, KS, Taylor (2008)]

â Conversely, if the IR divergences of a gravitational theory are
non-local, the dual quantum theory cannot be a local QFT.

â Asymptotically flat spacetimes fall into this category. The
structure of the asymptotic solutions shows that the divergences
of the on-shell action are non-local in boundary data. [de Haro,
Solodukhin, KS (2001)].

â Holography for such spacetimes is more difficult to understand ...
as the dual theory should be non-local.
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Holography and long wavelength behavior

â Another generic feature of QFTs is the existence of a
hydrodynamic description capturing the long-wavelength
behavior near to thermal equilibrium.

â One then expects to find the same feature on the gravitational
side, i.e., there should exist a bulk solution corresponding to the
thermal state, and nearby solutions corresponding to the
hydrodynamic regime.

â Global solutions corresponding to non-equilibrium configurations
should be well-approximated by the solutions describing the
hydrodynamic regime at sufficiently long distances and late
times.

Kostas Skenderis The holographic fluid dual to vacuum Einstein gravity
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Hydrodynamics and AdS/CFT

This picture is indeed beautifully realized in AdS/CFT:

Thermal state ⇔ AdS black hole
Relativistic hydrodynamics ⇔ Relativistic gradient expansion

solution of bulk

â Solutions describing non-equilibrium configurations are well
approximated by hydrodynamics at late times.

[Witten (1998)] ... [Policastro, Son, Starinets (2001)] ... [Janik, Peschanski
(2005)] ... [Bhattacharyya, Hubeny, Minwalla, Rangamani (2007)] ...
[Chestler, Yaffe (2010)] ...
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Hydrodynamics and vacuum Einstein gravity

We will see that a similar picture can be developed for vacuum
Einstein gravity:

Thermal state ⇔ Rindler space
Incompressible Navier-Stokes ⇔ Non-relativistic gradient
expansion + corrections solution of bulk

One may then use the properties of these solutions in order to obtain
clues about the nature of the dual theory.
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Rindler spacetime

â Flat spacetime in ingoing Rindler
coordinates is give by:

ds2 = −rdτ 2 + 2dτdr + dxidxi

i.e. Minkowski space parametrised by
timelike hyperbolae X2−T2 = 4r and ingoing
null geodesics X+T = eτ/2.

â We will consider the portion of spacetime
between r = rc and the future horizon, H+,
the null hypersurface X = T.
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Rindler spacetime: properties

â The induced metric γab on Σc (r = rc) is flat.

â The Rindler horizon has constant Unruh
temperature,

T =
1

4π
√

rc

â The Brown-York stress energy tensor takes
the perfect fluid form:

Tab = ρuaub + phab

with

ρ = 0, p =
1
√

rc
, ua = (

1
√

rc
, ~0).
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Equilibrium configurations
We now want to obtain a family of equilibrium configurations
parametrized by arbitrary constants that would become the
hydrodynamic variables in the hydrodynamic regime.

We require three properties:

Ê There exists a co-dimension one hypersurface Σc on which the
fluid lives, with flat induced metric:

γabdxadxb = −rcdτ 2 + dxidxi

√
rc is speed of light (arbitrary)

Ë The Brown-York stress tensor on Σc takes the perfect fluid form

Tab = ρuaub + phab,

where hab = γab + uaub is spatial metric in local rest frame of fluid.
Ì Stationary w.r.t. ∂τ and homogeneous in xi directions.
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Equilibrium configurations

â One configuration satisfying properties Ê, Ë, Ì is Rindler
spacetime.

â We generate metrics with arbitrary constant p and ua by acting on
Rindler spacetime with diffeomorphisms.

â There are the only two infinitesimal diffeomorphisms that
preserve the properties Ê, Ë, Ì.
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Equilibrium configurations

Exponentiating, these are:

â A constant boost

√
rcτ → γ

√
rcτ − γβixi, xi → xi − γβi√rcτ + (γ − 1)

βiβj

β2 xj,

where γ = (1− β2)−1/2 and βi = vi/
√

rc.

â A constant linear shift of r and re-scaling of τ ,

r → r − rh, τ → (1− rh/rc)−1/2τ.

This second transformation shifts the position of the horizon to
r = rh < rc.
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Equilibrium configurations
Applying these two transformations, the resulting metric is

ds2 = −p2(r − rc)uaubdxadxb − 2puadxadr + γabdxadxb.

â The induced metric on Σc is still γab.
â The Brown-York stress tensor is that of a perfect fluid with

ρ = 0, p =
1√

rc − rh
, ua =

1√
rc − v2

(1, vi).

â The Unruh temperature is given by

T =
1

4π
√

rc − rh

and all thermodynamic identities are satisfied, with the entropy
density given by s = 1/4G.
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Solving to all orders

From equilibrium to hydrodynamics

We now wish to consider near-equilibrium configurations.

â We consider the pressure field p and velocities vi as slowing
varying functions of the coordinates.

â We will further consider the limit,

v(ε)
i (τ,~x) = εvi(ε2τ, ε~x), P(ε)(τ,~x) = ε2P(ε2τ, ε~x), ε→ 0

where P is the pressure fluctuation around the background value
p.

â Keeping terms through order ε2, one finds that the resulting
metric satisfies Einstein’s equations to O(ε3), provided one
imposes,

∂ivi = O(ε3)
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Solving to all orders

Solution to order ε3

â At next order, one can add a new term, g(n)
µν , of order ε3 such that

the resulting metric solves Einstein equations though order ε3.
â In order for the metric to be Ricci-flat one must impose

∂τ vi + vj∂jvi − η∂2vi + ∂iP = O(ε4),

which is precisely the Navier-Stokes equation!
â The metric up to this order was obtained first by Bredberg,

Keeler, Lysov, Strominger [arXiv:1101.2451]

Kostas Skenderis The holographic fluid dual to vacuum Einstein gravity



Introduction
Equilibrium configurations

Hydrodynamics
The underlying relativistic fluid

A model for the dual fluid
Conclusions and Outlook

Solving to all orders

Incompressible Navier-Stokes

The incompressible Navier-Stokes equations read

∂τ vi + vj∂jvi − η∂2vi + ∂iP = 0, ∂ivi = 0.

â The incompressible Navier-Stokes equation captures the
universal long-wavelength behavior of essentially any
(d + 1)-dimensional fluid.

â They have an interesting scaling symmetry

vi → εvi(ε2τ, ε~x), P → ε2P(ε2τ, ε~x).

â Higher-derivative correction terms are then naturally organized
according to their scaling with ε.
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Solving to all orders

Solving to all orders

We will now show to construct the solution to arbitrarily high order in ε.

â Suppose we have a solution at order εn−1. Let’s now add a new
term to the metric g(n)

µν at order εn. The Ricci tensor is

R(n)
µν = δR(n)

µν + R̂(n)
µν .

Here, δR(n)
µν is the contribution at order εn due to the new term

g(n)
µν , while R̂(n)

µν is the nonlinear contribution at order εn from the
metric at lower orders.
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Solving to all orders

Solving to all orders

à We know δR(n)
µν from the usual linearized formula. Moreover, since

∂r ∼ 1, ∂i ∼ ε, ∂τ ∼ ε2,

we need only keep r-derivatives in this formula, since the rest are
higher order.

à The key idea is just that of a gradient expansion:
The ε-expansion filters out the hydrodynamic modes for which
∂r ∼ 1, ∂i ∼ ε and ∂τ ∼ ε2. This assumed hierarchy in derivatives
splits the PDE Rµν = 0 into a series of coupled ODEs in r.

à We can now set R(n)
µν = δR(n)

µν + R̂(n)
µν = 0 and try to solve for g(n)

µν in
terms of the metric at lower orders.
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Solving to all orders

Integrability conditions

à For this to be possible, however, the following integrability
conditions must be satisfied:

0 = ∂r(R̂
(n)
ii − rR̂(n)

rr )− R̂(n)
rr , 0 = R̂(n)

τa + rR̂(n)
ra .

à To establish this, we first examine the Bianchi identity at order εn

0 = ∂r(R̂
(n)
ii − rR̂(n)

rr )− R̂(n)
rr ,

0 = ∂r(R̂(n)
τa + rR̂(n)

ra ) ⇒ R̂(n)
τa + rR̂(n)

ra = f (n)
a (τ,~x).

à The integrability conditions are therefore satisfied provided the
arbitrary function f (n)

a (τ,~x) vanishes. This in turn follows from
conservation of the Brown-York stress tensor on Σc. Using the
Gauss-Codazzi identity,

∇bTab
∣∣(n)
Σc

= [2∇b(Kγab − Kab)](n) = − 2
√

rc
f (n)
a (τ,~x).
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Solving to all orders

Summary

â Thus, conservation of the Brown-York stress tensor on Σc is
necessary for the bulk equations to be integrated.

â From the perspective of the dual fluid, conservation of the
Brown-York stress tensor is equivalent to incompressibility (at ε2

order) and the Navier-Stokes equation (at ε3 order). At higher
orders in ε we obtain corrections to these equations.

â To complete our integration scheme, we choose the gauge

g(n)
rµ = 0

and impose boundary conditions such that:
the metric on Σc is preserved
the solution is regular on the future horizon H+.
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Solving to all orders

Integration scheme

â Our final integration scheme is thus

g(n)
rµ = 0,

g(n)
ττ = (1− r/rc)Fν

τ (τ,~x) +
∫ rc

r
dr′

∫ rc

r′
dr′′(R̂(n)

ii − rR̂ν
rr − 2R̂ν

rτ ),

g(n)
τ i = (1− r/rc)Fν

i (τ,~x)− 2
∫ rc

r
dr′

∫ rc

r′
dr′′R̂ν

ri,

g(n)
ij = −2

∫ rc

r
dr′

1
r′

∫ r′

0
dr′′R̂ν

ij ,

where the arbitrary functions Fν
τ and Fν

i encode the freedom to
redefine P and vi at order εn.
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Solving to all orders

Fluid gauge conditions
The remaining freedom may be fixed by choosing appropriate gauge
conditions for the dual fluid.

â Fν
i may be fixed by imposing Landau gauge on the fluid:

0 = uaTabhb
c

i.e. the momentum density Tτ i vanishes in the local rest frame.
This is effectively a definition of the fluid velocity ua.

â Fν
τ is fixed by imposing that there are no corrections to the

isotropic part of the stress tensor:

T iso
ij =

( 1
√

rc
+

P

r3/2
c

)
δij.

This effectively defines the pressure fluctuation to be exactly P.

â With all gauge freedom now fixed, we have a unique solution for
the bulk metric in terms of vi and P.
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Solving to all orders

Bulk solution
We computed this bulk solution explicitly through to ε5 order, for
arbitrary spacetime dimension.

For example, at ε3 order, the only nonzero term is:

g(3)
τ i =

(r − rc)
2rc

[
(v2 + 2P)

2vi

rc
+ 4∂iP−(r + rc)∂2vi

]
.

At ε4 order, the nonzero terms are g(4)
ττ and g(4)

ij .

At ε5 order, only g(5)
τ i is nonzero. [See arXiv:1103.3022]

â This behavior makes sense since all scalars and tensors
constructed from vi, P and their derivatives are of even order in ε,
while all vector quantities are odd.

â Interestingly, [arXiv:1101.2451] noted the solution is Petrov type II
at leading non-trivial order. This appears not to extend to higher
order however. (I3 − 27J2 is nonzero at order ε14.)
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Solving to all orders

Recovering Navier-Stokes and incompressibility
From our unique bulk solution, we recover the Navier-Stokes and
incompressibility equations, along with a unique set of corrections.

These arise from the momentum constraint on Σc:

0 = ∇bTab

∣∣∣
Σc

= 2∇b(Kγab − Kab)

At even orders in ε we recover the incompressibility equation plus
corrections,

∂ivi =
1
rc

vi∂iP− vi∂
2vi + 2∂(ivj)∂ivj + O(ε6),

At odd orders we recover Navier-Stokes plus corrections,

∂τ vi + vj∂jvi− rc∂
2vi +∂iP = (−3r2

c

2
∂4vi + 2rcvk∂

2∂kvi + . . .)+ O(ε7).
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The underlying relativistic fluid

As the ε-expansion is non-relativistic, Tab appears to be non-relativistic.
In fact, however, there is an underlying relativistic stress tensor which,
when expanded out in ε, reproduces our above results.

This is in agreement with the expectation that the dual
holographic theory should be relativistic.
The relativistic stress tensor is much simpler: all information is
encoded in only a few transport coefficients. In general,

Tab = ρuaub + phab + Π⊥
ab, uaΠ⊥

ab = 0,

where Π⊥
ab represents dissipative corrections and may be

expanded in fluid gradients.
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Characterizing the dual fluid

â One unusual feature compared to standard relativistic
hydrodynamics, however, is that the equilibrium energy density
vanishes.

â From our bulk solution, the energy density in the local rest frame
is given by

ρ = Tabuaub = − 1
2
√

rc
σijσij + O(ε6), σij = 2∂(ivj).

This vanishes when vi is constant, and is otherwise negative!
â We note that the Hamiltonian constraint on Σc imposes

dTabTab = T2.

This determines ρ in terms of p and Π⊥
ab.

â The Hamiltonian constraint therefore plays a role analogous to
an equation of state.
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First order relativistic hydrodynamics

â At first order in fluid gradients,

Π⊥
ab = −2ηKab + O(∂2), Kab = hc

ahd
b∂(cud),

Note there is no bulk viscosity term ζKhab, because K = ∂aua and
the fluid is incompressible: 0 = ua∂bTab = −p∂aua + O(∂2).

â Expanding Tab in ε we get

η = 1, η/s = 1/(4π)

â The ‘equation of state’ then fixes

ρ = −2η2

p
KabKab + O(∂3).

and upon expanding in ε we recover

ρ = − 1
2
√

rc
σijσij + O(ε6).
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Second-order relativistic hydrodynamics

The full expansion for Π⊥
ab to second order in gradients is

Π⊥
ab = −2ηKab + c1Kc

aKcb + c2Kc
(aΩ|c|b) + c3Ω c

a Ωcb + c4hc
ahd

b∂c∂d ln p

+ c5Kab D ln p + c6D⊥
a ln p D⊥

b ln p + O(∂3),

where D⊥
a = hb

a∂b and D = ua∂a and the vorticity Ωab = hc
ahd

b∂[cud].

â There are six second-order transport coefficients: c1, c2, etc.
â Expanding this expression in ε and comparing with our Tab from

our gravity calculation we find:

η = 1, 2c1 = c2 = c3 = c4 = −4
√

rc.

These five simple terms encode our entire Tab to ε5 order! To fix
c5 and c6 we need to go beyond ε5 order.
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Non-universality of higher order transport coefficients

In a recent paper Chirco, Eling and Liberati [arXiv:1105.4482] analyzed
the Gauss-Bonnet case:

S =
∫

dd+1x
√
−g

[
R + α(R2 − 4RµνRµν + RµνρσRµνρσ)

]
, d ≥ 3.

While η, c2 and c4 stay the same, c1 and c3 change:

c1 = −2
√

rc
(
1 +

2α

rc

)
, c3 = −4

√
rc

(
1 +

3α

rc

)
.
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Non-universality of higher order transport coefficients

Since Rµνρσ ∼ ε2, curvature-squared corrections to the field
equations don’t change the metric until ε4 order, and in fact this
holds for all higher-derivative corrections. Hence up to ε3 order
the metric is universal.
This universal part generates the incompressible Navier-Stokes
equations, which are themselves universal.
The non-universal part of the metric generates the higher-order
correction terms to the incompressible Navier-Stokes equations;
as expected, these are not universal.
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A model for the dual fluid

â We now propose a simple Lagrangian model for the dual fluid.
We focus on the non-dissipative part of the stress tensor,

Tab = phab = p(γab + uaub),

describing a fluid with nonzero pressure but vanishing energy
density in the local rest frame.

â To get the dissipative part would need to couple to a heat bath.
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A model for the dual fluid

S =
∫

dd+1x
√
−γ

√
−(∂φ)2.

â The field equations describe potential flow

∇aua = 0, ua =
∂aφ√

X
, X = −(∂φ)2.

â The stress tensor is

Tab =
√

Xγab +
1√
X

∂aφ∂bφ =
√

Xhab, i.e. p =
√

X.

â One way to obtain this sqrt action is to start with L(X, φ) then
impose

0 = ρ = 2X
δL
δX
− L

Kostas Skenderis The holographic fluid dual to vacuum Einstein gravity
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A model for the dual fluid

â The equilibrium configuration with p = 1/
√

rc in the rest frame
corresponds to taking

φ = τ,

so vi ∼ ∂iφ = 0. This breaks Lorentz invariance, as does any
choice of ua.

â To model small fluctuations about this background we set

φ = τ + δφ(τ,~x).

One can then solve for the 3-velocity vi and pressure fluctuation
P:

vi = − rcδφ,i

(1 + δφ̇)
, P = rc

[
(1 + 2δφ̇ + δφ̇2 − rcδφ,iδφ,i)1/2 − 1

]
.
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Remarks

The action is non-local: the expansion around the background
solution involves an infinite number of derivatives.
One can easily couple to other types of matter (Ψ, Φ, Aa),
provided they don’t have a background value.
Connection with brane action? e.g. (d + 1)-dim brane embedded
in (d + 2)-dim Minkowski target space. In static gauge this is

S = −T
∫

dd+1x
√

1 + (∂Y)2,

where Y is the transverse coordinate to the brane. Taking the
tensionless limit T → 0 while keeping φ = TY fixed,

S = −
∫

dd+1x
√

(∂φ)2.

Still missing minus sign inside sqrt ... use target space signature
(d, 2)?
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Conclusions

â We’ve established a direct relation between (d + 2)-dimensional
Ricci-flat metrics and (d + 1)-dimensional fluids satisfying the in-
compressible Navier-Stokes equations, corrected by specific higher-
derivative terms.

â The dual fluid has vanishing equilibrium energy density but nonzero
pressure. There is an underlying relativistic hydrodynamic description.
We computed the viscosity and four of the six second-order transport
coefficients ‘holographically’.

â A simple sqrt Lagrangian captures the non-dissipative properties of
the fluid.
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Outlook

â Is there a manifestly relativistic construction of the bulk metric?
Does the solution exist globally? What if we add matter to the
bulk?

â Does the correspondence extend beyond the hydrodynamic
regime on the field theory side, and/or the classical gravitational
description on the bulk side? Is there a string embedding? Can
we get the sqrt action from branes?

â How far can flat space holography be developed? Is there a
holographic dictionary relating bulk computations to quantities in
the dual field theory on Σc?

â By the equivalence principle, our construction should hold locally
in any small neighbourhood. Can one patch together such a
‘local’ holographic description of neighbourhoods to obtain a
global holographic description of general spacetimes?
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