On the phase diagram of gauge theories with a large number of adjoint scalars

Gautam Mandal

6th Regional Meeting in String Theory, Milos, June 21, 2011 with T. Morita (arXiv:1103.1558)
with M. Mahato and T. Morita (arXiv:0910.4526) with T. Morita (arXiv:1107.xxxx)
with R. Narayanan; P. Basu, T. Morita, S.R. Wadia; N. lizuka; H. Isono (in progress)

Other works

T. Morita (2010)
K. Hashimoto and T. Morita (2011)
O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, M. Van Raamsdonk and T. Wiseman (2005)
R. Narayanan and H. Neuberger (2003-2007)
M. Unsal and L. G. Yaffe (2010)

Motivation

Gauge theory

- Confinement/deconfinement transitions in large N gauge theories have been generally studied using lattice methods and holography.

Motivation

Gauge theory

- Confinement/deconfinement transitions in large N gauge theories have been generally studied using lattice methods and holography.
- In special situations, perturbative analytic calculations exist. YM on $S^{1} \times S^{3}$: Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk (2003) YM on $S^{1} \times S^{2}: \quad$ Papadodimas, Shieh, van Raamsdonk (2006)

Motivation

Gauge theory

- Confinement/deconfinement transitions in large N gauge theories have been generally studied using lattice methods and holography.
- In special situations, perturbative analytic calculations exist. YM on $S^{1} \times S^{3}: \quad$ Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk (2003) YM on $S^{1} \times S^{2}$: Papadodimas, Shieh, van Raamsdonk (2006)
- Generation of a mass gap in pure YM theory calls for a non-perturbative treatment.

Motivation

Gauge theory

- Confinement/deconfinement transitions in large N gauge theories have been generally studied using lattice methods and holography.
- In special situations, perturbative analytic calculations exist. YM on $S^{1} \times S^{3}$: Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk (2003) YM on $S^{1} \times S^{2}$: Papadodimas, Shieh, van Raamsdonk (2006)
- Generation of a mass gap in pure YM theory calls for a non-perturbative treatment.
- In four-fermi theories, e.g. Gross-Neveu model, can prove

$$
\left(\bar{\psi}_{i} \psi_{i}\right)^{2} \rightarrow \bar{\psi}_{i} \psi_{i}\left\langle\bar{\psi}_{i} \psi_{i}\right\rangle
$$

The condensate (at large N_{f}) satisfies a gap equation, like in BCS theory, and characterizes a nonperturtative vacuum with dynamical mass generation, symmetry breaking and asymptotic freedom.

- Can we find such a phenomenon in gauge theories?
- Can we find such a phenomenon in gauge theories?
- Yes, we can. For YM compactified on T^{D} (with large D)

$$
\operatorname{Tr}\left[A_{i}, A_{j}\right]^{2} \rightarrow A A\langle A A\rangle
$$

Dynamical mass generation, asymptotic freedom,, can prove many nonperturbative results.

- Can we find such a phenomenon in gauge theories?
- Yes, we can. For YM compactified on T^{D} (with large D)

$$
\operatorname{Tr}\left[A_{i}, A_{j}\right]^{2} \rightarrow A A\langle A A\rangle
$$

Dynamical mass generation, asymptotic freedom,, can prove many nonperturbative results.

- Why study YM on tori?
- Can we find such a phenomenon in gauge theories?
- Yes, we can. For YM compactified on T^{D} (with large D)

$$
\operatorname{Tr}\left[A_{i}, A_{j}\right]^{2} \rightarrow A A\langle A A\rangle
$$

Dynamical mass generation, asymptotic freedom,, can prove many nonperturbative results.

- Why study YM on tori?
- Euclidean YM on S^{1} of length β corresponds to thermal YM (at temperature $1 / \beta$). Low temperature: temporal Wilson loop $W_{0}=0$ (unbroken Z_{N} symmetry \rightarrow confinement); high temperature $W_{0} \neq 0$ (brone Z_{N} symmetry \rightarrow deconfinement). Deconfinement: $Z_{N} \rightarrow 1$.
- Can we find such a phenomenon in gauge theories?
- Yes, we can. For YM compactified on T^{D} (with large D)

$$
\operatorname{Tr}\left[A_{i}, A_{j}\right]^{2} \rightarrow A A\langle A A\rangle
$$

Dynamical mass generation, asymptotic freedom,, can prove many nonperturbative results.

- Why study YM on tori?
- Euclidean YM on S^{1} of length β corresponds to thermal YM (at temperature $1 / \beta$). Low temperature: temporal Wilson loop $W_{0}=0$ (unbroken Z_{N} symmetry \rightarrow confinement); high temperature $W_{0} \neq 0$ (brone Z_{N} symmetry \rightarrow deconfinement). Deconfinement: $Z_{N} \rightarrow 1$.
- YM on T^{D} have been studied holographically (Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk, Wiseman (2005)) and in the lattice (Narayanan, Neuberger et al, 2003-2011). Exotic phase structure: e.g. for YM_{4} on T^{4}, with $L_{0}=\beta>L_{1}>L_{2}>L_{3}$, the phase structure is found to be

Which radii small	Symmetry	Non-zero Wilson loops	Name of phase
None	Z_{N}^{4}	None	0_{c}
L_{3}	Z_{N}^{3}	W_{3}	1_{c}
L_{2}, L_{3}	Z_{N}^{2}	$W_{2} W_{3}$	2_{c}
L_{1}, L_{2}, L_{3}	Z_{N}	W_{1}, W_{2}, W_{3}	3_{c}
$L_{0}, L_{1}, L_{2}, L_{3}$	1	$W_{0}, W_{1}, W_{2}, W_{3}$	4_{c}

Which radii small	Symmetry	Non-zero Wilson loops	Name of phase
None	Z_{N}^{4}	None	0_{c}
L_{3}	Z_{N}^{3}	W_{3}	1_{c}
L_{2}, L_{3}	Z_{N}^{2}	$W_{2} W_{3}$	2_{c}
$L_{1} L_{2}, L_{3}$	Z_{N}	W_{1}, W_{2}, W_{3}	3_{c}
$L_{0}, L_{1}, L_{2}, L_{3}$	1	$W_{0}, W_{1}, W_{2}, W_{3}$	4_{c}

- Only 0_{c} is a confinement phase, with intact Z_{N} symmetry; all the rest are various 'deconfinement' phases.

Which radii small	Symmetry	Non-zero Wilson loops	Name of phase
None	Z_{N}^{4}	None	0_{c}
L_{3}	Z_{N}^{3}	W_{3}	1_{c}
L_{2}, L_{3}	Z_{N}^{2}	$W_{2} W_{3}$	2_{c}
L_{1}, L_{2}, L_{3}	Z_{N}	$W_{1} W_{2}, W_{3}$	3_{c}
$L_{0}, L_{1}, L_{2}, L_{3}$	1	$W_{0}, W_{1}, W_{2}, W_{3}$	4_{c}

- Only 0_{c} is a confinement phase, with intact Z_{N} symmetry; all the rest are various 'deconfinement' phases.
- In the 0_{c} phase, physics is independent of all radii (large N volume independence Eguchi, Kawai 1982); in the 1_{c} phase, physics depends on L_{3} but is independent of the rest, etc.

Which radii small	Symmetry	Non-zero Wilson loops	Name of phase
None	Z_{N}^{4}	None	0_{c}
L_{3}	Z_{N}^{3}	W_{3}	1_{c}
L_{2}, L_{3}	Z_{N}^{2}	$W_{2} W_{3}$	2_{c}
L_{1}, L_{2}, L_{3}	Z_{N}	W_{1}, W_{2}, W_{3}	3_{c}
$L_{0}, L_{1}, L_{2}, L_{3}$	1	$W_{0}, W_{1}, W_{2}, W_{3}$	4_{c}

- Only 0_{c} is a confinement phase, with intact Z_{N} symmetry; all the rest are various 'deconfinement' phases.
- In the 0_{c} phase, physics is independent of all radii (large N volume independence Eguchi, Kawai 1982); in the 1_{c} phase, physics depends on L_{3} but is independent of the rest, etc.
- 'Cascade': there is no phase boundary across which two Wilson lines acquire non-zero values simultaneously.

Which radii small	Symmetry	Non-zero Wilson loops	Name of phase
None	Z_{N}^{4}	None	0_{c}
L_{3}	Z_{N}^{3}	W_{3}	1_{c}
L_{2}, L_{3}	Z_{N}^{2}	$W_{2} W_{3}$	2_{c}
L_{1}, L_{2}, L_{3}	Z_{N}	W_{1}, W_{2}, W_{3}	3_{c}
$L_{0}, L_{1}, L_{2}, L_{3}$	1	$W_{0}, W_{1}, W_{2}, W_{3}$	4_{c}

- Only 0_{c} is a confinement phase, with intact Z_{N} symmetry; all the rest are various 'deconfinement' phases.
- In the 0_{c} phase, physics is independent of all radii (large N volume independence Eguchi, Kawai 1982); in the 1_{c} phase, physics depends on L_{3} but is independent of the rest, etc.
- 'Cascade': there is no phase boundary across which two Wilson lines acquire non-zero values simultaneously.
- We will be able to compute a number of these phase boundaries analytically and verify the above properties.

Large N QCD in four dimensions

Large N QCD in four dimensions

View from the lattice

Gravity motivations

Gravity

- Phase transitions in gauge theory correspond to interesting phase transitions in gravity (Hawking-Page, Gregory-Laflamme, Scherk-Schwarz,...).

Gravity motivations

Gravity

- Phase transitions in gauge theory correspond to interesting phase transitions in gravity (Hawking-Page, Gregory-Laflamme, Scherk-Schwarz,...).
- Studying the holographic duals of gauge theories on T^{D} leads to new proposals for strong-coupling continuations of the deconfiment transition. [cf. Takeshi's talk yesterday on Deconfinement in 4D YM].

Gravity motivations

Gravity

- Phase transitions in gauge theory correspond to interesting phase transitions in gravity (Hawking-Page, Gregory-Laflamme, Scherk-Schwarz,...).
- Studying the holographic duals of gauge theories on T^{D} leads to new proposals for strong-coupling continuations of the deconfiment transition. [cf. Takeshi's talk yesterday on Deconfinement in 4D YM].
- The end-point of a dynamical Gregory-Laflamme transition is interesting to study (especially from the viewpoint of the appearance of a naked singularity). We will study the dynamical transition in the gauge theory. Basu-Mandal-Morita-Wadia (in progress).

Plan

- The Technique: $(d+D)$ dimensional YM on T^{D} (large D)
- $d=0$ (Bosonic IKKT)
- $\mathrm{d}=1(\leftarrow \mathrm{SS}$ reduction of D1)
- $\mathrm{d}=2(\leftarrow \mathrm{SS}$ reduction of D2)
- Dynamical Gregory Laflamme in gauge theory
- Conclusions and open problems

The large D technique

- Consider a $d+D$ dimensional bosonic YM theory on a small T^{D}

$$
S=\frac{1}{4} \int d^{d} x \operatorname{Tr}\left(F_{\mu \nu}^{2}+\frac{1}{2} \sum_{l=1}^{D} D_{\mu} Y^{\prime} D^{\mu} Y^{\prime}-g^{2} \sum_{l, J} \frac{1}{4}\left[Y^{\prime}, Y^{J}\right]^{2}\right)
$$

Can we treat the Y^{4} term in a fashion similar to 4-fermi terms as in Gross-Neveu or NJL models?

Hotta-Nishimura-Tsuchiya 1999, Mahato-Mandal-Morita 2009

Large N_{f}

Recall Gross-Neveu model:

$$
\boldsymbol{S}=\int d^{2} \boldsymbol{x}\left(\bar{\psi}_{i} \partial_{\mu} \gamma^{\mu} \psi_{i}-\boldsymbol{g}\left(\bar{\psi}_{i} \psi_{i}\right)^{2}\right)
$$

The technique to solve Gross-Neveu model is to introduce an auxiliary dynamical field $\phi, g\left(\bar{\psi}_{i} \psi_{i}\right)^{2}=\phi \bar{\psi}_{i} \psi_{i}-\phi^{2} /(4 g)$ and integrate out the fermions to get

$$
S_{e f f}[\phi]=N_{f} \log \operatorname{Det}\left(\gamma^{\mu} \partial_{\mu}+2 \phi\right)+\phi^{2} /(4 g)
$$

In the large N_{f} limit, $N_{f} g=\lambda$ fixed, the 1-loop term competes with the tree level term. Hence, a non-trivial value of the flavour-singlet condensate

$$
<\phi>=\frac{2 \lambda}{N_{f}}<\bar{\psi}_{i} \psi_{i}>\neq 0=\Lambda \exp \left[-\alpha /\left(g N_{f}\right)\right]
$$

appears at the new saddle point. [BCS, $\chi \mathrm{SB}, \ldots]$

Back to YM

- Can we write $Y^{4}=-B^{2} / 4+B Y^{2}$ etc. to get a non-trivial vacuum with $<Y^{2}>\neq 0$? What could a 'singlet' Y^{2} be? It can't be of the form $\operatorname{Tr}[Y, Y]$ which trivially vanishes. It can be $\operatorname{Tr}\left(Y^{\prime} Y^{J}\right)$, but we can't write $\operatorname{Tr}\left(\left[Y_{I}, Y_{J}\right]^{2}\right)=B_{I J} \operatorname{Tr}\left[Y^{l} Y^{J}\right]-B_{I J}^{2} / 4$ (single trace \neq double trace).

Back to YM

- Can we write $Y^{4}=-B^{2} / 4+B Y^{2}$ etc. to get a non-trivial vacuum with $<Y^{2}>\neq 0$?
What could a 'singlet' Y^{2} be? It can't be of the form $\operatorname{Tr}[Y, Y]$ which trivially vanishes. It can be $\operatorname{Tr}\left(Y^{\prime} Y^{J}\right)$, but we can't write $\operatorname{Tr}\left(\left[Y_{I}, Y_{J}\right]^{2}\right)=B_{I J} \operatorname{Tr}\left[Y^{\prime} Y^{J}\right]-B_{I J}^{2} / 4$ (single trace \neq double trace).
- Turns out that by considering gauge-non-invariant, but SO(D)-invariant auxiliary fields, we CAN write

$$
\operatorname{Tr}\left[Y_{l}, Y_{J}\right]^{2} \equiv-Y_{a}^{\prime} Y_{b}^{J} M_{a b, c d} Y_{c}^{J} Y_{d}^{J}=B_{a b} M_{a b ; c d}^{-1} B_{c d}-2 i B_{a b} Y_{a}^{\prime} Y_{b}^{\prime}
$$

where we have written $Y^{\prime}=Y_{a}^{\prime} \lambda_{a}$, and

$$
M_{a b, c d}=-\frac{1}{4}\left\{\operatorname{Tr}\left[\lambda_{a}, \lambda_{c}\right]\left[\lambda_{b}, \lambda_{d}\right]+(a \leftrightarrow b)+(c \leftrightarrow d)+(a \leftrightarrow b, c \leftrightarrow d)\right\}
$$

Now Y is only quadratic; integrating over Y, we get

Large D saddle point

$$
\begin{aligned}
& Z=\int D A_{\mu} D B_{a b} \exp \left[-S_{e f f}[A, B], S_{e f f}[A, B]=\right. \\
& =\int d^{d} x\left[\frac{1}{4 g^{2}}\left(F_{\mu \nu}^{2}+B_{a b} M_{a b ; c d}^{-1} B_{c d}\right)\right]+(D / 2) \log \operatorname{Det}\left(-D_{\mu}^{2} \delta_{a b}+i B_{a b}\right)
\end{aligned}
$$

The idea now is to take a 'tHooft-like limit $D \rightarrow \infty, g^{2} \rightarrow 0$ with $g^{2} D=(\hat{g})^{2}$ held fixed. The determinant term will now compete with the tree level term, leading to a new large D saddle point for $\left\langle B_{a b}\right\rangle=i M_{a b, c d}\left\langle Y_{c}^{l} Y_{c}^{l}\right\rangle$ Note complex contour.

- In the examples we consider below, we will obtain saddle point values of the form $<B_{a b}>=i \Delta^{2} \delta_{a b}$, which will imply dynamical generation of a condensate of the form

$$
(1 / D)<Y_{a}^{\prime} Y_{b}^{\prime}>=\Delta^{2} \delta_{a b}
$$

or, equivalently a mass gap $M_{Y}=\Delta$ (cf. the $B Y^{2}$ term). In the large D saddle point, the field $B_{a b}$ can be treated as classical, leading to a large D evaluation of $S_{\text {eff }}[A]$.

Yang-Mills integrals (cf. Bosonic IKKT model)

$$
\begin{align*}
Z & =\int d Y^{\prime} \exp \left[-\frac{1}{4 g^{2}} \operatorname{Tr} \sum_{l, J}\left[Y^{\prime}, Y^{J}\right]^{2}\right] \\
& =\int D Y_{a}^{\prime} D B_{a b} \exp \left[\frac{1}{4 g^{2}} B_{a b} M_{a b, c d}^{-1} B_{c d}-\frac{i}{2 g^{2}} B_{a b} Y_{a}^{\prime} Y_{b}^{\prime}\right] \\
& =\int D B_{a b} e^{-\mathcal{S}}, \mathcal{S}=\frac{1}{4 g^{2}} B_{a b} M_{a b, c d}^{-1} B_{c d}+D / 2 \log \operatorname{det}\left[B_{a b}\right] \tag{1}
\end{align*}
$$

This can be computed at finite N, in a large D expansion! The leading term comes from the trace part $B_{a b}=B_{0} \delta_{a b}$:

$$
\mathcal{S}=\frac{N B_{0}^{2}}{8 \hat{g}^{2}}+\frac{\left(N^{2}-1\right)}{4} \log \left(-\frac{B_{0}^{2}}{\hat{g}^{2} N}\right)
$$

where $(\hat{g})^{2}=g^{2} D$. At large N,

$$
F=-\frac{\log Z}{D N^{2}}=-\frac{1}{4}+\frac{\log 2}{4}+\frac{1}{D}\left(-\frac{5}{8}+\frac{1}{2} \log \frac{3}{2}\right)+O\left(\frac{1}{D^{2}}\right) .
$$

d=0: comparison with numerics

The circles represent numerical values of $1 /(\mathrm{DN})<\operatorname{tr} Y^{\prime} Y^{\prime}>/(\hat{g} / \sqrt{2})$ (extrapolated to $N=\infty$), while the dotted line represents the 1/D result discussed above. [The analytic result was also independently obtained by Hotta-Nishimura-Tsuchiya].
d=1
This is the first non-trivial dimension involving a gauge field A_{μ}.
Consider the size of the Euclidean dimension to be finite, β.

$$
\begin{align*}
& Z=\int D A_{0} D Y^{\prime} e^{-S} \\
& S=\int_{0}^{\beta} d t \operatorname{Tr}\left(\sum_{l=1}^{D} \frac{1}{2}\left(D_{0} Y^{\prime}\right)^{2}-\sum_{I, J} \frac{g^{2}}{4}\left[Y^{\prime}, Y^{J}\right]\left[Y^{\prime}, Y^{J}\right]\right) \tag{2}
\end{align*}
$$

Step 1: Wilson loop:
For finite β, can't gauge away A_{0}; fix gauge $\partial_{t} A_{0}=0$ [Aharony et al]

$$
\Delta_{F P}=\exp \left[-S_{F P}\right], S_{F P}=N^{2} \sum_{n=1}^{\infty}\left|u_{n}\right|^{2} / n
$$

where $u_{n}=(1 / N) \operatorname{Tr} U^{n}, U=P \exp \left[i \oint d t A_{0}\right]$. Thus, A_{0} reduces only to the Wilson loop (Polyakov loop).
$u_{1}=0$: centre symmetry unbroken ("confined" phase); $u_{1} \neq 0$: centre symmetry broken ("deconfined" phase).

d=1: Integrate $Y^{\prime} s$

Step 2: Integrate out Y^{\prime} :
We show results only for the dominant mode $B_{a b}(t)=i \Delta^{2} \delta_{a b}$

$$
\frac{D}{2} \log \left(\operatorname{det}\left(-D_{0}^{2}+\triangle^{2}\right)\right)=\frac{D N^{2} \beta \triangle}{2}-D \sum_{n=1}^{\infty} \frac{x^{n}}{n}\left|u_{n}\right|^{2}
$$

Combining with the classical B^{2} term, and $\Delta_{F P}$ we get

$$
\frac{\mathcal{S}\left(\triangle,\left\{u_{n}\right\}\right)}{D N^{2}}=-\frac{\beta \Delta^{4}}{8 \tilde{\lambda}}+\frac{\beta \triangle}{2}+\sum_{n=1}^{\infty}\left(\frac{1 / D-x^{n}}{n}\right)\left|u_{n}\right|^{2} .
$$

where $\tilde{\lambda}=\lambda D=g^{2} N D$ is the large $D^{\prime} t$ Hooft coupling.

d=1: Large D saddle point

Step 3: Evaluate Δ at the saddle point

$$
\triangle_{0}\left(\left\{u_{n}\right\}\right)=\tilde{\lambda}^{1 / 3}\left(1+\frac{2}{3} \sum_{n=1}^{\infty} \bar{x}^{n}\left|u_{n}\right|^{2}\right)+\cdots
$$

where $\bar{x}=\exp \left[-\beta \tilde{\lambda}^{1 / 3}\right]$.
Step 4: Put this back in $\mathcal{S}\left[\Delta,\left\{u_{n}\right\}\right]$:

$$
\begin{align*}
\frac{\mathcal{S}\left(\left\{u_{n}\right\}\right)}{D N^{2}} & =\frac{3}{8} \beta \tilde{\lambda}^{1 / 3}+a_{1}\left|u_{1}\right|^{2}+b_{1}\left|u_{1}\right|^{4}+\sum_{n=2}^{\infty} a_{n}\left|u_{n}\right|^{2}+\cdots \\
a_{n} & =\frac{1}{n}\left(1 / D-\bar{x}^{n}\right), \\
b_{1} & =\frac{1}{3} \beta \tilde{\lambda}^{1 / 3} \bar{x}^{2}, \tag{3}
\end{align*}
$$

where the \cdots involve other u_{n}^{4} terms for $n>1$, which are down at large $D . u_{1}=(1 / N) \operatorname{Tr} U$.

d=1: Landau-Ginzburg

$u_{1}=\operatorname{Tr} U / N$. As T crosses $T_{c 1}, u_{1}$ becomes tachyonic and there is a second order phase transition which signals an onset of non-uniformity in the eigenvalue distribution $\rho(\alpha)$. At $T=T_{c 2}$, characterized by a potential minimum at $\left|u_{1}\right|=1 / 2$, a gap develops in the eigenvalue distribution, signalling a GWW transition.

d=1: phase diagram

2nd and 3rd rows are our results, with $D=9$ (10-dimensional YM theory compactified to $\mathrm{d}=1$). Numerical results are from Nishimura and Kawahara. The agreement between the 3rd row and the 1st row are within 1% (which is $1 / D^{2}$).
Works even for $D=2!$

d=1: chemical potential

Gravity correspondence: D1 branes

2d Euclidean SYM on $S_{\beta_{2}}^{1} \times S_{L}^{1}$ with (AP, P) spin structure for fermions \leftrightarrow black string wrapped along $S_{\beta_{2}}^{1}$ at temperature β (D1 at large L, smeared D0 at small L).
As the box size increases beyond horizon size, D0 branes clump, leading to a Gregory-Laflamme transition. [figure] The weak coupling version are the clumping of eigenvalues of U.

$\lambda^{\prime}=\lambda_{2} L^{2}, t^{\prime}=L / \beta . \lambda^{\prime}<t^{\prime 3}$ described by 1D YM since temporal KK modes (and fermions) are massive. Phase transitions: $\lambda^{\prime} t^{\prime}=1 / T_{c 1}^{3}, 1 / T_{c 2}^{3}$.

Consider $d=2$ Euclidean YM theory with D ajoint scalars, compactified on a 2-torus T^{2}.

$$
S=\int_{0}^{\beta} d t \int_{0}^{L} d x \operatorname{Tr}\left(\frac{1}{2 g^{2}} F_{01}^{2}+\sum_{l=1}^{D} \frac{1}{2}\left(D_{\mu} Y^{\prime}\right)^{2}-\sum_{l, J} \frac{g^{2}}{4}\left[Y^{\prime}, Y^{J}\right]\left[Y^{\prime}, Y^{J}\right]\right)
$$

We now have two Wilson lines $U=P \exp \left[i \oint^{\beta} A\right]$ and $V=P \exp \left[i \oint^{L} A\right]$ along the two cycles. There are now possibly 4 or more phases, corresponding to whether TrU, TrV are zero or non-zero and whether a non-zero Wilson line can exist in 2 distinct phases (non-uniform vs gapped eigenvalue distribution).

d=2: small L

- For small enough L, the problem reduces to $d=1$, with A_{1} turning into an extra Y, which we have solved above.
- Large N volume independence vs KK reduction. In the centre symmetric phase ($\operatorname{Tr} V=0$: uniform eigenvalues), KK reduction does not work in the usual fashion since new soft modes, with mass $\sim 1 /(N L)$, appear. However, for small enough L, eigenvalues of A_{1} are clumped near 0 (this is consistent with eigenvalues of A_{0} getting more and more clumped at low enough β) hence centre symmetry along L is broken ($\operatorname{Tr} V \neq 0$). Hence KK reduction works along L and the problem simplifies to the $d=1$ model.

d=2: large L

Need to evaluate the 1-loop effective action

$$
S^{(1)}\left(A_{\mu}, \Delta\right)=\frac{D}{2} \log \operatorname{det}\left(-D_{\mu}^{2}+\triangle^{2}\right)
$$

where $B_{a b}(x, t)=i \Delta^{2} \delta_{a b}$ is, as usual, the dominant mode at large D. Under the assumptions $L \Delta \gg 1, \Delta \gg \sqrt{\tilde{\lambda}}$, it turns out that the Wilson line V decouples from the dynamics, yielding (semenoff-Tirkonnen-Zarembo 1996,
Basu-Ezhutachan-Wadia 2005)

$$
S / D N^{2}=\int_{-\infty}^{\infty} d x\left[\frac{1}{2 N} \operatorname{Tr}\left(\left|\partial_{x} U\right|^{2}\right)-\frac{\xi}{N^{2}}|\operatorname{Tr} U|^{2}\right] .
$$

where $\xi=\sqrt{\frac{\Delta_{0}}{2 \pi \tilde{\lambda}^{2} \beta^{3}}} e^{-\Delta_{0} \beta}$ and Δ_{0} is an analog of $\Lambda_{Q C D}$ (Asymptotic freedom, dynamical mass generation)

$$
\Delta_{0}=\sqrt{\frac{\tilde{\lambda}}{2 \pi} \log \left(\frac{2 \pi \Lambda^{2}}{\tilde{\lambda}}\right)}+\cdots, \tilde{\lambda}=\left(2 \pi \Delta_{0}^{2}\right) / \log \left(\Lambda^{2} / \Delta_{0}^{2}\right)
$$

Full formula involves Lambert's W-function.

d=2: large L phase transition

The double trace action was analyzed in [Semenoff-Zarembo, Basu-Ezhuthachan-Wadia], using the eigenvalue density

$$
\rho(\theta, x)=\frac{1}{N} \sum_{i=1}^{N} \delta\left(\theta-\theta_{i}(x)\right)
$$

The hamiltonian becomes (at large N)

$$
H=\int d \theta\left(\frac{1}{2} \rho v^{2}+\frac{\pi^{2}}{6} \rho^{3}-\xi\left|u_{1}\right|^{2}\right) .
$$

where $v=\partial_{\theta} \Pi$. The hamiltonian admits x-independent solutions

$$
\rho(\theta)=\frac{\sqrt{2}}{\pi}\left(\sqrt{E+2 \xi \rho_{1} \cos \theta}\right)
$$

The eigenvalue density can be uniform, non-uniform or gapped, for various ξ-values.

d=2: Landau-Ginzburg potential

Figure 1: Plot of $V\left(C_{1}\right)$ with C_{1} with $\xi=0.22, \xi=0.23, \xi=0.237, \xi=0.245$ and $\xi=0.25$. with value of ξ increasing from the top curve to the bottom.

Here C_{1} is roughly $<\operatorname{Tr} U>$ (in a static phase), and $V\left(C_{1}\right)$ can be regarded as an on-shell evaluation of the action S in the previous slide. There is a clear first order phase transition.

d=2: Stability and order of transition

Energy vs ξ for three types of eigenvalue distribution of the Wilson line $U . \xi$ is a monotonically increasing function of T. Note the 1st order transition at ξ_{1}.

d=2: phase diagram

Figure: Phases at small and large L . The second joining pattern is picked out by gravity calculations. This supports the 'cascade' found in lattice calculations.

Gravity correspondence: D2 branes

- To get a gravity dual of $d=2$ bosonic YM, start with D2 branes $=3 d \mathrm{SYM}$ on T^{3} with radii β, L_{1}, L_{2}.
- Consider AP b.c. for fermions along L_{2}. For small enough L_{2} the corresponding KK modes and all fermions decouple \Rightarrow $d=2$ YM.
- However, for very small L_{2}, the gravity analysis is not reliable; hence L_{2} cannot be taken too small, \Rightarrow fermions persist.
- Phase diagram depends on fermion boundary conditions along β, L_{1} : (P,P), (AP, P), (P, AP), (AP,AP).
- Gravity solutions (phases) include D0, D1 and D2 branes (smeared/ localized) and AdS solitons which are double Wick rotations of these.

Brane free energies

$D p_{L_{0},\left(L_{1}, L_{2}, \ldots, L_{p}\right)}$ denotes a Dp brane wrapped on a contractible cycle of length L_{0} (cf. cigar), and non-contractible L_{1}, \ldots, L_{p}.

$$
\Rightarrow\left\langle\operatorname{Tr} U_{0}\right\rangle \neq 0,\left\langle\operatorname{Tr} U_{1}\right\rangle=\left\langle\operatorname{Tr} U_{2}\right\rangle=\ldots=0
$$

$$
\begin{align*}
& \left.d s^{2}=\alpha^{\prime}\left[F(u)\left(f(u) d t^{2}+\sum_{i=1}^{p} d x_{i} d x_{i}\right)\right)+\frac{d u^{2}}{F(u) f(u)}+G(u) d \Omega_{8-p}^{2}\right] \\
& F(u)=\frac{u^{(7-p) / 2}}{\sqrt{d_{p} \lambda_{p+1}}}, \quad G(u)=\sqrt{d_{p} \lambda_{p+1}} u^{(3-p) / 2}, \quad f(u)=1-\left(\frac{u_{0}}{u}\right)^{7-p} \\
& \lambda_{p+1}=g_{p+1}^{2} N \tag{4}
\end{align*}
$$

$$
\begin{align*}
& S / N^{2}=C_{p} \lambda_{p+1}^{\frac{p-3}{5-p}} L_{1} \cdots L_{p} \beta\left(-\beta^{-\frac{2(7-p)}{5-p}}+H\left(U_{\mathrm{reg}}\right)\right) \\
& H\left(U_{\mathrm{reg}}\right)=\left(\frac{2 a_{p}}{\sqrt{\lambda_{p+1}}}\right)^{2(7-p) /(5-p)} \quad U_{\mathrm{reg}}^{7-p} \tag{5}
\end{align*}
$$

D2: (, AP)

Figure: D2 brane on T^{3} with (P,P,AP) boundary condition. Gravity description reliable above dotted lines.

d=2: Combining gauge theory \& gravity-extrapolated

[cf. Takeshi's talk yesterday on ${ }^{L_{\delta}}$ Deconfinement in 4D YM]

New results from lattice [in collaboration with R. Narayanan]

d=2: Dynamical transitions

- We derived the large L effective action above. By flipping $t \leftrightarrow x_{1}$, we get the following effective action at large β (low temperature)

$$
S(A) / D N^{2}=\int_{0}^{\infty} d t\left(\frac{1}{2 N} \operatorname{Tr}\left(\left|\partial_{t} V\right|^{2}\right)+\sqrt{\frac{\triangle_{0}}{2 \pi \tilde{\lambda}^{2} L^{3}}} e^{-\triangle_{0} L}\left|\frac{1}{N} \operatorname{Tr} V\right|^{2}\right)
$$

where $V(t)=P \exp \left[i \int A_{1}(x, t) d x\right]$.

- The static solutions, as mentioned before, are given by uniform, non-uniform and gapped eigenvalue distributions. The stability of these depends on the value of L.
- By using the above action, we can consider dynamical transitions between these phases, which would include gauge theory duals of dynamical Gregory-Laflamme transitions.

Gapless \rightarrow gapped

Figure: The figure on the left shows a slightly perturbed gapless distribution at $t=0$. The figure in the middle shows a nearly gapped distribution ($\mathrm{t}=8000$). The figure on the extreme right depicts $\rho_{1}(t)$ as it changes from 0 at $t=0$ to 0.55 at $t=8000$

Gapless \rightarrow gapped: density plot

Figure: Coordinate space fermion distribution corresponding to the central figure of Fig 3. The 'waist' does not vanish at very large times. cf. Horowitz-Maeda conjecture: 'no naked singularity'.

Gapped \rightarrow gapless

Figure: The figure on the left shows a slightly perturbed gapped distribution at $t=0$. The value of ξ is 0.23 . The figure in the middle shows a gapless distribution at $t=10000$. The figure on the extreme right depicts $\rho_{1}(t)$ as it changes from 0.5 at $t=0$ to 0 at $t=8000$

Open problems and work in progress

- Fermions [work in progress with Hiroshi Isono]. Schematically,

$$
\begin{aligned}
& \psi^{2} Y+Y^{4}=B Y^{2}+B^{2}+\psi^{2} Y \\
& =B\left(Y+1 /(2 B) \psi^{2}\right)^{2}-\psi^{4} /(4 B)=B(\tilde{Y})^{2}-F^{2} /(4 B)+\psi^{2} F \\
\Rightarrow & \text { SSB of } \operatorname{SO}(\mathrm{D}) . \text { Large D vs SUSY. }
\end{aligned}
$$

- Higher dimensions $(d \geq 3)$. In addition to $\log \left(D_{\mu}^{2}+B\right)$, the kinetic term $F_{\mu \nu}^{2}$ plays an important role. Makes analysis difficult.
- Dynamical transitions: end-point of GL, equilibration, time arrow [with Basu, Morita, Wadia; lizuka, Morita]
- Large D as a new classical limit: $\left\langle\operatorname{Tr} Y^{\prime} Y^{\prime}\right\rangle /(N D) \sim \Delta_{0}^{2}$. In fact, $\Psi\left(Y^{2}\right)$ turns out to be (under certain circumstances) $\sim \delta\left(Y^{2}-Y_{0}^{2}\right)$. Appearance of size (horizon?). Need to compute Wilson line in the bulk to compute the location of horizon.
- Saddle point configuration corresponds to black objects, with entropy $O\left(N^{2}\right)$. How does this appear in the Y^{\prime} quantum mechanics? Splitting of the $O\left(N^{2}\right)$ level....

$$
\begin{array}{cc}
\text { small } T^{D} \times \text { small } S^{1} & \text { 2nd }+3 \mathrm{rd} \\
\text { small } T^{D} \times \text { large } S^{1} & \text { 1st } \\
\text { small } S^{2} & \text { 2nd }+3 \mathrm{rd} \\
\text { small } S^{3} & \text { 1st }
\end{array}
$$

Table: Confinement/deconfinement type transitions in lower dimensional pure Yang-Mills theories on $S_{\beta}^{1} \times \mathcal{M}$. Here "small $S^{1 "}$ and "small $T^{D \text { " refer to sizes small enough to ensure (a) that the } Z_{N}}$ symmetries in the S^{1} and T^{D} directions, respectively, are broken, and (b) that all the KK modes can be integrated out. "Large S^{1} " ensures that the Z_{N} is not broken.

Glueball

Bhanot, Daley and Klebanov:
$d=2, D=1$
$\operatorname{Tr}\left(Y\left(k_{1}\right) Y\left(k_{2}\right) \ldots Y\left(k_{r}\right)\right)$ Hagedorn spectrum of glueballs

S.H. Oscillation of the condensate

