Gautam Mandal

6th Regional Meeting in String Theory, Milos, June 21, 2011

with T. Morita (arXiv:1103.1558) with M. Mahato and T. Morita (arXiv:0910.4526) with T. Morita (arXiv:1107.xxxx) with R. Narayanan; P. Basu, T. Morita, S.R. Wadia; N. Iizuka; H. Isono (in progress)

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
00000000000	00	0000000	০০০০০০০০০০০০০০০	0000	
Other works					

- T. Morita (2010)
- K. Hashimoto and T. Morita (2011)
- O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, M. Van Raamsdonk and T. Wiseman (2005)
- R. Narayanan and H. Neuberger (2003-2007)
- M. Unsal and L. G. Yaffe (2010)

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
•oooooooooooo	00	0000000	০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	0000	
Motivation					

• Confinement/deconfinement transitions in large *N* gauge theories have been generally studied using lattice methods and holography.

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
•oooooooooooo	00	0000000	০০০০০০০০০০০০০০০	0000	000
Motivation					

 Confinement/deconfinement transitions in large N gauge theories have been generally studied using lattice methods and holography.

- In special situations, perturbative analytic calculations exist. YM on $S^1 \times S^3$:
 - Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk (2003)
 - YM on $S^1 \times S^2$: Papadodimas, Shieh, van Raamsdonk (2006)

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
•oooooooooooo	00	0000000	০০০০০০০০০০০০০০০	0000	000
Motivation					

• Confinement/deconfinement transitions in large *N* gauge theories have been generally studied using lattice methods and holography.

- Generation of a mass gap in pure YM theory calls for a non-perturbative treatment.

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
●oooooooooooo	00	0000000	০০০০০০০০০০০০০০০	0000	
Motivation					

• Confinement/deconfinement transitions in large *N* gauge theories have been generally studied using lattice methods and holography.

• Generation of a mass gap in pure YM theory calls for a non-perturbative treatment.

• In four-fermi theories, e.g. Gross-Neveu model, can prove

 $(\bar{\psi}_i\psi_i)^2 \rightarrow \bar{\psi}_i\psi_i\langle\bar{\psi}_i\psi_i\rangle$

The condensate (at large N_f) satisfies a gap equation, like in BCS theory, and characterizes a nonperturtative vacuum with dynamical mass generation, symmetry breaking and asymptotic freedom.

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
000000000000	00	0000000	০০০০০০০০০০০০০০	0000	

• Can we find such a phenomenon in gauge theories?

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
o●ooooooooooo	00	0000000	০০০০০০০০০০০০০০	0000	

- Can we find such a phenomenon in gauge theories?
- Yes, we can. For YM compactified on T^D (with large D)

$$Tr[A_i, A_j]^2
ightarrow AA \langle AA
angle$$

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
o●ooooooooo	00	0000000	০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	0000	

- Can we find such a phenomenon in gauge theories?
- Yes, we can. For YM compactified on T^D (with large D)

$$Tr[A_i, A_j]^2
ightarrow AA \langle AA
angle$$

• Why study YM on tori?

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
00000000000	00	0000000	০০০০০০০০০০০০০০০	0000	

- Can we find such a phenomenon in gauge theories?
- Yes, we can. For YM compactified on T^D (with large D)

$$Tr[A_i, A_j]^2 \rightarrow AA \langle AA \rangle$$

• Why study YM on tori?

• Euclidean YM on S¹ of length β corresponds to thermal YM (at temperature $1/\beta$). Low temperature: temporal Wilson loop $W_0 = 0$ (unbroken Z_N symmetry \rightarrow confinement); high temperature $W_0 \neq 0$ (brone Z_N symmetry \rightarrow deconfinement). Deconfinement: $Z_N \rightarrow 1$.

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
00000000000	00	0000000	0000000000000	0000	000

- Can we find such a phenomenon in gauge theories?
- Yes, we can. For YM compactified on T^D (with large D)

$$Tr[A_i, A_j]^2
ightarrow AA \langle AA
angle$$

• Why study YM on tori?

• Euclidean YM on S¹ of length β corresponds to thermal YM (at temperature $1/\beta$). Low temperature: temporal Wilson loop $W_0 = 0$ (unbroken Z_N symmetry \rightarrow confinement); high temperature $W_0 \neq 0$ (brone Z_N symmetry \rightarrow deconfinement). Deconfinement: $Z_N \rightarrow 1$.

• YM on T^D have been studied holographically (Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk, Wiseman (2005)) and in the lattice (Narayanan, Neuberger et al, 2003-2011). Exotic phase structure: e.g. for YM₄ on T^4 , with $L_0 = \beta > L_1 > L_2 > L_3$, the phase structure is found to be

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
00000000000	00	0000000	০০০০০০০০০০০০০০	0000	
	radii small L ₃	Symmetry Z_N^4 Z_N^3 Z_N^2 Z_N 1	Non-zero Wilso None W_3 W_2W_3 W_1, W_2, W_3 W_0, W_1, W_2, W_3	on loops	Name of phase 0_c 1_c 2_c 3_c 4_c

None Z_N^4 None 0_c L_3 Z_N^3 W_3 1_c	Introduction 000000000000000000000000000000000000	d=0 00	d=1 0000000	d=2 and D2 ০০০০০০০০০০০০০০০	Dynamics 0000	Conclusions
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Whic None <i>L</i> ₃ <i>L</i> ₂ , <i>L</i> ₃ <i>L</i> ₁ , <i>L</i> ₂	h radii small	Symmetry Z_N^4 Z_N^3 Z_N^2	Non-zero Wilso None W_3 W_2W_3 W_1, W_2, W_3	on loops	Name of phase 0 _c 1 _c 2 _c 3 _c

Introduction	d=0 00	d=1 0000000	d=2 and D2 ೦೦೦೦೦೦೦೦೦೦೦೦	Dynamics 0000	Conclusions
Which r None L_3 L_2, L_3	radii small	Symmetry Z_N^4 Z_N^3 Z_N^2	Non-zero Wilson None W ₃ W ₂ W ₃	loops	Name of phase 0 _c 1 _c 2 _c
L_{1}^{2}, L_{3}^{3} $L_{1}, L_{2}, L_{1}^{3}, L_{2}, L_{1}, L_{2}^{3}$		Z_N Z_N 1	W_1, W_2, W_3 W_0, W_1, W_2, W_3		2 _c 3 _c 4 _c

• In the 0_c phase, physics is independent of all radii (large *N* volume independence Eguchi, Kawai 1982); in the 1_c phase, physics depends on L_3 but is independent of the rest, etc.

Introduction 000000000000000000000000000000000000	d=0 00	d=1 0000000	d=2 and D2 ೦೦೦೦೦೦೦೦೦೦೦೦	Dynamics 0000	Conclusions
		•			
	radii small	Symmetry	Non-zero Wilso	n loops	Name of phase
None		Z_N^4	None		0 _c
L ₃		Z_N^3	W ₃		1 _c
L_2, L_3		Z_N^2	$W_2 W_3$		2 _c
$L_1, L_2,$	L ₃	Z_N	W_1, W_2, W_3		3 _c
$L_0, L_1,$	L_2, L_3	1	W_0, W_1, W_2, W_3	1	4 _c

• In the 0_c phase, physics is independent of all radii (large *N* volume independence Eguchi, Kawai 1982); in the 1_c phase, physics depends on L_3 but is independent of the rest, etc.

• 'Cascade': there is no phase boundary across which two Wilson lines acquire non-zero values simultaneously.

Introduction 000000000000000000000000000000000000	d=0 00	d=1 0000000	d=2 and D2 0000000000000	Dynamics 0000	Conclusions
Which	n radii small	Symmetry	Non-zero Wilso	n loops	Name of phase
None		Z_N^4	None		0 _c
L ₃		Z_N^3	W_3		1 _c
L_2, L_3		Z_N^2	$W_2 W_3$		2 _c
L_1, L_2	, L ₃	Z_N	W_1, W_2, W_3		3 _c
L_0, L_1	$, L_2, L_3$	1	W_0, W_1, W_2, W_3	1	4 _c

• In the 0_c phase, physics is independent of all radii (large *N* volume independence Eguchi, Kawai 1982); in the 1_c phase, physics depends on L_3 but is independent of the rest, etc.

• 'Cascade': there is no phase boundary across which two Wilson lines acquire non-zero values simultaneously.

• We will be able to compute a number of these phase boundaries analytically and verify the above properties.

Introduction	
00000000000	

d=0

d=1

Dynamics

Conclusions

Large N QCD in four dimensions

View from the lattice

Introduction	d=0	d=1	d=2 and D2
00000000000			

Large N QCD in four dimensions

View from the lattice

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
00000000000	00	0000000	০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	0000	
Gravity motiv	ations				

Gravity

• Phase transitions in gauge theory correspond to interesting phase transitions in gravity (Hawking-Page, Gregory-Laflamme, Scherk-Schwarz,...).

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
000000000000	00	0000000	0000000000000	0000	
Gravity moti	vations				

Gravity

• Phase transitions in gauge theory correspond to interesting phase transitions in gravity (Hawking-Page, Gregory-Laflamme, Scherk-Schwarz,...).

• Studying the holographic duals of gauge theories on T^D leads to new proposals for strong-coupling continuations of the deconfiment transition. [cf. Takeshi's talk yesterday on Deconfinement in 4D YM].

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
000000000000	00	0000000	0000000000000	0000	
Gravity moti	vations				

Gravity

• Phase transitions in gauge theory correspond to interesting phase transitions in gravity (Hawking-Page, Gregory-Laflamme, Scherk-Schwarz,...).

• Studying the holographic duals of gauge theories on T^D leads to new proposals for strong-coupling continuations of the deconfiment transition. [cf. Takeshi's talk yesterday on Deconfinement in 4D YM].

• The end-point of a dynamical Gregory-Laflamme transition is interesting to study (especially from the viewpoint of the appearance of a naked singularity). We will study the dynamical transition in the gauge theory. Basu-Mandal-Morita-Wadia (in progress).

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
0000000000000	00	0000000	০০০০০০০০০০০০০০০	0000	000
Plan					

- The Technique: (d + D) dimensional YM on T^D (large D)
- d=0 (Bosonic IKKT)
- d=1 (← SS reduction of D1)
- d=2 (← SS reduction of D2)
- Dynamical Gregory Laflamme in gauge theory
- Conclusions and open problems

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
0000000000000	00	0000000	0000000000000	0000	000
The large D	technique				

• Consider a d + D dimensional bosonic YM theory on a small T^D

$$S = \frac{1}{4} \int d^{d} x Tr \left(F_{\mu\nu}^{2} + \frac{1}{2} \sum_{l=1}^{D} D_{\mu} Y^{l} D^{\mu} Y^{l} - g^{2} \sum_{l,J} \frac{1}{4} [Y^{l}, Y^{J}]^{2} \right)$$

Can we treat the Y^4 term in a fashion similar to 4-fermi terms as in Gross-Neveu or NJL models?

Hotta-Nishimura-Tsuchiya 1999, Mahato-Mandal-Morita 2009

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
00000000000000	00	0000000	০০০০০০০০০০০০০০০	0000	
Large N ₄					

Recall Gross-Neveu model:

$$\mathsf{S} = \int \mathsf{d}^2 x \left(ar{\psi}_i \partial_\mu \gamma^\mu \psi_i - \mathbf{g} (ar{\psi}_i \psi_i)^2
ight)$$

The technique to solve Gross-Neveu model is to introduce an auxiliary dynamical field ϕ , $g(\bar{\psi}_i\psi_i)^2 = \phi\bar{\psi}_i\psi_i - \phi^2/(4g)$ and integrate out the fermions to get

 $S_{ ext{eff}}[\phi] = N_f \log ext{Det}(\gamma^\mu \partial_\mu + 2\phi) + \phi^2/(4g)$

In the large N_f limit, $N_f g = \lambda$ fixed, the 1-loop term competes with the tree level term. Hence, a non-trivial value of the flavour-singlet condensate

$$<\phi>=rac{2\lambda}{N_{f}}
eq0=\Lambda\exp[-lpha/(gN_{f})]$$

appears at the new saddle point. [BCS, χ SB, ...]

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
oooooooooooooooo	00	0000000	০০০০০০০০০০০০০০০	0000	
Back to YM					

• Can we write $Y^4 = -B^2/4 + BY^2$ etc. to get a non-trivial vacuum with $\langle Y^2 \rangle \neq 0$? What could a 'singlet' Y^2 be? It can't be of the form Tr[Y, Y] which trivially vanishes. It can be $Tr(Y^IY^J)$, but we can't write $Tr([Y_I, Y_J]^2) = B_{IJ}Tr[Y^IY^J] - B_{IJ}^2/4$ (single trace \neq double trace).

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
○○○○○○○○○●○	00	0000000	00000000000000	0000	
Back to YM					

• Can we write $Y^4 = -B^2/4 + BY^2$ etc. to get a non-trivial vacuum with $\langle Y^2 \rangle \neq 0$? What could a 'singlet' Y^2 be? It can't be of the form Tr[Y, Y] which trivially vanishes. It can be $Tr(Y^IY^J)$, but we can't write $Tr([Y_I, Y_J]^2) = B_{IJ}Tr[Y^IY^J] - B_{IJ}^2/4$ (single trace \neq double trace).

• Turns out that by considering gauge-non-invariant, but SO(D)-invariant auxiliary fields, we CAN write

$$Tr[Y_I, Y_J]^2 \equiv -Y_a^I Y_b^J M_{ab,cd} Y_c^J Y_d^J = B_{ab} M_{ab;cd}^{-1} B_{cd} - 2i B_{ab} Y_a^I Y_b^J$$

where we have written $Y' = Y'_a \lambda_a$, and

$$M_{ab,cd} = -\frac{1}{4} \Big\{ Tr[\lambda_a, \lambda_c][\lambda_b, \lambda_d] + (a \leftrightarrow b) + (c \leftrightarrow d) + (a \leftrightarrow b, c \leftrightarrow d) \Big\}$$

Now Y is only quadratic; integrating over Y, we get

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
00000000000	00	0000000	0000000000000	0000	000

Large D saddle point

$$Z = \int DA_{\mu}DB_{ab} \exp[-S_{eff}[A, B], S_{eff}[A, B] =$$

=
$$\int d^{d}x \left[\frac{1}{4g^{2}} \left(F_{\mu\nu}^{2} + B_{ab}M_{ab;cd}^{-1}B_{cd}\right)\right] + (D/2) \log \operatorname{Det}(-D_{\mu}^{2}\delta_{ab} + iB_{ab})$$

The idea now is to take a 'tHooft-like limit $D \to \infty$, $g^2 \to 0$ with $g^2 D = (\hat{g})^2$ held fixed. The determinant term will now compete with the tree level term, leading to a new large *D* saddle point for $\langle B_{ab} \rangle = iM_{ab,cd} \langle Y_c^{\prime} Y_c^{\prime} \rangle$ Note complex contour.

• In the examples we consider below, we will obtain saddle point values of the form $\langle B_{ab} \rangle = i\Delta^2 \delta_{ab}$, which will imply dynamical generation of a condensate of the form

$$(1/D) < Y'_a Y'_b >= \Delta^2 \delta_{ab}$$

or, equivalently a mass gap $M_Y = \Delta$ (cf. the BY^2 term). In the large *D* saddle point, the field B_{ab} can be treated as classical, leading to a large *D* evaluation of $S_{eff}[A]$.

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
000000000000	●○	0000000	0000000000000	0000	
d=0					

Yang-Mills integrals (cf. Bosonic IKKT model)

$$Z = \int dY' \exp[-\frac{1}{4g^2} Tr \sum_{l,J} [Y', Y^J]^2]$$

= $\int DY'_a DB_{ab} \exp[\frac{1}{4g^2} B_{ab} M^{-1}_{ab,cd} B_{cd} - \frac{i}{2g^2} B_{ab} Y'_a Y'_b]$
= $\int DB_{ab} e^{-S}, S = \frac{1}{4g^2} B_{ab} M^{-1}_{ab,cd} B_{cd} + D/2 \text{logdet}[B_{ab}]$ (1)

This can be computed at finite *N*, in a large *D* expansion! The leading term comes from the trace part $B_{ab} = B_0 \delta_{ab}$:

$$\mathcal{S} = \frac{NB_0^2}{8\hat{g}^2} + \frac{(N^2 - 1)}{4}\log\left(-\frac{B_0^2}{\hat{g}^2N}\right)$$

where $(\hat{g})^2 = g^2 D$. At large *N*,

$${\cal F} = -rac{\log Z}{DN^2} = -rac{1}{4} + rac{\log 2}{4} + rac{1}{D}\left(-rac{5}{8} + rac{1}{2}\lograc{3}{2}
ight) + O\left(rac{1}{D^2}
ight).$$

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
	0•				

d=0: comparison with numerics

The circles represent numerical values of $1/(DN) < trY^{1}Y^{1} > /(\hat{g}/\sqrt{2})$ (extrapolated to $N = \infty$), while the dotted line represents the 1/D result discussed above. [The analytic result was also independently obtained by Hotta-Nishimura-Tsuchiya].

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
000000000000	00	●000000	00000000000000	0000	000
d=1					

This is the first non-trivial dimension involving a gauge field A_{μ} . Consider the size of the Euclidean dimension to be finite, β .

$$Z = \int DA_0 DY' e^{-S},$$

$$S = \int_0^\beta dt \, Tr \left(\sum_{l=1}^D \frac{1}{2} \left(D_0 Y' \right)^2 - \sum_{l,J} \frac{g^2}{4} [Y', Y^J] [Y', Y^J] \right). \quad (2)$$

Step 1: Wilson loop:

For finite β , can't gauge away A_0 ; fix gauge $\partial_t A_0 = 0$ [Aharony et al]

$$\Delta_{FP} = \exp[-S_{FP}], S_{FP} = N^2 \sum_{n=1}^{\infty} |u_n|^2/n$$

where $u_n = (1/N) Tr U^n$, $U = P \exp[i \oint dt A_0]$. Thus, A_0 reduces only to the Wilson loop (Polyakov loop).

 $u_1 = 0$: centre symmetry unbroken ("confined" phase); $u_1 \neq 0$: centre symmetry broken ("deconfined" phase).

Step 2: Integrate out Y':

We show results only for the dominant mode $B_{ab}(t) = i\Delta^2 \delta_{ab}$

$$\frac{D}{2}\log\left(\det\left(-D_0^2+\triangle^2\right)\right)=\frac{DN^2\beta\triangle}{2}-D\sum_{n=1}^{\infty}\frac{x^n}{n}|u_n|^2.$$

Combining with the classical B^2 term, and Δ_{FP} we get

$$\frac{\mathcal{S}(\triangle, \{u_n\})}{DN^2} = -\frac{\beta \triangle^4}{8\tilde{\lambda}} + \frac{\beta \triangle}{2} + \sum_{n=1}^{\infty} \left(\frac{1/D - x^n}{n}\right) |u_n|^2.$$

where $\tilde{\lambda} = \lambda D = g^2 ND$ is the large D 'tHooft coupling.

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
000000000000	00	००●००००	০০০০০০০০০০০০০০০	0000	000
d=1: Large I	D saddle	point			

Step 3: Evaluate Δ at the saddle point

$$\bigtriangleup_0(\{u_n\}) = \tilde{\lambda}^{1/3} \left(1 + \frac{2}{3}\sum_{n=1}^{\infty} \bar{x}^n |u_n|^2\right) + \cdots,$$

where $\bar{x} = \exp[-\beta \tilde{\lambda}^{1/3}]$. Step 4: Put this back in $S[\Delta, \{u_n\}]$:

$$\frac{\mathcal{S}(\{u_n\})}{DN^2} = \frac{3}{8}\beta\tilde{\lambda}^{1/3} + a_1|u_1|^2 + b_1|u_1|^4 + \sum_{n=2}^{\infty} a_n|u_n|^2 + \cdots,$$
$$a_n = \frac{1}{n}\left(1/D - \bar{x}^n\right),$$
$$b_1 = \frac{1}{3}\beta\tilde{\lambda}^{1/3}\bar{x}^2,$$
(3)

where the \cdots involve other u_n^4 terms for n > 1, which are down at large D. $u_1 = (1/N) \text{Tr} U$.

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
000000000000	00	○○○●○○○	0000000000000	0000	
d-1. Landau	ı Cinzh				

 $u_1 = \text{Tr}U/N$. As *T* crosses T_{c1} , u_1 becomes tachyonic and there is a second order phase transition which signals an onset of non-uniformity in the eigenvalue distribution $\rho(\alpha)$. At $T = T_{c2}$, characterized by a potential minimum at $|u_1| = 1/2$, a gap develops in the eigenvalue distribution, signalling a GWW transition.

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
000000000000	00	0000000	0000000000000	0000	000

d=1: phase diagram

$\begin{array}{c c} \rho & \rho \\ \hline \\ \theta \\ \hline \\ uniform \\ T_{c1} \\ T_{c2} \\ \hline \\ 2nd \ order \\ \hline \\ 3rd \ order \ (GWW) \end{array}$	
T_{c1} T_{c2} R^2 F_0	_
Numerical result 0.8761 0.905 2.291 6.695	-
Leading large- <i>D</i> result 0.947 0.964 2.16 7.02	
Large-D including 1/D effect 0.895 0.917 2.28 6.72	

2nd and 3rd rows are our results, with D = 9 (10-dimensional YM theory compactified to d=1). Numerical results are from Nishimura and Kawahara. The agreement between the 3rd row and the 1st row are within 1% (which is $1/D^2$).

Works even for D = 2!

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
000000000000	00	○○○○○●○	০০০০০০০০০০০০০০০	0000	

Morita 2010

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
		000000			

Gravity correspondence: D1 branes

2d Euclidean SYM on $S_{\beta_2}^1 \times S_L^1$ with (AP, P) spin structure for fermions \leftrightarrow black string wrapped along $S_{\beta_2}^1$ at temperature β (D1 at large *L*, smeared D0 at small *L*).

As the box size increases beyond horizon size, D0 branes clump, leading to a Gregory-Laflamme transition. [figure] The weak coupling version are the clumping of eigenvalues of U.

 $\lambda' = \lambda_2 L^2, t' = L/\beta. \ \lambda' < t'^3$ described by 1D YM since temporal KK modes (and fermions) are massive. Phase transitions: $\lambda' t' = 1/T_{c1}^3, 1/T_{c2}^3$.

Consider d = 2 Euclidean YM theory with *D* ajoint scalars, compactified on a 2-torus T^2 .

$$S = \int_{0}^{\beta} dt \int_{0}^{L} dx \, Tr \left(\frac{1}{2g^{2}} F_{01}^{2} + \sum_{l=1}^{D} \frac{1}{2} \left(D_{\mu} Y^{l} \right)^{2} - \sum_{l,J} \frac{g^{2}}{4} [Y^{l}, Y^{J}] [Y^{l}, Y^{J}] \right)$$

We now have two Wilson lines $U = P \exp[i \oint^{\beta} A]$ and $V = P \exp[i \oint^{L} A]$ along the two cycles. There are now possibly 4 or more phases, corresponding to whether *TrU*, *TrV* are zero or non-zero and whether a non-zero Wilson line can exist in 2 distinct phases (non-uniform vs gapped eigenvalue distribution).

• For small enough *L*, the problem reduces to d = 1, with A_1 turning into an extra *Y*, which we have solved above.

• Large *N* volume independence vs KK reduction. In the centre symmetric phase (Tr *V*=0: uniform eigenvalues), KK reduction does not work in the usual fashion since new soft modes, with mass $\sim 1/(NL)$, appear. However, for small enough *L*, eigenvalues of A_1 are clumped near 0 (this is consistent with eigenvalues of A_0 getting more and more clumped at low enough β) hence centre symmetry along *L* is broken (Tr $V \neq 0$). Hence KK reduction works along *L* and the problem simplifies to the d = 1 model.

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
000000000000	00	0000000	oo●oooooooooo	0000	
d=2: large L					

Need to evaluate the 1-loop effective action

$${
m S}^{(1)}({
m extsf{A}}_{\mu},\Delta)=rac{D}{2}\log\detig(-D_{\mu}^2+ riangle^2ig)$$

where $B_{ab}(x,t) = i\Delta^2 \delta_{ab}$ is, as usual, the dominant mode at large D. Under the assumptions $L\Delta \gg 1, \Delta \gg \sqrt{\tilde{\lambda}}$, it turns out that the Wilson line V decouples from the dynamics, yielding (semenoff-Tirkonnen-Zarembo 1996, Basu-Ezhutachan-Wadia 2005)

$$S/DN^2 = \int_{-\infty}^{\infty} dx \left[\frac{1}{2N} Tr \left(|\partial_x U|^2 \right) - \frac{\xi}{N^2} |Tr U|^2 \right]$$

where $\xi = \sqrt{\frac{\Delta_0}{2\pi\lambda^2\beta^3}} e^{-\Delta_0\beta}$ and Δ_0 is an analog of Λ_{QCD} (Asymptotic freedom, dynamical mass generation)

$$riangle_0 = \sqrt{rac{ ilde{\lambda}}{2\pi} \log\left(rac{2\pi\Lambda^2}{ ilde{\lambda}}
ight) + \cdots} \ , \ ilde{\lambda} = (2\pi\Delta_0^2)/\log(\Lambda^2/\Delta_0^2)$$

Full formula involves Lambert's W-function.

The double trace action was analyzed in [Semenoff-Zarembo, Basu-Ezhuthachan-Wadia], using the eigenvalue density

$$\rho(\theta, \mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \delta(\theta - \theta_i(\mathbf{x}))$$

The hamiltonian becomes (at large N)

$$H = \int d\theta \left(\frac{1}{2} \rho v^2 + \frac{\pi^2}{6} \rho^3 - \xi |u_1|^2 \right).$$

where $v = \partial_{\theta} \Pi$. The hamiltonian admits *x*-independent solutions

$$\rho(\theta) = rac{\sqrt{2}}{\pi} \left(\sqrt{E + 2\xi
ho_1 \cos \theta}
ight)$$

The eigenvalue density can be uniform, non-uniform or gapped, for various ξ -values.

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
000000000000	00	0000000	○○○○○●○○○○○○○	0000	

d=2: Landau-Ginzburg potential

Figure 1: Plot of $V(C_1)$ with $\xi = 0.22$, $\xi = 0.23$, $\xi = 0.237$, $\xi = 0.245$ and $\xi = 0.25$, with value of ξ increasing from the top curve to the bottom.

Here C_1 is roughly < TrU > (in a static phase), and $V(C_1)$ can be regarded as an on-shell evaluation of the action S in the previous slide. There is a clear first order phase transition.

Introduction 000000000000	d=0 00	d=1 0000000	d=2 and D2 ○○○○○○●○○○○○○	Dynamics 0000	Conclusions				
d=2: Stability and order of transition									

Energy vs ξ for three types of eigenvalue distribution of the Wilson line *U*. ξ is a monotonically increasing function of *T*. Note the 1st order transition at ξ_1 .

Introduction	d=0 00	d=1 0000000	d=2 and D2 ০০০০০০০●০০০০০	Dynamics 0000	Conclusions

d=2: phase diagram

Figure: Phases at small and large L. The second joining pattern is picked out by gravity calculations. This supports the 'cascade' found in lattice calculations.

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
000000000000	00	0000000	○○○○○○○●○○○○	0000	
Gravity corr	espond	lence: D2 bra	nes		

- To get a gravity dual of d = 2 bosonic YM, start with D2 branes= 3d SYM on T^3 with radii β , L_1 , L_2 .
- Consider AP b.c. for fermions along L_2 . For small enough L_2 the corresponding KK modes and all fermions decouple \Rightarrow d = 2 YM.
- However, for very small L_2 , the gravity analysis is not reliable; hence L_2 cannot be taken too small, \Rightarrow fermions persist.
- Phase diagram depends on fermion boundary conditions along β , L_1 : (P,P), (AP, P), (P, AP), (AP,AP).

• Gravity solutions (phases) include D0, D1 and D2 branes (smeared/ localized) and AdS solitons which are double Wick rotations of these.

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
000000000000	00	0000000	○○○○○○○○○○○○○	0000	
Brane free e	nergies				

 $Dp_{L_0,(L_1,L_2,...,L_p)}$ denotes a Dp brane wrapped on a contractible cycle of length L_0 (cf. cigar), and non-contractible $L_1,...,L_p$.

$$\Rightarrow \langle \textit{Tr}U_0 \rangle \neq 0, \langle \textit{Tr}U_1 \rangle = \langle \textit{Tr}U_2 \rangle = ... = 0$$

$$ds^{2} = \alpha' \left[F(u) \left(f(u) dt^{2} + \sum_{i=1}^{p} dx_{i} dx_{i} \right) \right) + \frac{du^{2}}{F(u) f(u)} + G(u) d\Omega_{8-p}^{2} \right]$$

$$F(u) = \frac{u^{(7-p)/2}}{\sqrt{d_{p}\lambda_{p+1}}}, \quad G(u) = \sqrt{d_{p}\lambda_{p+1}} u^{(3-p)/2}, \quad f(u) = 1 - \left(\frac{u_{0}}{u}\right)^{7-p}$$

$$\lambda_{p+1} = g_{p+1}^{2} N$$
(4)

$$S/N^{2} = C_{p}\lambda_{p+1}^{\frac{p-3}{5-p}}L_{1}\cdots L_{p}\beta\left(-\beta^{-\frac{2(7-p)}{5-p}} + H(U_{\text{reg}})\right),$$
$$H(U_{\text{reg}}) = \left(\frac{2a_{p}}{\sqrt{\lambda_{p+1}}}\right)^{2(7-p)/(5-p)}U_{\text{reg}}^{7-p}$$
(5)

Figure: *D*2 brane on T^3 with (P,P,AP) boundary condition. Gravity description reliable above dotted lines.

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
			0000000000000000		

d=2: Combining gauge theory & gravity-extrapolated

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
			00000000000000		

New results from lattice [in collaboration with R. Narayanan]

• We derived the large *L* effective action above. By flipping $t \leftrightarrow x_1$, we get the following effective action at large β (low temperature)

$$S(A)/DN^{2} = \int_{0}^{\infty} dt \left(\frac{1}{2N} \operatorname{Tr} \left(\left| \partial_{t} V \right|^{2} \right) + \sqrt{\frac{\Delta_{0}}{2\pi \tilde{\lambda}^{2} L^{3}}} e^{-\Delta_{0} L} \left| \frac{1}{N} \operatorname{Tr} V \right|^{2} \right)$$

where $V(t) = P \exp[i \int A_1(x, t) dx]$.

• The static solutions, as mentioned before, are given by uniform, non-uniform and gapped eigenvalue distributions. The stability of these depends on the value of L.

• By using the above action, we can consider dynamical transitions between these phases, which would include gauge theory duals of dynamical Gregory-Laflamme transitions.

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
000000000000	00	0000000	0000000000000	o●oo	
Gapless $ ightarrow$ g	apped				

Figure: The figure on the left shows a slightly perturbed gapless distribution at t = 0. The figure in the middle shows a nearly gapped distribution (t=8000). The figure on the extreme right depicts $\rho_1(t)$ as it changes from 0 at t = 0 to 0.55 at t = 8000

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
000000000000	00	0000000	0000000000000	○○●○	
		dama Maria Ita			

Gapless \rightarrow gapped: density plot

Figure: Coordinate space fermion distribution corresponding to the central figure of Fig 3. The 'waist' does not vanish at very large times. cf. Horowitz-Maeda conjecture: 'no naked singularity'.

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
000000000000	00	0000000	0000000000000	○○○●	
Gapped \rightarrow	gapless				

Figure: The figure on the left shows a slightly perturbed gapped distribution at t = 0. The value of ξ is 0.23. The figure in the middle shows a gapless distribution at t = 10000. The figure on the extreme right depicts $\rho_1(t)$ as it changes from 0.5 at t = 0 to 0 at t = 8000

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
000000000000	00	0000000	೦೦೦೦೦೦೦೦೦೦೦೦	0000	•oo
Open proble	me and	work in pro	aress		

• Fermions [work in progress with Hiroshi Isono]. Schematically,

$$\begin{split} \psi^2 \mathbf{Y} + \mathbf{Y}^4 &= B\mathbf{Y}^2 + B^2 + \psi^2 \mathbf{Y} \\ &= B(\mathbf{Y} + 1/(2B)\psi^2)^2 - \psi^4/(4B) = B(\tilde{\mathbf{Y}})^2 - F^2/(4B) + \psi^2 F \end{split}$$

 \Rightarrow SSB of SO(D). Large D vs SUSY.

- Higher dimensions (*d* ≥ 3). In addition to log(*D*²_μ + *B*), the kinetic term *F*²_{μν} plays an important role. Makes analysis difficult.
- Dynamical transitions: end-point of GL, equilibration, time arrow [with Basu, Morita, Wadia; lizuka, Morita]
- Large *D* as a new classical limit: $\langle TrY^{I}Y^{I}\rangle/(ND) \sim \Delta_{0}^{2}$. In fact, $\Psi(Y^{2})$ turns out to be (under certain circumstances) $\sim \delta(Y^{2} Y_{0}^{2})$. Appearance of size (horizon?). Need to compute Wilson line in the bulk to compute the location of horizon.
- Saddle point configuration corresponds to black objects, with entropy O(N²). How does this appear in the Y¹ quantum mechanics? Splitting of the O(N²) level....

Introduction 000000000000	d=0 d=1 00 000000	d=2 and D2 00000000000000	Dynamics 0000	Conclusions ○●○
	<i>M</i>	type of phase tr	ansition	
	small $T^{D} imes$ small S	¹ 2nd+3rd		
	small $T^{D} \times$ large S	1 1st	1st	
	small S ²	2nd+3rd		
	small S ³	1st		

Table: Confinement/deconfinement type transitions in lower dimensional pure Yang-Mills theories on $S^1_{\beta} \times \mathcal{M}$. Here "small S^1 " and "small T^D " refer to sizes small enough to ensure (a) that the Z_N symmetries in the S^1 and T^D directions, respectively, are broken, and (b) that all the KK modes can be integrated out. "Large S^1 " ensures that the Z_N is not broken.

Introduction	d=0	d=1	d=2 and D2	Dynamics	Conclusions
000000000000	00	0000000	০০০০০০০০০০০০০০০	0000	⊙⊙●
Glueball					

Bhanot, Daley and Klebanov: d = 2, D = 1

Tr $(Y(k_1)Y(k_2)...Y(k_r))$ Hagedorn spectrum of glueballs

S.H. Oscillation of the condensate