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Motivation: Semiclassical States in AdS/CFT

e Context: AdS/CFT correspondence between A/ = 4 SYM
and string theory on AdSs x S

e Interested in A/ = 4 SYM operators with large quantum
numbers, e.g. Tr(XJ1YJ2)

e E.g. large R-charge < large angular momentum along S°

e Semiclassical states on AdSs x S° play a significant role

e Their role is particularly crucial in the context of AdS/CFT
integrability (cubser, kiebanov, Polyakov 02]

e They are dual to long operators with a large number of
impurities

e Examples: Folded and circular spinning strings, giant
magnons, (cusped) Wilson loops...



Correlation functions in AdS/CFT

e Consider the set of all gauge invariant operators O, in
N =4 SYM (O € {Tr(XYXZX ---), Ti(D Xtpth---), -+ })
e Their two-point functions take the form:

oA 0
(O ()05 (v)) = X —ya
e Spectral problem: Determine A, for all O,

e This is now believed to be solved for practically all
operators in (planar) N’ = 4 SYM

e Integrability techniques (Bethe ansatz, Y-system...)
e Next step: Three-point functions!

(021 (x) 082 (y)02(2)) S

= ‘X _y ‘A1+A27A3 |X =3 |A1+A37A2 ‘y =7 ‘A2+A37A1

e Knowing all the Cj;x (as well as the A,) would amount to
solving the theory (in principle)



Two-point functions of semiclassical states

e In AdS/CFT, correlation functions of single-trace operators
are calculated using Witten diagrams

OAdS

e We would like a similar prescription for semiclassical states
e For two-point functions, this was discussed in [rsui‘os, Janik,

Surowka, Wereszczynski '10]

e Appropriate Wick rotations take a spinning string solution
to a configuration starting and ending at the boundary

Fcs OAdS
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Three-point functions of semiclassical states

e We would like to do something similar for three-point
functions

e However, that would seem to involve knowing the
geometric solution for a semiclassical string ending on the
boundary at three points

OAdS

e Some recent progress, but the general problem is still open

[Vicedo '11, Klose, McLoughlin '11]

e Expectation is that integrability will eventually give the
answer for C;jx while bypassing the precise solution



State of the art: Two heavy, one light

[Zarembo '10, Costa, Monteiro, Santos, Zoakos '10, Buchbinder/Tseytlin/Roiban/Russo '10]

e Take two of the states to be heavy (semiclassical) and one
to be light (dual to a supergravity mode)

OAdS

e Ignore backreaction of the light state on the heavy one
e The semiclassical trajectory is unchanged

e Integrate over the position of the insertion of the light state
on the heavy state worldvolume



Three-point function prescription

e Cyk is given by the following prescription: zarembo 10j

Woy)) o 2 i —sheavy[x]>
B = im | 52 (0 [ oxersmat)

o(y, €) is the supergravity mode dual to the single-trace
chiral primary O,
For a string, the action is:

A
Sheavy = % /dZU\mGMNaaXMaaXN

and couples to ¢ through Gun = gun + Yuns N = Vin @i
Several cases have been considered recently
Weak COUpIing side less deVElOpEd [Escobedo,Gromov,Sever,Vieira '10]



Back to the BPS sector

All this was for semiclassical obects which are far from
BPS

But can these techniques also provide new input in the
£-BPS sector?

Much better control on the gauge theory side (often exact
results exist)

Could hope to find exact matching between the two sides
of the duality

In this talk, we will look at correlation functions involving
operators in representations of order N

We will identify and attempt to compute the same
correlation functions holographically

First review some facts about the %-BPS sector



The trace basis

The simplest basis of %—BPS operators is made up
products of traces of a single A/ = 4 scalar

™Z?), (2?7 HT(z), ™2z~ (z?), ...

e Focus on single-trace chiral primaries: 07 = TrzZ’

e Dual to gravity modes in the dual theory
Two- and th I’ee-point functions [Lee et al. '98, D’'Hoker et al. '98, Kristjansen et al.
'02, Constable et al. '02]

(0°T%) = N’ (1 + O(1/N?)
<OJOK63+K> _ NJ+K71JK(J + K) (1 + O(l/NZ))
Structure constants
<OJOJ@J+K>
Cik ks = — — —
\/<OJOJ><OKOK><OJ+K OJ+K>

Z%m [1+0(1/N?)]




Operators of very large dimension

We are working in the planar limit N — oo

What happens when we consider trace operators whose
dimension J ~ N?

Relations appear between single and multitrace states
= J bounded!

The O’ cease to be orthogonal in this limit

The usual 1/N? counting for non-planar diagrams is upset
by huge combinatoric factors

Correlation functions of the @’ are not well-behaved

[Balasubramanian et al. ‘01, Dhar, Mandal, Smedbéack '05]

Does there exist a better %-BPS basis for J ~ N?



Schur polynomial operators

[Corley, Jevicki, Ramgoolam '01]

e Defined by a representation R, of the symmetric group Sy

1 iy e
YR, (Z) = o Z Xra(0)Z; ) 2 ™
oES,

e They can be expanded in a trace basis
e For the antisymmetric representation:

0% = %Tr(zz) + %Tr(Z)z

A 1 3 1 2 1 3
05 = §Tr(Z ) — ETr(Z )Tr(Z) + éTr(Z)
oh = —%Tr(z"') + %Tr(z?’)Tr(Z) + %Tr(zz)2

1 2 2 i 4
4Tr(Z )Tr(Z)” + 24Tr(Z)



Schurs vs. Multi-traces

e The Schurs are a better basis when A ~ N
[Corley, Jevicki, Ramgoolam '01, Dhar, Mandal, Smedbéck '05]
e Orthogonal for any value of N

(xr(Z)xs(Z)) =brs [T (N—i+])

ijeR

e Correlation functions fall with N
(xr(Z)xs(@)x7(2)) =9(R,S;T) [T (N—i+]j)
ijeT

(9(R,S,T) : Litlewood-Richardson coefficients)
e Two- and three-point functions: (here for antisymmetric)

k
CA@E@)) = [IN-i+1),
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AdS duals for the Schurs?

The description is simplest for the symmetric and
antisymmetric cases

Antisymmetric Schurs are nothing but determinant and
subdeterminant operators

Xc(2) = dety(Z)

For k ~ N, these have been argued to be dual to giant
graVitonS on 85 [Balasubramanian et al. '01]

Satisfy the stringy exclusion principle

Symmetric Schurs were shown to be dual to AdSs giant
graVitonS [Corley, Jevicki, Ramgoolam '01]



Giant Gravitons

[McGreevy, Susskind, Toumbas '00]

D3-branes wrapped around (trivial) cycles in AdSs or S°
and rotating along the S°

Stabilised by their angular momentum k

Their radius increases with k through Myers effect
As k — 0, they reduce to pointlike gravitons
Preserve % Supersymmetry (crisaru, Myers, Tafiord '00]

Have been argued to be good duals to Schur polynomials
fork ~ N

Since R < Rgs, we have a simple explanation of the stringy
exclusion principle



Our goal

Can we compute holographic correlation functions
involving Schur polynomials?

We are interested in the semiclassical limit, kK ~ N > 1

(Xk(Z)xk-1(Z2)x:1(2)) is beyond our reach. We would need
the full semiclassical geometry

Inspired by the progress in the semiclassical string context,
we can try to compute a correlation function of two Schurs
and one trace operator:

Xk (Z)xk—3(2)TrZ?)

On the dual gravity side, this should correspond to a giant
graviton emitting a light graviton



Gauge theory side
e We want the structure constant (here for symmetric):
(i (2)xid_y(2)TZ?)
VORI @N G, @0, @)TMZTzY)

S _
Ck,k—J,J =

e We can simply use that:

TZ? = xr,(00)xr,(Z)
R;

(og the cyclic permutation) to find

k
0R@xR@)TZ?) = JIIN-1+)),
j=1

(@)X (2)TeZY) = (—1)J’1H(N—i+1)



Gauge theory result

e Normalise by dividing by the relevant norms
e We are interested in the limit

N,k — oo with %finite, J<k

e Result: The structure constants are:

1 32
Cok_ay = ﬁ<l+

CkA,k—J,J = (-1
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Gravity side

e Now compute the same object in the dual AdSs x S°
theory, following the approach of [Zarembo '10]
e As discussed, we need to evaluate the following object:

Waoy)) ~ fim 2 i 5D3[X]>
w)y e'i'% A\ A -1 <¢I (y’6)203 /DXe bulk

e SE, is the Euclidean D-brane action

S55 = 5z | d*0 (VG - P[Ca]).

where gap = 9aXMpXm, a,b=0,---3. XM are the
brane embedding coordinates



Giant graviton in
Global metric for AdSs x S°:
ds? = — cosh? pdt?+d p?+sinh? p d Q3+d6?+sin? § d p*+cos? § d Q3.

Giant graviton ansatz
p=0, d°=t, ¢=o(t), o =i, Comixaxs = cos” 6 Vol(Q3)

Action
S=-N /dt {00339\/1 — ¢?sin?6 — ¢ cos* 0}

Angular momentum
_ 0L N¢sin*0cos®d

S8 1 esin?o

The energy E = ¢k — L is minimized by

k + N cos* 6.

cos? 9 = Emin. = Kk, Smin=0 =¢=1

Na



Giant graviton in S (cont.)

e We will need the fluctuations of the sugra mode («im, Romans, van

Nieuwenhuizen "85, Lee, Minwalla, Rangamani, Seiberg '98, Berenstein, Corrado, Fischler, Maldacena '98]

6A 4
59W = _? Ouv + r—i—l V(uvu) SA(X)YA(Q)’
0Gap = 2A0as s2(X) Ya(Q),
6CH1H2M3M4 =4 €papapizpapis % SA(X) YA(Q)7

6Ca1a203a4 - 4€aa1a2a3a4SA(x)vaYA (Q) )

e YA(Q) correspond to the [0, A, O] representation

_sin® ge

Ya@) = —z7— & 0=TZ%

e s2 will be replaced by the bulk-to-boundary propagator

A A
« Z ag Z

== BO((x—x)2+22)A2\/BO 28
A B AXB




Giant graviton in S (cont.)

Now we need to vary the action
DBI part

4 o 208(8-1)

N
5SDB'_2COSZG/thA(Q)<A+1t AT

—8A sin® 4 + 6A> sA
Wess-Zumino part

6Swz = —2‘%+2NA/dt e2tsin® g cos? s

Substituting s, with z = R/ cosht, we finally find
2R\ *
6S = — (xz) VA cos? §sin® ¢
B

to conclude that

K K J/2
CkA,k—J,J = \ﬁﬁ (1 - N)



Giant graviton in AdSs

Now the graviton wraps an S® C AdSs, (S° : 9, ¢1, ¢»)
We take the following ansatz

p=const, o’=t, o =%, ¢=¢(), 0=

e

to obtain
S /dt L=-N /dt {sinh3 p\/cosh? p — $2 — sinh? ,0}

More complicated bulk-to-boundary propagator:
. A+1 RAeA
4+/ANXZ? (cosh pcosht — cos 9 sin ¢ sinh p)®

The final result is
A
1
6S = — (ZR) — (COShAp —cosh™@ p)

x3) VA
or < 1 K\ %/2 K\ /2
o= 75 |(145) - (1+%)




Summary of Results

e Antisymmetric (S°) case
» Gauge theory

3172
Chk—33 = (—1)J_1i (1 - k>

» Gravity
Cikx_33 =V

Z| =~
S
'_\
|
Z|l =
~_
[
~
N

e Symmetric (AdSs) case
» Gauge theory

1 K J/2
Ck k-39 = ﬁ (1 + N)

» Gravity

1
Cyk—33 = 7
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Discussion

?7?7?

We find a mismatch between gauge and gravity sides...

Symmetric case matches for k /N — oo, antisymmetric
case only for the maximal case k/N =1

Might the semiclassical approach fail for giant gravitons?

Not likely, has been succesfully applied in the very similar
context of Wilson loops in higher representations
[Giombi, Ricci, Trancanelli '06]

There do not seem to be any subtle 1/N enhancements

Were we correct in identifying Schur polynomials with giant
gravitons?
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What is the true dual of a giant graviton?

e Giant gravitons smoothly reduce to light gravitons as
k < N. (Ckx_33 — VIk/N)
e Schurs are dual to giant gravitons for k > v/N

e Single-trace operators dual to light gravitons for k << N
e But the Schurs don’t reduce to single traces in any limit!

(Recall eg. O3 = —%Tr(ZZ) + ;Tr(Z)Z)

e So the Schurs cannot be dual to giant gravitons for any k.
Even at k ~ N, we cannot trust the very subleading terms
in their OPE to reflect giant graviton physics

Xk(Z(0)) xk-3(Z(x)) = ...+ CEE , 22 (0)x ¥ + ...

e The chiral primary TrZ” is sensitive to corrections of this
order

¢ Need the true basis of operators, which interpolates
between the Schurs and the trace operators
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Outlook

Can we find an interpolating basis?

Naive guess (for symmetric representation): Jack
Polynomials.
Smoothly interpolate between Schur and chiral primary

bases, e.g.
1

B =—
27 B+1

(B(TrX)? + TrX?)

Unfortunately, preliminary results indicate that they do not
reproduce the expected behaviour on the string side...
Other directions

ABJM theory (in progress)

Operators of O(N?) = LLM description

Beyond the 3-BPS sector

Correlation functions of three heavy giant gravitons
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