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Motivation: Semiclassical States in AdS/CFT

• Context: AdS/CFT correspondence between N = 4 SYM
and string theory on AdS5 × S5

• Interested in N = 4 SYM operators with large quantum
numbers, e.g. Tr(X J1Y J2)

• E.g. large R-charge ⇔ large angular momentum along S5

• Semiclassical states on AdS5 × S5 play a significant role

• Their role is particularly crucial in the context of AdS/CFT
integrability [Gubser, Klebanov, Polyakov ’02]

• They are dual to long operators with a large number of
impurities

• Examples: Folded and circular spinning strings, giant
magnons, (cusped) Wilson loops...



Correlation functions in AdS/CFT
• Consider the set of all gauge invariant operators OI in
N = 4 SYM (OI ∈ {Tr(XYXZX · · · ),Tr(DµXψψ̄ · · · ), · · · })

• Their two-point functions take the form:

〈O∆I
I (x)O∆J

J (y)〉 = δIJ

|x − y |2∆I

• Spectral problem: Determine ∆I for all OI

• This is now believed to be solved for practically all
operators in (planar) N = 4 SYM

• Integrability techniques (Bethe ansatz, Y-system...)
• Next step: Three-point functions!

〈O∆1
1 (x)O∆2

2 (y)O∆3
3 (z)〉= C123

|x−y |∆1+∆2−∆3 |x−z|∆1+∆3−∆2 |y−z|∆2+∆3−∆1

• Knowing all the CIJK (as well as the ∆I) would amount to
solving the theory (in principle)



Two-point functions of semiclassical states
• In AdS/CFT, correlation functions of single-trace operators

are calculated using Witten diagrams

∂AdS

• We would like a similar prescription for semiclassical states

• For two-point functions, this was discussed in [Tsuji ’06, Janik,

Surowka, Wereszczynski ’10]

• Appropriate Wick rotations take a spinning string solution
to a configuration starting and ending at the boundary

S2 ⊂ S5 ∂AdS



Three-point functions of semiclassical states

• We would like to do something similar for three-point
functions

• However, that would seem to involve knowing the
geometric solution for a semiclassical string ending on the
boundary at three points

∂AdS

• Some recent progress, but the general problem is still open
[Vicedo ’11, Klose, McLoughlin ’11]

• Expectation is that integrability will eventually give the
answer for CIJK while bypassing the precise solution



State of the art: Two heavy, one light
[Zarembo ’10, Costa, Monteiro, Santos, Zoakos ’10, Buchbinder/Tseytlin/Roiban/Russo ’10]

• Take two of the states to be heavy (semiclassical) and one
to be light (dual to a supergravity mode)

∂AdS

• Ignore backreaction of the light state on the heavy one

• The semiclassical trajectory is unchanged

• Integrate over the position of the insertion of the light state
on the heavy state worldvolume



Three-point function prescription

• CIJK is given by the following prescription: [Zarembo ’10]

〈WOI(y)〉
〈W〉 = lim

ǫ→0

π

ǫ∆I

√
2

∆I − 1

〈
φI(y , ǫ)

1
Zheavy

∫
DXe−Sheavy[X ]

〉

bulk

• φ(y , ǫ) is the supergravity mode dual to the single-trace
chiral primary OI

• For a string, the action is:

Sheavy =

√
λ

4π

∫
d2σ

√
hGMN∂

aX M∂aX N

and couples to φ through GMN = gMN + γMN , γMN = V I
MNφI

• Several cases have been considered recently

• Weak coupling side less developed [Escobedo,Gromov,Sever,Vieira ’10]



Back to the BPS sector

• All this was for semiclassical obects which are far from
BPS

• But can these techniques also provide new input in the
1
2 -BPS sector?

• Much better control on the gauge theory side (often exact
results exist)

• Could hope to find exact matching between the two sides
of the duality

• In this talk, we will look at correlation functions involving
operators in representations of order N

• We will identify and attempt to compute the same
correlation functions holographically

• First review some facts about the 1
2 -BPS sector



The trace basis
• The simplest basis of 1

2 -BPS operators is made up
products of traces of a single N = 4 scalar

Tr(Z J) , Tr(Z J−1)Tr(Z ) , Tr(Z J−2)Tr(Z 2) , . . .

• Focus on single-trace chiral primaries: OJ = TrZ J

• Dual to gravity modes in the dual theory
• Two- and three-point functions [Lee et al. ’98, D’Hoker et al. ’98, Kristjansen et al.

’02, Constable et al. ’02]

〈OJOJ〉 = JNJ (1 + O(1/N2)
)

〈OJOKOJ+K 〉 = NJ+K−1JK (J + K )
(
1 + O(1/N2)

)

• Structure constants

CJ,K ,K+J =
〈OJOJOJ+K 〉√

〈OJOJ〉〈OKOK 〉〈OJ+KOJ+K 〉

=
1
N

√
JK (J + K )

[
1 + O(1/N2)

]



Operators of very large dimension

• We are working in the planar limit N → ∞
• What happens when we consider trace operators whose

dimension J ∼ N?

• Relations appear between single and multitrace states
⇒ J bounded!

• The OJ cease to be orthogonal in this limit

• The usual 1/N2 counting for non-planar diagrams is upset
by huge combinatoric factors

• Correlation functions of the OJ are not well-behaved
[Balasubramanian et al. ’01, Dhar, Mandal, Smedbäck ’05]

• Does there exist a better 1
2 -BPS basis for J ∼ N?



Schur polynomial operators
[Corley, Jevicki, Ramgoolam ’01]

• Defined by a representation Rn of the symmetric group Sn

χRn(Z ) =
1
n!

∑

σ∈Sn

χRn(σ)Z
i
σ(1)

i1
· · ·Z i

σ(n)

in

• They can be expanded in a trace basis
• For the antisymmetric representation:

OA
2 = −1

2
Tr(Z 2) +

1
2

Tr(Z )2

OA
3 =

1
3

Tr(Z 3)− 1
2

Tr(Z 2)Tr(Z ) +
1
6

Tr(Z )3

OA
4 = −1

4
Tr(Z 4) +

1
3

Tr(Z 3)Tr(Z ) +
1
8

Tr(Z 2)2

− 1
4

Tr(Z 2)Tr(Z )2 +
1

24
Tr(Z )4

· · ·



Schurs vs. Multi-traces
• The Schurs are a better basis when ∆ ∼ N

[Corley, Jevicki, Ramgoolam ’01, Dhar, Mandal, Smedbäck ’05]

• Orthogonal for any value of N

〈χR(Z )χS(Z )〉 = δR,S

∏

i.j∈R

(N − i + j)

• Correlation functions fall with N

〈χR(Z )χS(Z )χT (Z )〉 = g(R,S;T )
∏

i,j∈T

(N − i + j)

(g(R,S,T ) : Littlewood-Richardson coefficients)
• Two- and three-point functions: (here for antisymmetric)

〈χA
k (Z̄ )χA

k (Z )〉 =
k∏

i=1

(N − i + 1),

〈χA
k (Z̄ )χA

k−J(Z )χA
J (Z )〉 =

k∏

i=1

(N − i + 1)



AdS duals for the Schurs?

• The description is simplest for the symmetric and
antisymmetric cases

• Antisymmetric Schurs are nothing but determinant and
subdeterminant operators

χA
k (Z ) = detk (Z )

• For k ∼ N, these have been argued to be dual to giant
gravitons on S5

[Balasubramanian et al. ’01]

• Satisfy the stringy exclusion principle

• Symmetric Schurs were shown to be dual to AdS5 giant
gravitons [Corley, Jevicki, Ramgoolam ’01]



Giant Gravitons
[McGreevy, Susskind, Toumbas ’00]

• D3-branes wrapped around (trivial) cycles in AdS5 or S5

and rotating along the S5

• Stabilised by their angular momentum k

• Their radius increases with k through Myers effect

• As k → 0, they reduce to pointlike gravitons

• Preserve 1
2 Supersymmetry [Grisaru, Myers, Tafjord ’00]

• Have been argued to be good duals to Schur polynomials
for k ∼ N

• Since R ≤ RS5 , we have a simple explanation of the stringy
exclusion principle



Our goal

• Can we compute holographic correlation functions
involving Schur polynomials?

• We are interested in the semiclassical limit, k ∼ N ≫ 1

• 〈χk (Z )χk−l(Z )χl(Z )〉 is beyond our reach. We would need
the full semiclassical geometry

• Inspired by the progress in the semiclassical string context,
we can try to compute a correlation function of two Schurs
and one trace operator:

〈χk (Z )χk−J(Z )TrZ J〉

• On the dual gravity side, this should correspond to a giant
graviton emitting a light graviton



Gauge theory side

• We want the structure constant (here for symmetric):

CS
k,k−J,J ≡

〈χS
k (Z̄ )χS

k−J(Z )TrZ J〉
√
〈χS

k (Z̄ )χS
k (Z )〉〈χS

k−J(Z̄ )χS
k−J(Z )〉〈TrZ̄ JTrZ J〉

,

• We can simply use that:

TrZ J =
∑

RJ

χRJ (σ0)χRJ (Z )

(σ0 the cyclic permutation) to find

〈χS
k (Z̄ )χS

k−J(Z )Tr Z J〉 =
k∏

j=1

(N − 1 + j),

〈χA
k (Z̄ )χA

k−J(Z )Tr Z J〉 = (−1)J−1
k∏

i=1

(N − i + 1)



Gauge theory result

• Normalise by dividing by the relevant norms
• We are interested in the limit

N, k → ∞ with
k
N

finite , J ≪ k

• Result: The structure constants are:

CS
k,k−J,J =

1√
J

(
1 +

k
N

)J/2

,

CA
k,k−J,J = (−1)(J−1) 1√

J

(
1 − k

N

)J/2

k ≤ N



Gravity side

• Now compute the same object in the dual AdS5 × S5

theory, following the approach of [Zarembo ’10]

• As discussed, we need to evaluate the following object:

〈WOI(y)〉
〈W〉 = lim

ǫ→0

π

ǫ∆I

√
2

∆I − 1

〈
φI(y , ǫ)

1
ZD3

∫
DXe−SD3[X ]

〉

bulk

• SE
D3 is the Euclidean D-brane action

SE
D3 =

N
2π2

∫
d4σ (

√
g − iP[C4]) ,

where gab = ∂aX M∂bXM , a, b = 0, · · · 3. X M are the
brane embedding coordinates



Giant graviton in S5

• Global metric for AdS5 × S5:

ds2 = − cosh2 ρdt2+dρ2+sinh2 ρdΩ̃2
3+dθ2+sin2 θ dφ2+cos2 θ dΩ2

3.

• Giant graviton ansatz

ρ = 0, σ0 = t , φ = φ(t), σi = χi , Cφχ1χ2χ3 = cos4 θVol(Ω3)

• Action

S = −N
∫

dt
[
cos3 θ

√
1 − φ̇2 sin2 θ − φ̇ cos4 θ

]

• Angular momentum

k =
δL

δφ̇
=

Nφ̇ sin2 θ cos3 θ√
1 − φ̇2 sin2 θ

+ N cos4 θ.

• The energy E = φ̇k − L is minimized by

cos2 θ =
k
N
, Emin. = k , Smin. = 0 ⇒ φ̇ = 1



Giant graviton in S5 (cont.)

• We will need the fluctuations of the sugra mode [Kim, Romans, van

Nieuwenhuizen ’85, Lee, Minwalla, Rangamani, Seiberg ’98, Berenstein, Corrado, Fischler, Maldacena ’98]

δgµν =

[
−6∆

5
gµν +

4
∆+ 1

∇(µ∇ν)

]
s∆(X )Y∆(Ω),

δgαβ = 2∆gαβ s∆(X )Y∆(Ω),

δCµ1µ2µ3µ4 = −4 ǫµ1µ2µ3µ4µ5∇µ5 s∆(X )Y∆(Ω),

δCα1α2α3α4 = 4ǫαα1α2α3α4s
∆(X )∇αY∆ (Ω) ,

• Y∆(Ω) correspond to the [0,∆, 0] representation

Y∆(Ω) =
sin∆ θe∆t

2∆/2
⇔ O = TrZ∆

• s∆ will be replaced by the bulk-to-boundary propagator

s∆ →
√
α0

B∆

z∆

((x − xB)2 + z2)∆
≃

√
α0

B∆

z∆

x2∆
B

,



Giant graviton in S5 (cont.)

• Now we need to vary the action
• DBI part

δSDBI =
N
2

cos2 θ

∫
dt Y∆ (Ω)

(
4

∆+ 1
∂2

t − 2∆(∆− 1)
∆ + 1

−8∆ sin2 θ + 6∆
)

s∆

• Wess-Zumino part

δSWZ = −2−
∆
2 +2N∆

∫
dt e∆t sin∆ θ cos4 θs∆

• Substituting s∆, with z = R/ cosh t , we finally find

δS = −
(

2R
x2

B

)∆ √
∆ cos2 θ sin∆ θ

to conclude that

CA
k,k−J,J =

√
J

k
N

(
1 − k

N

)J/2



Giant graviton in AdS5

• Now the graviton wraps an S3 ⊂ AdS5, (S3 : ϑ, φ1, φ2)
• We take the following ansatz

ρ = const., σ0 = t , σi = χ̃i , φ = φ(t), θ =
π

2
to obtain

S =

∫
dt L = −N

∫
dt

[
sinh3 ρ

√
cosh2 ρ− φ̇2 − sinh4 ρ

]

• More complicated bulk-to-boundary propagator:

s → ∆+ 1

4
√
∆Nx2∆

B

R∆e∆t

(cosh ρ cosh t − cosϑ sinφ1 sinh ρ)∆

• The final result is

δS = −
(

2R
x2

B

)∆ 1√
∆

(
cosh∆ ρ− cosh−∆ ρ

)

or

CS
k,k−J,J =

1√
J

[(
1 +

k
N

)J/2

−
(

1 +
k
N

)−J/2
]



Summary of Results
• Antisymmetric (S5) case

◮ Gauge theory

Ck,k−J,J = (−1)J−1 1√
J

(
1 − k

N

)J/2

◮ Gravity

Ck,k−J,J =
√

J
k
N

(
1 − k

N

)J/2

• Symmetric (AdS5) case
◮ Gauge theory

Ck,k−J,J =
1√
J

(
1 +

k
N

)J/2

◮ Gravity

Ck,k−J,J =
1√
J

[(
1 +

k
N

)J/2

−
(

1 +
k
N

)−J/2
]
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Discussion

???

• We find a mismatch between gauge and gravity sides...

• Symmetric case matches for k/N → ∞, antisymmetric
case only for the maximal case k/N = 1

• Might the semiclassical approach fail for giant gravitons?

• Not likely, has been succesfully applied in the very similar
context of Wilson loops in higher representations
[Giombi, Ricci, Trancanelli ’06]

• There do not seem to be any subtle 1/N enhancements

• Were we correct in identifying Schur polynomials with giant
gravitons?
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What is the true dual of a giant graviton?

• Giant gravitons smoothly reduce to light gravitons as
k ≪ N. (Ck ,k−J,J →

√
Jk/N)

• Schurs are dual to giant gravitons for k ≫
√

N
• Single-trace operators dual to light gravitons for k ≪ N
• But the Schurs don’t reduce to single traces in any limit!

(
Recall e.g. Oa

2 = −1
2

Tr(ZZ ) +
1
2

Tr(Z )2
)

• So the Schurs cannot be dual to giant gravitons for any k .
Even at k ∼ N, we cannot trust the very subleading terms
in their OPE to reflect giant graviton physics

χk (Z̄ (0))χk−J(Z (x)) = . . .+ Cgauge
k,k−J,JTrZ̄ J(0) x−2J + . . . .

• The chiral primary TrZ J is sensitive to corrections of this
order

• Need the true basis of operators, which interpolates
between the Schurs and the trace operators
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• Can we find an interpolating basis?

• Naive guess (for symmetric representation): Jack
Polynomials.

• Smoothly interpolate between Schur and chiral primary
bases, e.g.

JS
2 =

1
β + 1

(
β(TrX )2 + TrX 2)

• Unfortunately, preliminary results indicate that they do not
reproduce the expected behaviour on the string side...

• Other directions
◮ ABJM theory (in progress)
◮ Operators of O(N2) ⇒ LLM description
◮ Beyond the 1

2 -BPS sector
◮ Correlation functions of three heavy giant gravitons


