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Introduction and motivation

There is by now a large body of evidence in string
theory that the classical black hole entropy has a
statistical interpretation.

Strategy

1. Identify a suitable supersymmetric black hole with
certain quantum numbers and calculate its entropy
SBH via the Bekenstein-Hawking-Wald formula.

2. Find a microscopic system with the same quantum
numbers and count its ‘number of states’ Ω in the
limit when gravity it switched off.

3. Compare SBH with ln Ω.



This comparison is usually done in the limit when the
charges are large.

⇒ the curvature at the horizon is small and hence the
Bekenstein-Hawking formula is a reliable
approximation.

Also the counting of states simplifies in this limit
since we can use asymptotic formula, e.g. the Cardy
formula.

What happens beyond the large charge
limit?



On the microscopic side the low energy dynamics is
usually described by a supersymmetric quantum
mechanics and there is no difficulty in principle in
counting states to arbitrary accuracy.

In a class of N=4 and N=8 supersymmetric string
theories one now has exact microscopic results.

Dijkgraaf, Verlinde, Verlinde; Shih, Strominger, Yin; David, Jatkar, A.S.

From this one may be tempted to conclude that the
microscopic description is the correct description,
and horizon is an ‘emergent phenomenon’ , ı.e. an
approximate description of the system when there are
large number of quantum states.



We shall explore an alternative, more conventional,
viewpoint.

Can quantum gravity / closed string theory around
the black hole background fully describe the system,
providing an alternative dual description?

If so we should be able to compute exact properties
of black hole microstates by analyzing quantum
gravity in the black hole background.

In particular the description using quantum gravity /
closed strings should be able to reproduce the exact
result for the number of microstates, instead of just
the leading behaviour for large charges.



Some results for the index in heterotic on T6 from
microscopic counting

(Q2, P2)\Q.P -2 2 3 4 5 6 7

(2,2) -209304 648 327 0 0 0 0

(2,4) -2023536 50064 8376 -648 0 0 0

(2,6) -15493728 1127472 130329 -15600 972 0 0

(4,4) -16620544 3859456 561576 12800 3272 0 0

(4,6) -53249700 110910300 18458000 1127472 85176 -6404 0

(6,6) 2857656828 4173501828 920577636 110910300 8533821 153900 26622

(2,10) -510032208 185738352 16844421 -2023536 315255 -31104 1620

Q2,P2,Q · P: T-duality invariant bilinears in the
charges.

Question: Can we reproduce these numbers from the
analysis of quantum gravity?



For this we need to compute quantum gravity / string
theory corrections to the Bekenstein-Hawking-Wald
formula exactly.

– remains a part of the wish list.

Nevertheless we shall use the black hole description
to make predictions for the microscopic index which
can be tested against the explicit results.



Qualitative predictions:

1. Sign of the index

2. Absence of negative discriminant states

Quantitative predictions:

3. Logarithmic corrections to the entropy



The key insight arises from the existence of the AdS2
factor in the near horizon geometry of extremal black
holes.

AdS2 does not admit any charge or energy carrying
excitations since such an excitation will change the
asymptotic boundary condition on the gauge fields /
metric .

⇒ quantum gravity in the near horizon geometry of
extremal black holes describes a microcanonical
ensemble of degenerate quantum states.



Sign of the Index:

Typically in the microscopic theory we do not
calculate the degeneracy, but an index:

Ω ≡ Tr′(−1)F = Tr′(−1)2J3

′ denotes removal of the trace over fermion zero
modes associated with broken supersymmetry.

This is what is protected from corrections when
gravity effects are switched on.

For comparison, on the black hole side also we must
compute the index, not entropy.



How to compute Tr′(−1)2J3 for a black hole?

1. SUSY algebra + SL(2,R) isometry of AdS2
⇒ black holes have spherically symmetric horizon
and hence zero average angular momentum.

2. SInce extremal black holes describe a
microcanonical ensemble, all states in the ensemble
have J3 = 0.

Thus black holes have

Tr′(−1)2J3 = Tr′(1) = eSBH

SBH: black hole entropy (after stringy and quantum
corrections)

A.S.; Dabholkar, Murthy, Gomes, A.S.



Tr′(−1)2J3 = Tr′(1) = eSBH

This explains why the index on the microscopic side
can be compared with eSBH on the black hole side.

Ω⇔ eSBH

But this also make a non-trivial prediction:

Ω ≡ Tr′(−1)2J3 > 0

Microscopic index must be positive

(no a priori reason for this on the microscopic side).



Absence of negative discriminant states:

In heterotic string theory on T6 supersymmetric black
hole solutions do not exist for

∆ ≡ Q2P2 − (Q.P)2 < 0

Since these black holes describe microcanonical
ensemble of states carrying fixed charges, this
implies that

the microscopic index must vanish for ∆ < 0.

– another non-trivial prediction for the microscopic
index.



A caveat:

Macroscopic arguments hold for single centered
black holes, but the total index receives contribution
from single and two centered black hole solutions.

2-centered solutions can have negative index and
also negative discriminant, spoiling the earlier
arguments Dabholkar, Gaiotto, Nampuri

microscopic index = 1-centered index + 2-centered index

1-centered index= microscopic index – 2-centered index

Strategy: Compute separately the contribution to the
index from two centered black holes, subtract this
from the microscopic index and then test the
predictions from AdS2 geometry.



Given a 2-centered configuration we can compute its
contribution to the index

Example: Index of (Q, 0) + (0, P) is

(−1)Q.P+1 |Q.P| f(Q2/2) f(P2/2)

f(n) defined through∑
n

f(n)e2πinτ = η(τ)−24

Furthermore supergravity analysis tells us what
2-centered configurations exist at any given point in
the moduli space. Denef; Denef, Moore

– can use this to compute total 2-centered
contribution to the index.



Results for the total index in heterotic on T6 from
microscopic counting

(Q2, P2)\Q.P −2 2 3 4 5 6 7

(2,2) −209304 648 327 0 0 0 0

(2,4) −2023536 50064 8376 −648 0 0 0

(2,6) −15493728 1127472 130329 −15600 972 0 0

(4,4) −16620544 3859456 561576 12800 3272 0 0

(4,6) −53249700 110910300 18458000 1127472 85176 −6404 0

(6,6) 2857656828 4173501828 920577636 110910300 8533821 153900 26622

(2,10) −510032208 185738352 16844421 −2023536 315255 −31104 1620

Red entries: Negative index

Blue entries: Negative discriminant states



Result for the index after subtracting the contribution
from two centered black holes

(Q2, P2)\Q.P -2 2 3 4 5 6 7

(2,2) 648 648 0 0 0 0 0

(2,4) 50064 50064 0 0 0 0 0

(2,6) 1127472 1127472 25353 0 0 0 0

(4,4) 3859456 3859456 561576 12800 0 0 0

(4,6) 110910300 110910300 18458000 1127472 0 0 0

(6,6) 4173501828 4173501828 920577636 110910300 8533821 153900 0

(2,10) 185738352 185738352 16844421 16491600 0 0 0

1. No more negative index

2. No negative discriminant states.



Such tests have been carried out for many other N=4
supersymmetric string theories where the exact dyon
spectrum is known.

General results:

1. Absence of negative discriminant states in
(microscopic index - 2-centered index) can be proved
in general using properties of Siegel modular forms
which are the generating functions of the
microscopic index.

2. The positivity of the index has been proved in the
limit of large charges and tested in many examples,
but a general proof is still missing.

A.S.



Quantitative tests: Logarithmic corrections

The exact microscopic results for the index in N = 4
and N = 8 supersymmetric string theories allows us
to compute systematic correction to the index Ω
beyond the large charge limit.

Can we reproduce these corrections from the
macroscopic side?



Microscopic results in the limit when all components
of the charge are taken to be large:

ln Ω = π
√

∆ +O(1) for N=4
= π

√
∆− 2 ln ∆ +O(1) for N=8

∆ ≡ Q2P2 − (Q.P)2

Note: This is different from the Cardy limit results
when only one component becomes large keeping
the other components fixed:

ln Ω = π
√

∆− m + 2
4

ln ∆ +O(1) for N=4

= π
√

∆−2 ln ∆ +O(1) for N=8

m: number of matter multiplets



Strategy for computing SBH:

Euclidean near horizon geometry has the form

AdS2 × S2 × K with flux through various cycles

K: 6-dimensional compact space of string scale size

ds2 = a2(dη2 + sinh2 ηdθ2) + a2(dψ2 + sin2 ψdφ2) + ds2
K

a: a constant that scales with the charges



AdS_2
L

L: regulated length of the boundary of AdS2

Let ZAdS2 be the partition function of string theory in
this background

Then
ZAdS2 = eSBH−E0L

E0: energy, SBH: entropy

Once we compute ZAdS2, we can extract SBH from it.



ZAdS2 = eSBH−E0L

Classical contribution to SBH gives us back the Wald
entropy π

√
∆

One can show that logarithmic corrections to SBH, if
present, must come from one loop contribution of
massless fields to ZAdS2

This involves two types of contributions:

1. Determinant of the kinetic operator of massless
fields after removing the zero modes

2. Contribution from integration over the zero modes.



1. Determinant of the kinetic operator of massless
fields

Find the quadratic action of massless fields
expanded around the near horizon geometry with
fluxes.

Find the eigenvalues of the kinetic operator.

Take the product of non-zero eigenvalues.



2. Zero mode contribution

Identify the asymptotic symmetries responsible
for the zero modes.

Change integration over the zero modes to
integration over parameters labelling the
(super-)group of asymptotic symmetries.

The Jacobian for this change of variables gives
the zero mode contribution to ZAdS2.



Given ZAdS2 we can isolate the ‘infinite part’ e−E0L and
finite part eSBH easily and compute SBH.

Results for logarithmic term in SBH:

The theory
non-zero mode
contribution

zero mode
contribution

total
contribution

N=4 1
4 (6 + m) ln ∆ − 1

4 (6 + m) ln ∆ 0

N=8 5 ln ∆ −7 ln ∆ −2 ln ∆

m: number of matter multiplets

The final result is in perfect agreement with the
microscopic results.

Banerjee, Gupta, A.S.; Banerjee, Gupta, Mandal, A.S.



Some details of the computation

AdS2 × S2 metric

ds2 = a2(dη2 + sinh2 ηdθ2) + a2(dψ2 + sin2 ψdφ2)

Suppose ∆Leff is the one loop effective Lagrangian
density on AdS2 × S2

Then one loop correction to the effective action is

∆Seff =

∫ √
det g∆Leff = 8π2a4(cosh η0 − 1)∆Leff

η0: cut-off on η to make AdS2 volume finite

Length of the boundary: L = 2πa sinh η0

∆Seff = 8π2a4
(

L
2πa

− 1 +O(L−1)

)
∆Leff



∆Seff = 8π2a4
(

L
2πa

− 1 +O(L−1)

)
∆Leff

⇒ one loop multiplicative contribution to ZAdS2:

exp
[
8π2a4

(
L

2πa
− 1 +O(L−1)

)
∆Leff

]
Comparing with ZAdS2 = exp[SBH − E0L] we get

∆SBH = −8π2a4∆Leff

We calculate ∆Leff using heat kernel method.



Let {ψr} denote the set of fluctuating massless fields
around the near horizon background.

Let the eigenfunctions of the kinetic operator be:

ψr = f(n)r (x)

with eigenvalue κn.

Heat kernel:

K(x,x′,s) =
∑

n

e−κnsf(n)r (x)f(n)r (x′)

∆Seff = −1
2

∑
n

lnκn = −1
2

∫ ∞
ε

ds
s

e−κns

ε: a string scale UV cut-off.



K(x,x′,s) =
∑
n,r

e−κnsf(n)r (x)f(n)r (x′)

∆Seff = −1
2

∫ ∞
ε

ds
s

e−κns = −1
2

∫
d4x

√
det g

∫ ∞
ε

ds
s

K(x,x; s)

⇒ ∆Leff = −1
2

∫ ∞
ε

ds
s

K(x,x; s)

The terms proportional to ln a come from integration
over the range ε << s << a2

We explicitly find (f(n)r , κn), calculate K(x,x; s) and its
behaviour in the range ε << s << a2.

Note: κn = 0 modes must be removed.



Zero mode contribution:

The path integral over the fields is defined with the
standard general coordinate invariant measure, e.g.
for gauge fields:∫

[DAµ]exp
[
−
∫

d4x
√

det g gµνAµAν

]
= 1

SInce
√

det g gµν ∼ a2 this shows that [aAµ] has a
independent measure.

Zero modes of Aµ are of the form ∂µΛ with Λ not
vanishing at∞.

Changing variables from aAµ to Λ⇒ ‘a’ per zero mode

Net contribution to ZAdS2 from gauge field zero modes
is aNz where Nz is the number of zero modes.



Computation of Nz:

Let
Aµ(x) = g(k)

µ (x)

be the zero mode wave functions

Nz =
∑

k

1 =

∫
d4x
√

det g gµν
∑

k

g(k)
µ (x)g(k)

ν (x)

nz ≡ gµν
∑

k g(k)
µ (x)g(k)

ν (x) is independent of x after
summing over k .

Nz = 8π2a4nz(cosh η0 − 1) = 8π2a4nz

(
L

2πa
− 1 +O(L−1)

)



Nz = 8π2a4nz(cosh η0 − 1) =

(
L

2πa
− 1 +O(L−1)

)
⇒ gauge field zero mode contribution to ZAdS2:

aNz = exp
[
8π2a4nz ln a

(
L

2πa
− 1 +O(L−1)

)]
Comparing with ZAdS2 = eSBH−E0L we get the
logarithmic contribution to SBH from the zero modes:

∆SBH = −8π2a4nz ln a

Contributions from other zero modes can be found
similarly.



Given this success, we would like to generalize this
to N=2 supersymmetric string theories.

The main bottleneck is the absence of reliable results
on the microscopic side.

Nevertheless one can try to make progress on the
macroscopic side so that comparison with the
microscopic data may be made if and when the latter
is available.



Progress has been made on several fronts.

1. A general formula relating the total index to the
index associated with single centered black holes has
been found. Manschot, Pioline, A.S.

– required for testing positivity of the index etc.

2. Logarithmic corrections have been computed in
the STU model and was found to vanish.
– consistent with the earlier proposal for the index

David; David, de Wit, Cardoso, Mahapatra

3. Computation of logarithmic corrections to half BPS
black holes in generic N=2 supersymmetric string
theory is in progress.

– would constrain the measure in the OSV integral.



Computation of logarithmic corrections can also be
extended to non-supersymmetric extremal black hole,
e.g. extremal Reissner-Nordstrom, extremal Kerr,
extremal BTZ etc. A.S., work in progress

These results would put strong constraint on any
microscopic theory that attempts to provide a
statistical interpretation of the entropy.



Some preliminary results

Theory logarithmic correction

extremal Reissner-Nordstrom
+ ns massless scalars,
nf massless Dirac fields,
nv additional massless vector

− 1
180(? + ns + 62nv

+11nf) ln AH

extremal Kerr
+ ns massless scalars,
nf massless Dirac fields,
nv massless vector

1
180(64 + 2ns − 26nv

+7nf) ln AH

extremal BTZ
+nv Chern-Simons vector −1

2(nv + 3) ln AH
√

Half BPS in N=2 sugra
+ nh hypermultiplet
nv vector multiplet ?



Summary

Quantum gravity in the near horizon geometry can
make non-trivial prediction for the microstates which
can be tested by explicit microscopic calculation.

1. Positivity of the index

2. Absence of negative discriminant states

3. Coefficient of the logarithmic correction to the
Bekenstein-Hawking-Wald formula in the large charge
limit.

This indicates that quantum gravity in the near
horizon geometry could provide us with an exact dual
description of black hole microstates instead of being
merely an emergent phenomenon in the large charge
limit.


