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Introduction

Strongly coupled fermions play an important role in 
many physical systems:

• QCD

• Technicolor

• Condensed matter



Typically, at weak coupling the dynamics is simple, 
while at strong coupling one finds many interesting 
phenomena, such as dynamical symmetry breaking, 
mass generation and confinement. 

The focus of this lecture will be the transition 
between the two regimes. 



Imagine a situation where the dynamics depends 
on a continuous parameter      (``the coupling’’), 
such that for             the order parameter (say a 
dynamically generated mass) vanishes, while for 
larger coupling it is non-zero. 

The transition at             may be either first order 
or continuous.  A conformal phase transition is a 
particular kind of continuous transition, which 
apparently plays a role in QCD and other strongly 
coupled systems.        

λ
λ < λc

λ = λc



Consider an SU(N)  gauge theory coupled to F          

flavors of fermions in the fundamental rep. In the 

large N (Veneziano) limit,                  with x = N / F 

fixed, the infrared dynamics of this theory depends 

on x.  For               the theory is infrared free.  For 

smaller F the IR dynamics is non-trivial.  

Conformal phase transition in QCD

N,F → ∞

x ≤ 2

11



If x is only slightly larger than 2/11, the gauge 
coupling runs from zero in the UV to a small non-
zero value in the IR. The theory dynamically 
generates a scale           , the crossover scale 
between the UV and IR . For energies well below 
this scale the dynamics is governed by a weakly 

coupled interacting fixed point (Banks, Zaks).  

ΛQCD



As x increases (or F decreases), the IR theory 
becomes more strongly interacting.  When it 
exceeds a critical value,        , the model 
undergoes a phase transition to a phase in 
which conformal symmetry is broken, and the 
quarks get a non-zero mass     .   The chiral                             
symmetry                             is broken to its 
diagonal subgroup. 

xc

SU(F )L × SU(F )R

µ



This phase transition is believed to be 
continuous: 

Near the transition one has:

                                        Miransky scaling       
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Fig. 9: Conformal symmetry breaking scale µ as a function of the number of

flavors F .

This transition is expected to be of BKT type. One can probe it by studying the vac-

uum expectation value of the operator OW (2.4). For x < xc, the IR theory is conformal,

and this vev takes the form (2.5). For x > xc, the IR conformal symmetry is violated by

a mechanism similar to that of section 2. As x → xc, the anomalous dimension γ of ψψ

approaches −(d − 2)/2 = −1 [17], and beyond that point it formally becomes complex.

The interpretation of this is the same as in the discussion of the defect theories above. At

x = xc, two fixed points of the RG which differ by the coefficient of the quartic operator

(ψψ)2 merge and annihilate (or move off to the complex plane). This generally leads to

Miransky scaling of the dynamically generated scale [10].

In the analysis of the earlier sections, we had a conformal field theory for λ < λc. The

analog of that here is the infrared fixed point of QCD for x < xc. The RG flow of the gauge

theory from its free UV fixed point to that IR theory corresponds from this point of view

to a particular choice of UV cutoff. Hence ΛQCD corresponds in our previous discussion

to the UV cutoff ΛUV (2.31). The strength of the interactions of the fermions at the fixed

point, which in our previous discussion was controlled by the ’t Hooft coupling λ, is in

QCD controlled by the parameter x (i.e. the number of colors and flavors) rather than the

(running) coupling. To focus on the physics of the phase transition one can consider the

double scaling limit x → xc, Λ → ∞, with the dynamically generated scale µ held fixed.

This is the analog of the BKT limit discussed in previous sections.

43

µ � ΛQCDe−
a√

x−xc



This phase structure is obtained in various 
uncontrolled approximations, and it would be nice 
to understand it better. Among other things this is 
important for technicolor, the attempt to 
understand electroweak symmetry breaking as a 
consequence of strong gauge dynamics.  It was 
recognized long ago that viable models of this sort 
must live in the vicinity of such a phase transition; 
they are known as walking technicolor .



In QCD, it is difficult to analyze the dynamics near 
the transition even in the large N limit, since this 
involves solving a strongly coupled matrix model. In 
this lecture we will consider a class of theories 
which exhibit a similar phase transition but that can 
be solved at large N. 

These models are of interest in their own right, as 
they involve 2+1 dimensional fermions strongly 
interacting with 3+1 dimensional gauge fields. This 
type of dynamics may be experimentally realized in 
condensed matter systems, such as graphene (Rey).



N=4 SYM coupled to defect fermions

The basic model we will consider can be thought 
of as the low energy theory on a non-
supersymmetric brane system consisting of N 
D3-branes and F D7-branes, oriented as follows:
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propagating in this background. The study of the physics in the vicinity of the transition

amounts then (at leading order in 1/N) to analyzing the dynamics of the probe branes

in AdS5 × S5. We will use this description to calculate a number of observables, such as

masses of scalar and vector mesons and the phase diagram of the model as a function of

temperature and chemical potential.

In this approach, one does not have to change the dimension of the defect on which

the fermions are localized. Instead, one changes the number of 3 + 1 dimensional scalar

fields which couple to the defect fermions via Yukawa interactions. As in the case of

the ε-expansion, one has to include corrections to the gravity picture – in this case, α′

corrections – in order to study the CPT quantitatively. However, we will see that (like

there) the leading approximation already provides useful qualitative information.

The plan of the paper is as follows....

2. The D3/D7 system and its low energy dynamics

The brane system we consider consists of N D3-branes intersecting F D7-branes in

2 + 1 dimensions. We will take N to be large, and F = 1; it is easy to generalize the

discussion to larger values of F . The branes are taken to be oriented as follows:

0 1 2 3 4 5 6 7 8 9
D3 x x x x
D7 x x x x x x x x

(2.1) dimensions

The low energy spectrum of this system includes two sectors. Open strings ending on the

threebranes give rise toN = 4 SYM with gauge group U(N), living in the spacetime labeled

by (x0, x1, x2, x3). Strings stretched between the threebranes and the sevenbranes give

charged matter fields localized at x3 = 0. The spectrum of these fields can be determined

by a worldsheet calculation, but a quick way to find it is to note that the brane system (2.1)

is T-dual to the well studied D4/D8 system that plays a role in the Sakai-Sugimoto model

[16]. Hence, the only massless fields are 2+1 dimensional fermions which transform in the

3



Low energy dynamics

Spectrum:

• 3-3 strings: 3+1 dimensional N=4 SYM

• 3-7 strings: 2+1 dimensional fermion  

Low energy Lagrangian:

ψ

S = SN=4 +

�
d3x(iψ̄γµDµψ + gψ̄ψφ9)



This gauge theory describes 2+1 dimensional 

fermions with a tunable coupling and we will see 

that it exhibits interesting dynamics when the 

coupling is cranked up.  We will study it at large N, 

with F of order one, the standard `t Hooft limit. 

The classical Lagrangian is conformally invariant. 

The quantum theory preserves this symmetry 

for            , and undergoes a continuous phase 

transition  at      . 

λ < λc

λc



A good way to probe the phase structure of the 
model is to calculate the expectation value of 
the open Wilson line operator 

In the conformal phase,            , it is determined 
by conformal symmetry to take the form 

OW (x, y) = ψ̄(x)P exp

�
ig

� y

x
A · dl

�
ψ(y)

λ < λc

�OW (x, y)� ∼ iγµ∂µ
1

(x− y)∆(λ)−1



The leading deviation from the conformal behavior 
is associated with the possible addition of a mass 
term for    ,  and the vev        , which is non-zero  
for           . These give

where 

 

ψ �ψ̄ψ�
λ > λc

∆b(λ) = ∆(ψ̄ψ) = 2 + γ(λ)
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where the ellipsis stands for contributions of higher dimension operators such as ψDµψ,

and ∆b is the scaling dimension of the fermion bilinear operator ψψ. We will write it as

∆b(λ) = ∆(ψψ) = 2 + γ(λ) (2.7) fermbi

where γ is the anomalous dimension of ψψ.

Taking the vacuum expectation value of (2.6) one finds

〈OW (x, y)〉 ∼ i/∂
1

(x− y)∆(λ)−1
+

〈ψψ〉
(x− y)∆(λ)−∆b

+ · · · (2.8) nonconfonept

In the conformal phase λ < λc, the vev 〈ψψ〉 vanishes and one recovers (2.5). For λ slightly

above λc, this vev is non-zero but very small. Hence one can treat the second term in (2.8)

as a small perturbation, for sufficiently small |x− y|.

Another way of breaking the conformal symmetry is to add to the action a mass term

for ψ, m
∫
d3xψψ. For small m, the contribution of this term to (2.8) can be included

perturbatively. One finds

〈OW (x, y)〉 ∼ i/∂
1

(x− y)∆(λ)−1
+

〈ψψ〉
(x− y)∆(λ)−∆b

+
m

(x− y)∆(λ)−3+∆b

+ · · · (2.9) finalonept

To bring (2.9) into a more familiar form, it is useful to rewrite it in momentum space. We

can parametrize the momentum space one point function as

〈OW (p)〉 ∼ p∆(λ)−4 (/p +M(p) + · · ·) , (2.10) momsp

where

M(p) = m

(
p

µ

)γ

+
〈ψψ〉
p

(
µ

p

)γ

(2.11) solrg

and µ is a renormalization scale. The one point function (2.10) is closely related to the

fermion two point function:

SF (p) =
i

/p −m− Σ(p)
. (2.12) defsig

6



In momentum space one has

which can be summarized as 

One can think of M(p) as the order parameter for 
conformal symmetry breaking.

preliminary draft: 6/20/111 14:56
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Σ(p) can be calculated perturbatively by summing 1PI Feynman diagrams. It can be

parametrized by

Σ(p) = (1− A(p))/p +B(p)−m, (2.13) formsig

which leads to

SF (p) =
i

A(p)/p −B(p)
=

i

A(p)

/p +M(p)

p2 −M2(p)
, (2.14) defhatsig

with

M(p) =
B(p)

A(p)
. (2.15) defm

At large momenta one can expand (2.14) as

SF (p) =
i

A(p)p2
(/p +M(p) + · · ·) , (2.16) largepsig

which has a very similar form to (2.10). A(p) is related to the anomalous dimension of the

fermion ψ and is typically gauge dependent [17,18]; its gauge invariant analog in (2.10)

is the factor p2−∆(λ). The large momentum behavior of M(p) was discussed in [17]. An

analog of the operator product expansion (2.6) for ψ(x)ψ(y) leads again to an expansion

of the form (2.11). Thus, the leading large momentum behavior of M(p) in (2.16) is given

by (2.11) and in particular is gauge invariant [18].

Note that M(p) (2.11) is a solution of the second order equation

d

dp
(p2M ′(p)) + C(λ)M(p) = 0, (2.17) clegfull

where the function C(λ) is related to the anomalous dimension γ(λ) (2.7), (2.11) via

γ(λ) = −1

2
+

√
1

4
− C(λ), (2.18) anomdimc

and can be calculated perturbatively in λ using standard techniques. The one loop calcu-

lation described in appendix A yields

C(λ) =
5λ

12π2
+O(λ2). (2.19) csmall
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The function         is related to the anomalous 
dimension         via the relation

At weak coupling it can be calculated using 
standard QFT techniques. One finds 

C(λ)

γ(λ)

γ(λ) = −1

2
+

�
1

4
− C(λ)

C(λ) =
5λ

12π2
+O(λ2)



As the coupling increases,          increases and the 
anomalous dimension becomes more negative. As 
long as it remains real, one can show that the order 
parameter M(p) vanishes. However, if/when         
exceeds 1/4, one can show that M becomes non-
zero.  At large p it behaves like 

where

C(λ)

C(λ)
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At weak coupling C(λ) is small, but as the coupling increases, it can potentially become

of order one, and in particular approach the value C(λc) = 1/4 at which the anomalous

dimension (2.18) becomes complex. As we discuss next, this is the location of the CPT.

In order to solve the second order differential equation (2.17) for the self-energy M(p),

we need to specify the boundary conditions. It turns out that they are

M ′(0) = 0, M(ΛUV ) = 0, (2.20) bcs

where ΛUV is the UV cutoff of the field theory. The first of these follows from the assump-

tion that M(p) is smooth near p = 0. The second is the requirement that the bare fermion

mass term in the Lagrangian vanishes.

There is a subtlety regarding the boundary conditions (2.20), and more generally

the definition (2.10) of M . We defined this quantity as the leading deviation from the

conformal behavior (2.5). Thus, eq. (2.17) is valid only for M(p) ! p. This condition

breaks down at energies on the order of the dynamically generated mass µ, or explicit

mass m. In order to impose the first boundary condition in (2.20), we need to extend the

definition of M(p) beyond the linear regime described by eq. (2.17). This is discussed at

weak coupling in Appendix A, and at strong coupling later in this section. Generally, since

the solution for M is not expected to change much for 0 < p < µ, one can impose the

infrared boundary condition at p ∼ µ.

We are now ready to discuss the solution of (2.17), (2.20). It is easy to see that as

long as γ (2.18) is real (which, assuming C(λ) is a monotonically increasing function of λ,

occurs when λ ≤ λc), the only solution of this (linear) equation with the right boundary

conditions is M = 0. However, for C(λ) > 1/4 (i.e. λ > λc), non-trivial solutions exist.

Defining

κ(λ) = C(λ)− 1

4
, (2.21) kappafull

the general solution of (2.17) takes the form

M(p) = Aµ

(
µ

p

) 1
2

sin

(√
κ ln

p

µ
+ φ

)
. (2.22) clegsoln

8
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is the dynamically generated scale. It is related 
to the UV cutoff by 

which is the requirement that the bare mass is 
zero. This leads to the Miransky-type relation 

To have a large hierarchy of scales, need 
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The scale µ as well as dimensionless parameters A and φ are at this point free. Two of

them, e.g. A and φ, can be fixed by the boundary conditions (2.20). The renormalization

scale µ can be chosen to be equal to the dynamically generated scale,

µ = M(0). (2.23) musig

Any other value is related to this one by a renormalization group transformation.

Assuming that µ ! ΛUV and imposing the second boundary condition in (2.20) leads

to the relation
√
κ ln

ΛUV

µ
+ φ = (n+ 1)π; n = 0, 1, 2, · · · (2.24) hierarchy

The solution (2.22) with n = 0 starts at M = 0 at ΛUV , and monotonically increases to

M ∼ µ at p = µ. There the linear approximationM(p) ! p breaks down, but as mentioned

above, M remains approximately constant over the remaining momentum interval. The

dynamically generated scale is given by

µ $ ΛUV exp

(
− π√

κ

)
. (2.25) bktscaling

To have a large hierarchy of scales between µ and ΛUV , one must be near the transition,

where κ ! 1.

The solutions with n ≥ 1 have a similar structure, but M(p) has in these cases n nodes

in the interval 0 < p < ΛUV . As we will see below, these solutions have higher energies

then the symmetry breaking vacuum, and are not even locally stable (in the regime we

will discuss). Hence, they do not seem to play an important role in the dynamics.

To summarize, as the ’t Hooft coupling λ increases, C(λ) increases and the dimension

∆b of ψψ decreases. The CPT occurs when C(λc) = 1/4. For λ < λc, ∆b is real and

M(p) vanishes; for λ > λc it is complex, and the lowest energy solution has M(p) '= 0,

with large momentum behavior given by (2.22). At λ = λc the anomalous dimension

(2.18) is γ(λc) = −1/2, the operator ψψ has dimension 3/2, (ψψ)2 becomes marginal,3

3 Note that we are assuming here that ∆((ψψ)2) = 2∆(ψψ). This assumption is valid in

the large N limit, where our discussion takes place, but in general this relation receives 1/N

corrections. We will comment on such corrections in the discussion section.

9

M(ΛUV ) = 0
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We are led to the following picture:

A conformal phase transition takes place at a 
value of the coupling satisfying                  .  At 
that point the dimension of the fermion bilinear  
takes the value                    and the two 
leading terms in M(p) are comparable. 

The double trace operator            is marginal. 
This is related to the picture for CPT’s 
proposed by Kaplan, Lee, Son, Stephanov.

   

C(λc) =
1

4

∆(ψ̄ψ) =
3

2

(ψ̄ψ)2



The phase diagram is schematically the following:

For             there are two fixed points which differ in 
the value of the four-Fermi coupling. The anomalous 
dimensions take the values    
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and the two leading terms in the large momentum expansion of M given in (2.11) have

the same momentum dependence (up to logarithmic corrections). This is the analogue of

the statement in four dimensional QCD that the transition from the non Abelian Coulomb

phase to the confining one is expected to occur when ∆(ψψ) = 2 and the quartic fermion

coupling becomes marginal [17].

This picture is also in agreement with the discussion of [10], illustrated in figure 1. For

λ < λc, the theory has two fixed points that differ in the value of the four Fermi coupling.

The anomalous dimensions of ψψ at the two fixed points takes the values

γ±(λ) = −1

2
±

√
1

4
− C(λ). (2.26) anompm

As λ → λc the fixed points approach each other, and above λc they move off the real axis.

The resulting transition satisfies BKT scaling (2.25).

!

!!c

coupling

+"

"

Fig. 1: Fixed point structure as a function of the ’t Hooft coupling λ.

In the discussion above, we have assumed that the anomalous dimension of the mass

operator gets to −1/2 at a finite value of the ’t Hooft coupling, or in other words that C(λ)

gets to 1/4 at a finite value of λ = λc. The perturbative calculation of appendix A which

leads to (2.19) is clearly not enough to establish that. However, holography enables us to

analyze the system, and in particular to calculate C(λ), in the strong coupling regime. We

next turn to that calculation, which will help to determine whether the phase transition

indeed takes place.
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As            , the two fixed points approach each 
other and above       they move off the real axis.

Comments:

• At           the two fixed points in question are 
understood from studies of NJL models.

•  In the above analysis we assumed that        
reaches the value 1/4 at a finite     . This clearly 
goes beyond the weak coupling regime. To see what 
happens we next study this issue at strong 
coupling. 

λ → λc

λc

λ = 0

C(λ)

λ



Strong coupling analysis

At strong coupling, N=4 SYM is described by IIB 
supergravity on                . The D7-brane  can be 
viewed as a probe propagating in this background. 
Metric of                 :

The D7-brane wraps                       . Induced 
metric on its worlvolume: 

AdS5 × S5

AdS5 × S5
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2.2. Strong coupling

For large λ, the dynamics of N = 4 SYM is described by type IIB supergravity (more

generally IIB string theory) in AdS5 × S5. The D7-brane (2.1) can be viewed as a probe

propagating in this background [20]; its back-reaction on the geometry can be neglected

to leading order in 1/N . To describe the intersecting brane system (2.1) it is convenient

to write the metric on AdS5 × S5 as follows:

ds2 =
( r

L

)2
dxµdx

µ +

(
L

r

)2 (
dρ2 + ρ2dΩ2

4 + (dx9)2
)
, (2.27) dthreemetric

where µ = 0, 1, 2, 3, and L is the AdS radius,4 L4 = 2π2λ. The six dimensional space

transverse to the threebranes has been split into an IR5 corresponding to the directions

(45678), which is described by the spherical coordinates (ρ,Ω4), and x9. Thus, these

coordinates satisfy ρ2 = (x4)2+ · · ·+(x8)2, r2 = ρ2+(x9)2. The background is supported

by RR five-form flux, but this will not play a role below and we will not write it explicitly.

In the brane configuration (2.1), the D7-brane is stretched along the surface x3 =

x9 = 0. Thus, the induced metric on its worldvolume is given by

ds2 =
( ρ

L

)2
dxadx

a +

(
L

ρ

)2 (
dρ2 + ρ2dΩ2

4

)
, (2.28) dsevenmm

where a = 0, 1, 2 are directions along the D3/D7 intersection. The metric (2.28) is that of

AdS4×S4; it makes manifest the conformal symmetry of the problem, as well as the other

symmetries mentioned above. However, this configuration is unstable to condensation of

the scalar field corresponding to the fluctuations of the D7-brane in x9 [5,1]. Indeed, if

we generalize the ansatz for the shape of the brane from x9 = 0 to x9 = f(ρ), we find the

induced metric

ds2 =
( r

L

)2
dxadx

a +

(
L

r

)2 (
[1 + f ′(ρ)2]dρ2 + ρ2dΩ2

4

)
. (2.29) dsevenmetric

4 We set α′ = 1.
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This state is conformally invariant (in 2+1 d) but 
it is unstable to condensation of the scalar field 
parametrizing the position of the brane in      .  
Indeed, denoting                one finds the DBI 
action 

x9

x9 = f(ρ)
preliminary draft: 6/21/111 10:35

The profile f(ρ) is determined by minimizing the DBI action

SD7 =

∫
d3x

∫ Λ

0
dρ

L2

ρ2 + f(ρ)2
ρ4
√

1 + f ′(ρ)2 (2.30) dbia

where the prime denotes differentiation w.r.t. ρ and we omitted an overall multiplicative

constant. As is usual in holography, one should think of the radial direction ρ as corre-

sponding to energy scale in the field theory. The upper limit of the integral in (2.30), Λ,

is related to the UV cutoff in the field theory via [21,22]:

Λ ! ΛUV

√
λ. (2.31) cutoffmap

The Euler-Lagrange equation that follows from (2.29) is

∂

∂ρ

(
ρ4

ρ2 + f(ρ)2
f ′(ρ)

√
1 + f ′(ρ)2

)

+
2f(ρ)

(ρ2 + f(ρ)2)2
ρ4
√
1 + f ′(ρ)2 = 0. (2.32) eom

The ground state of the system corresponds to the lowest energy solution of this equation

which satisfies the boundary conditions

f ′(0) = 0, f(Λ) = 0. (2.33) bcsgravity

The first is necessary for regularity of the shape of the brane near the origin of the IR5

labeled by (45678); the second is the statement that we do not displace the sevenbranes

from the threebranes by hand, i.e. that the bare fermion mass vanishes.

The simplest solution of (2.32) with these boundary conditions is f(ρ) = 0. It preserves

the scaling symmetry ρ → αρ, f → αf of (2.32), and corresponds to the conformally

invariant state (2.28). However, as we will see next, the ground state of this system has

f(ρ) $= 0, and breaks the conformal symmetry.

To find it, we start at large ρ, where we expect f(ρ) to be small. Expanding (2.32) in

f(ρ) yields the linear equation of motion

∂

∂ρ

(
ρ2f ′(ρ)

)
+ 2f(ρ) = 0. (2.34) eomlim
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The linearized eom for f is:

This is the KG equation in AdS for a scalar field with 
mass below the BF bound.  Its general solution is

 

One can show that its energy is lower than that of 
the conformal solution f=0.
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If we think of f(ρ, xa) as a scalar field in AdS4, (2.34) is essentially the Klein-Gordon

equation it satisfies. It is easy to check that the mass of this field is below the Breitenlohner-

Freedman (BF) bound [23]. Thus, the system is unstable to its condensation.5

The general solution of (2.34) is

f(ρ) = A µ

(
µ

ρ

) 1
2

sin

(√
7

2
ln

ρ

µ
+ φ

)

, (2.35) realsol

where we introduced two dimensionless parameters A and φ, and an arbitrary scale µ.

Solutions with different values of µ are related by the scaling symmetry mentioned above.

The result (2.35) is reliable at large ρ; as ρ decreases, the small f(ρ) expansion eventually

fails, and we have to go back to the full equation (2.32). As in the previous subsection, we

choose the scale µ to be

µ = f(0) (2.36) choosemu

and then fix the parameters A and φ by imposing the boundary condition f ′(0) = 0. From

(2.36) we find (numerically) A ≈ 0.761;φ ≈ 1.086. To fix f(0), we need to impose the

second boundary condition in (2.33), f(Λ) = 0. This gives an infinite number of solutions,

µn = Λexp

(
− 2√

7
((n+ 1)π − φ)

)
, n = 0, 1, 2, · · · (2.37) soltach

some of which are shown in figure 2. The nth solution has n nodes in the interval 0 < ρ < Λ.

5 See e.g. [24-27] for other discussions of tachyons below the BF bound in AdS. In these papers

the infrared instabilities due to the presence of these tachyons were associated in the dual field

theory to double trace operators. In our case the tachyon is a single trace operator corresponding

to a light mode of an open string whose ends lie on a D7-brane in AdS5 × S5 and the role of the

double trace operators is played by (ψψ)2.
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The strong coupling analysis mirrors closely the weak 
coupling one, with

Thus, we conclude that the strong coupling behavior 
of the function C is:

If C is a continuous function, there must be a phase 
transition at a finite value of      .

p → ρM → f

C∞ = C(λ → ∞) = 2

λ



We conclude that the model undergoes a phase 
transition at finite `t Hooft coupling, from a conformal 
phase to one in which a mass is generated dynamically. 

This transition occurs out of the regime of validity of 
the weak and strong coupling expansions. Therefore, it 
is hard to study the vicinity of the transition, and even 
to decide whether the transition is continuous or first 
order.

We will next discuss approximation schemes which 
allow one to approach this problem. 



Perturbative expansions

The basic idea is to change the parameters of the 
model so that the phase transition is pushed either 
to weak coupling, where one can use standard 
QFT techniques, or to strong coupling, where one 
can use holography.

To this end we replace the flavor D7-branes by 
Dp-branes oriented as follows: 

preliminary draft: 6/21/111 11:59

order the UV cutoff. In the former case the transition must be conformal, driven by the

mechanism described in the previous subsection, and exhibit Miransky scaling (2.25). In

the latter, the transition must occur at a coupling strictly below λc.

In order to distinguish between the two possibilities, we will describe in the next

section two perturbative expansions that allow one to analyze the physics near the phase

transition. By changing the parameters of the system (2.2), we will be able to push the

transition towards weak or strong coupling, and show that in both limits the dynamically

generated scale can be made arbitrarily small in its vicinity. This provides strong evidence

that the phase transition in this system is conformal.

3. Perturbative expansions

In the previous section we saw that the D3/D7 system undergoes a phase transition

at a coupling of order one. In this section we will discuss approximation schemes that

allow one to study this transition. To this end, we will replace the flavor D7-brane by a

Dp-brane which shares d spacetime dimensions with the D3-branes, and is extended in

n = p+ 1− d additional spatial directions. We take the orientation of the branes to be

(3.1) dimensiondn

where solid (dashed) lines indicate directions along (transverse to) the branes. The original

D3/D7 system (2.1) corresponds to (d, n) = (3, 5). The supersymmetric D3/D5 system

studied in [28,29] corresponds to d = n = 3, and one can consider many other systems

with various d and n. We will eventually take these parameters to have general non-integer

values. For d, this is familiar from the ε-expansion, but we will find it useful to vary n as

well.

16



• We now have two additional parameters to play 
with: d, n. The original D3/D7 system corresponds to 
d=3, n=5, but we can treat d, n as continuous free 
parameters.

• For n>d one can check that the only massless states 
of (3,p) strings are fermions, so one can study the 
issues raised before for general d, n in this range. 

•  Our basic idea is to vary the parameters so that the 
phase transition occurs in a region that we can 
control.



Weak coupling

For general d, n, the perturbative analysis gives:

preliminary draft: 6/21/111 15:46

3.1. Weak coupling

The low energy effective field theory corresponding to the brane configuration (3.1) is

described by the action

S = SN=4 +

∫
ddx(iψ /Dψ + gψΓmφmψ) (3.3) qftactiontwo

where the vector index m runs over the 6− n transverse directions in (3.1). φm are four

dimensional fields that transform in the adjoint of SU(N) and parametrize fluctuations of

the threebranes in these directions. They are generalizations of the field φ9 in the previous

section, and the origin of the Yukawa couplings in (3.3) is the same as there.

The weak coupling calculation of the fermion self-energy (2.12) – (2.16) is described

in appendix A. One finds that eq. (2.17) generalizes to

d

dp

(
pd−1M ′(p)

)
+ C(λ)pd−3M(p) = 0, (3.4) cleggend

where

C(λ) =
λ

4dπ2
(2(d− 1) + (6− n)) +O(λ2). (3.5) formcl

The solution of (3.4) at finite coupling depends on the sign of

κ(λ) = C(λ)−
(
d− 2

2

)2

. (3.6) kappagendn

For κ < 0 (i.e. for sufficiently weak coupling), it takes the form

M(p) = m

(
p

µ

)γ

+
〈ψψ〉
pd−2

(
µ

p

)γ

, (3.7) solrggend

where

γ(λ) = γ+(λ) = −d− 2

2
+

√(
d− 2

2

)2

− C(λ) (3.8) anomdimc

is the anomalous dimension of ψψ. In the limit m → 0 the theory becomes conformal, and

M(p) vanishes, as in the discussion of section 2.

18
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The phase transition now occurs when 

For                 ,              , and we can use 
perturbation theory to study the transition.
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In this range of couplings, we also expect a second fixed point, which is formally

obtained by adding to the Lagrangian the irrelevant double trace operator (ψψ)2 and

flowing up the resulting RG trajectory (see figure 1). At this fixed point the anomalous

dimension γ takes the form

γ(λ) = γ−(λ) = −d− 2

2
−

√(
d− 2

2

)2

− C(λ). (3.9) anomdimuv

Hence, the operator (ψψ)2 is relevant (for d > 2); adding it to the Lagrangian leads

back to the fixed point (3.3). Note that the dimension of ψψ at the new fixed point,

∆uv(ψψ) = d− 1+ γ−, satisfies the unitarity bound ∆ ≥ (d− 2)/2 for all d ≤ 4 (assuming

C(λ) > 0). This is consistent with the existence of such a fixed point for all values of the
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µ
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2

sin
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κ ln

p

µ
+ φ

)
. (3.10) clegsolntwo

In this regime, conformal symmetry is dynamically broken. A and φ can be calculated as

in section 2, and the scale µ can be set equal to the dynamically generated scale, as in

(2.23).

The transition between the two regimes occurs at the point where κ (3.6) vanishes.

In section 2 we discussed the case d = 3, where this happens at a coupling of order
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For general d, n, it is convenient to write the metric as

The Dp-brane wraps d of the     , as well as        ,  and 
forms a curve        . The DBI action for f is 
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Note that the fermion mass mψ is not exactly equal to µ, but is comparable to it. Indeed,

mψ is obtained by solving the equation M(mψ) = mψ (see (2.14)). The self energy M(p)

has the following structure: it is roughly constant and equal to µ for p < µ, and then

crosses over to the behavior (3.11) for p > µ. p = µ is in the crossover region between the

two behaviors, but since both give M(µ) ! µ there, it must be that mψ ! µ. One can

obtain the ratio mψ/µ more precisely by solving the equations of appendix A numerically.

3.2. Strong coupling

To generalize the discussion of subsection 2.2 to general d, n, it is convenient to write

the metric of AdS5 × S5 as

ds2 =
( r

L

)2
dxµdx

µ +

(
L

r

)2

(dρ2 + ρ2dΩ2
n−1 + df2 + f2dΩ2

5−n) (3.14) bmetr

where µ = 0, 1, 2, 3, while (ρ,Ωn−1) and (f,Ω5−n) are spherical coordinates on the IRn

and IR6−n transverse to the D3-branes in (3.1). The radial coordinate of AdS5 is given by

r2 = ρ2 + f2.

As before, we take the Dp-brane to wrap IRd−1,1×Sn−1 and form the curve f = f(ρ).

The induced metric on the Dp brane is then given by

ds2Dp =
( r

L

)2
dxadx

a +

(
L

r

)2 [
(1 + f ′(ρ)2)dρ2 + ρ2dΩ2

n−1

]
(3.15) imetr

where a = 0, 1, 2, · · · , d−1 runs over the intersection. For f = 0, (3.15) describes AdSd+1×

Sn−1. As in the discussion of theD3/D7 system in section 2, this configuration is in general

unstable to condensation of f . To study this instability, we write the DBI action for f ,

SDp =

∫
ddx

∫
dρ

(
ρ2 + f2

L2

) d−n

2

ρn−1
√

1 + f ′2. (3.16) gaction

The equation of motion for f (the analog of (2.32) for general d and n) is

∂

∂ρ

(

(ρ2 + f2)(d−n)/2 ρn−1f ′
√

1 + f ′2

)

+ (n− d)(ρ2 + f2)(d−n−2)/2fρn−1
√

1 + f ′2 = 0. (3.17) geom
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The linearized eom for f is:

As before, we can use it to read off 

and 
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The boundary conditions are given by (2.33). The conformal invariance of the system

leads to a scaling symmetry of (3.17), ρ → αρ, f → αf . As in the D3/D7 system, this

symmetry is in general dynamically broken.

For large ρ, we expect f to be small and slowly varying. In this regime, (3.17) reduces

to
∂

∂ρ

(
ρd−1f ′)+ (n− d)ρd−3f = 0. (3.18) glrho

This equation is identical to (3.4) with the map M ↔ f , p ↔ ρ, C ↔ n− d. The relation

between M and f was discussed above (in subsection 2.2). Following that discussion, we

see that the strong coupling analysis implies that

C∞ = lim
λ→∞

C(λ) = n− d (3.19) cinfinity

and (3.6)

κ∞ = lim
λ→∞

κ(λ) = n− d−
(
d− 2

2

)2

. (3.20) kappainfinity

When κ∞ < 0, the system remains6 in the conformal phase for all λ. The anomalous

dimension of ψψ, γ(λ) (3.8), can be calculated at small λ from (3.5), and for large λ from

(3.19); it remains real for all λ.

On the other hand, when κ∞ > 0, i.e. for7

n > nc = d+

(
d− 2

2

)2

, (3.21) ncrit

the system undergoes a CPT at a coupling λc for which κ vanishes. In d = 3 dimensions,

nc = 3 +
1

4
. (3.22) nnccrr

As a check, the D3/D7 system (for which n = 5) is indeed in the regime (3.21), in

agreement with the discussion of section 2. Supersymmetric systems, which have n = d,

are always in the conformal phase κ∞ < 0 (3.20) as one would expect.

6 Assuming that κ(λ) is a monotonic function.
7 Note that nc is always in the range (3.2).

22

preliminary draft: 6/21/111 23:05

The boundary conditions are given by (2.33). The conformal invariance of the system

leads to a scaling symmetry of (3.17), ρ → αρ, f → αf . As in the D3/D7 system, this

symmetry is in general dynamically broken.

For large ρ, we expect f to be small and slowly varying. In this regime, (3.17) reduces

to
∂

∂ρ

(
ρd−1f ′)+ (n− d)ρd−3f = 0. (3.18) glrho

This equation is identical to (3.4) with the map M ↔ f , p ↔ ρ, C ↔ n− d. The relation

between M and f was discussed above (in subsection 2.2). Following that discussion, we

see that the strong coupling analysis implies that

C∞ = lim
λ→∞

C(λ) = n− d (3.19) cinfinity

and (3.6)

κ∞ = lim
λ→∞

κ(λ) = n− d−
(
d− 2

2

)2

. (3.20) kappainfinity

When κ∞ < 0, the system remains6 in the conformal phase for all λ. The anomalous

dimension of ψψ, γ(λ) (3.8), can be calculated at small λ from (3.5), and for large λ from

(3.19); it remains real for all λ.

On the other hand, when κ∞ > 0, i.e. for7

n > nc = d+

(
d− 2

2

)2

, (3.21) ncrit

the system undergoes a CPT at a coupling λc for which κ vanishes. In d = 3 dimensions,

nc = 3 +
1

4
. (3.22) nnccrr

As a check, the D3/D7 system (for which n = 5) is indeed in the regime (3.21), in

agreement with the discussion of section 2. Supersymmetric systems, which have n = d,

are always in the conformal phase κ∞ < 0 (3.20) as one would expect.

6 Assuming that κ(λ) is a monotonic function.
7 Note that nc is always in the range (3.2).

22

preliminary draft: 6/21/111 23:05

The boundary conditions are given by (2.33). The conformal invariance of the system

leads to a scaling symmetry of (3.17), ρ → αρ, f → αf . As in the D3/D7 system, this

symmetry is in general dynamically broken.

For large ρ, we expect f to be small and slowly varying. In this regime, (3.17) reduces

to
∂

∂ρ

(
ρd−1f ′)+ (n− d)ρd−3f = 0. (3.18) glrho

This equation is identical to (3.4) with the map M ↔ f , p ↔ ρ, C ↔ n− d. The relation

between M and f was discussed above (in subsection 2.2). Following that discussion, we

see that the strong coupling analysis implies that

C∞ = lim
λ→∞

C(λ) = n− d (3.19) cinfinity

and (3.6)

κ∞ = lim
λ→∞

κ(λ) = n− d−
(
d− 2

2

)2

. (3.20) kappainfinity

When κ∞ < 0, the system remains6 in the conformal phase for all λ. The anomalous

dimension of ψψ, γ(λ) (3.8), can be calculated at small λ from (3.5), and for large λ from

(3.19); it remains real for all λ.

On the other hand, when κ∞ > 0, i.e. for7

n > nc = d+

(
d− 2

2

)2

, (3.21) ncrit

the system undergoes a CPT at a coupling λc for which κ vanishes. In d = 3 dimensions,

nc = 3 +
1

4
. (3.22) nnccrr

As a check, the D3/D7 system (for which n = 5) is indeed in the regime (3.21), in

agreement with the discussion of section 2. Supersymmetric systems, which have n = d,

are always in the conformal phase κ∞ < 0 (3.20) as one would expect.

6 Assuming that κ(λ) is a monotonic function.
7 Note that nc is always in the range (3.2).

22



If                 the system remains in the conformal 
phase for all     . On the other hand,  for              i.e. 
for 

the system undergoes a CPT at a finite coupling. We 
can explore the transition in gravity by taking 
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In the regime (3.21), the transition from conformal to massive behavior generally

occurs at a coupling of order one. In order to study the transition, we vary n to

n = nc + δ (3.23) nnnccc

such that the asymptotic value of κ, κ∞ = δ ! 1 (3.20), takes a small positive value,

and analyze the resulting theory in the DBI approximation. We have thus pushed the

transition into the regime where we can use holography. Of course, this analysis takes

place in a theory with the wrong value of n; the theory we are interested in has n = 5,

while the DBI approximation is reliable for n near the critical value (3.22). In order to

obtain quantitative predictions, we need to include higher order corrections in δ. These

corrections correspond to α′ corrections to the DBI action (3.16).

The spirit of the approximation here is similar to that of the ε-expansion. There,

e.g. in order to compute the critical exponents of the three dimensional Ising model which

are governed by the IR fixed point of φ4 field theory in three spacetime dimensions, one

continues the dimension of spacetime to 4−ε, so that the fixed point becomes perturbative.

In our case, we push the interesting dynamics to strong coupling, where it can be analyzed

using holography. This leads to a kind of gravitational ε-expansion. As in the original

ε-expansion, the hope is that the physics for a particular value of κ depends smoothly on

n, so that the leading (in this case DBI) approximation provides a good qualitative guide

to the dynamics.

To analyze the theory in the regime where κ∞ is small and positive (i.e. n is only

slightly above nc), we need to solve the DBI equation of motion (3.17) for f . At large ρ,

this equation reduces to (3.18), whose solution behaves like

f(ρ) = Aµ

(
µ

ρ

) d−2
2

sin

(
√
κ∞ ln

ρ

µ
+ φ

)
. (3.24) gsln

The dynamically generated scale is given by

f(0) = µ $ Λexp

(
− π
√
κ∞

)
, (3.25) dyngen
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This leads to a kind of gravitational epsilon-
expansion. To leading order in     , we need to 
solve  the DBI eom for f.  One finds the by 
now familiar large    behavior  

The dynamically generated scale is
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Mesons

To study mesons in the massive phase we need to 
expand about the background solution and study 
small excitations. Find                 :

   - mesons: 

vector mesons: 

 Note the anomalously light scalar meson; it can be 
thought of as an analog of the techni-dilaton.         
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Fig. 3: C(σ)
2 /C(σ)

1 as a function of L4m2/µ2.

In fig. 3 we plot the results of the numerical integration. Note that eq. (4.9) is never

satisfied for negative m2, which is consistent with the stability of the vacuum. The lightest

few states have

m2/µ2 ≈ 0.44, 9.65, 26.63, 51.35, 84, · · · (4.10) dilaton

where µ is definied in (4.1). This spectrum is well described by the general formula

m2
n/µ

2 ≈ 3.89n2 + 5.32n+ 0.44; n = 0, 1, 2, · · · (4.11) approxsigma

It exhibits the characteristic behavior mn ∼ n at large excitation number n. This is

similar to other holographic models, although here it does not have an obvious Kaluza-

Klein interpretation. We also see that the typical mass scale of the mesons is µ ∼ µ/
√
λ.

Thus, at large λ the mesons are deeply bound, as in [31].

Another notable fact is that the lowest lying meson, which corresponds to n = 0 in

(4.11), is quite light relative to the others. Its mass is m0 $ 0.66µ, while the next lightest

meson has mass m $ 3.1µ, and the asymptotic separation between subsequent masses

in (4.11) is mn+1 − mn $ 1.97µ. Thus, m0 is smaller by a factor of three to five than

the typical mass scales in the problem, but the separation between the two scales is not

parametric in the BKT limit. The lowest lying σ-meson can be thought of as a pseudo-NG

29
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One class of states that we consider are σ-mesons, which correspond to fluctuations

of the order parameter for the breaking of conformal symmetry. The lowest of these is

the would-be Goldstone boson of broken scale invariance, the analog of the techni-dilaton

in walking technicolor theories. We will see that it is lighter than the other states in the

spectrum, but not parametrically so. We will also discuss vector mesons, the analogs of

the (techni-) ρ-meson in QCD (technicolor).

Since the vacuum with f(ρ) != 0 spontaneously breaks the global O(6− n) symmetry

to O(5− n), when n < 5 one expects to find massless Goldstone bosons that parametrize

the coset O(6 − n)/O(5 − n). We will describe them and calculate their mass when the

symmetry is broken explicitly.

4.1. σ-mesons

To study radial excitations of the probe brane, we expand the radial scalar f (3.14)

around the solution of (3.17),

f(ρ, xa) = f(ρ) + y(ρ, xa). (4.2) dbiexp

Since the DBI action preserves d dimensional Lorentz symmetry, it suffices to take the

perturbation y to be a function of ρ and t. For such configurations, the action takes the

form

SDp = −
∫

ddx

∫
dρ

ρn−1

rn−d+2

√
r4 − L4ẏ2 + (f ′ + y′)2r4. (4.3) emdbi

For y = 0 this agrees with (3.16) (up to an overall constant, which we do not keep track

of here and below).

Expanding (4.3) around the solution f(ρ) and keeping only terms quadratic in y, we

find the action

S2 = −
∫

ddx

∫
dρ

(
A(ρ)y2 +B(ρ)y′2 − L4C(ρ)ẏ2

)
(4.4) lineardbi
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m2/µ̄2 ≈ 3.08, 15.12, 34.87, 62.32, 97.46, · · ·

(µ̄ ∼ µ/
√
λ)



In technicolor there is a long-standing debate about 
the fate of the dilaton near the CPT in QCD.  There 
are two schools of thought:

(1)                           

(2) 

as             .  

We find that (2) is correct.

mtd/mmeson → 0

mtd/mmeson → const

κ → 0



Intriguingly, in QCD it was argued (by M. 
Hashimoto and K. Yamawaki) that the mass 
of the techni-dilaton is smaller than that of 
the lightest vector meson by a factor of 
about 2.8. In our system this ratio is about 
2.6...



                  Comments

• One can also discuss the system at finite 
temperature and chemical potential. Find a 
line of first order phase transitions 
separating the broken phase from the 
unbroken one. 

• Our results confirm the ideas of Kaplan et 
al, that CPT’s are stable because of their 
topological nature - they arise when two RG 
fixed points approach each other and 
``annihilate.’’ 



• Understanding the phase transition in QCD 
requires more work. From our perspective 
this has to do with generalizing the 
discussion from open strings (DBI) to 
closed strings (gravity). 

• It would also be interesting to see if one 
can realize this kind of transition 
experimentally in systems of 2 dimensional 
electrons interacting with 3 dimensional 
fields.


