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• Supersymmetric CFTs with 4 real SUSIES (N=2 in 3D, or N=1 in 4D) 

have a conserved U(1) R-symmetry that sits in the same supermultiplet as 

the stress-energy tensor.

In a general interacting SCFT this symmetry receives quantum corrections 

and the quantum numbers associated with it become non-trivial functions 

of the parameters of the theory.

• The computation of the exact non-perturbative form of this symmetry is 

an important problem in field theory.

Such exact knowledge can be used to determine the anomalous scaling 

dimensions of chiral operators, trace SUSY RG flows (hence a significant 

part of the topology/geometry of field theory space), test dualities, etc...



• In 4D this problem was solved by Intriligator and Wecht ’05 with the use 

of a-maximization:

The exact U(1) R-symmetry in 4D N=1 SCFTs maximizes `a’ 

(a = the coefficient of the Euler density in the conformal anomaly),

or in terms of ‘t Hooft anomalies 

• Alternatives to a-maximization:

(a) τRR-minimization (applies to any dimension, but hard to compute 

exactly) 

(b) Z-minimization: applies to AdS/CFT (Martelli, Sparks and Yau ’05)

the dual AdS space is AdSd+1 x Y2n-1, Y2n-1 Sasaki-Einstein manifold

the exact U(1) R-symmetry minimizes the Einstein-Hilbert action on Y2n-1

(equivalent to τRR-minimization, applies to general spacetime dimension, 

but requires a weakly curved AdS dual and specific regimes of parameters)

a =
3

32

�
3TrR3 − TrR

�
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• In the last couple of years large classes of 3D N=2 SCFTs have been 

identified (constructed as Chern-Simons-Matter (CSM) theories).

Dynamics controlled by a set of discrete parameters (e.g. rank of gauge 

group, Chern-Simons level, etc...).

There are regimes where these theories are weakly coupled (tractable with 

perturbative methods) and regimes at strong coupling beyond perturbation 

theory.

Intriguing non-perturbative dynamics: 

the exact U(1) R-symmetry receives non-trivial corrections (some operators 

can become highly relevant and induce new RG flows/fixed points),

dualities,

drastic reduction of degrees of freedom (e.g. from N2 to N3/2 in ABJM)
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ZS3 = e−F , F =
1

2
(F + F)

F-maximization in 3D SCFTs
& recent developments

• The proposal of Jafferis (1012.3210)

the exact U(1) R-symmetry in 3D SCFTs maximizes the free energy F of 
the theory on S3  

F is extensive in the dof of the system. 
It can be computed exactly using localization techniques
(Kapustin-Willett-Yaakov ’09, Hama-Hosomichi-Lee ’10, Jafferis ’10)

Very powerful technique: 
F seems to be a good measure of dof (c-function? Jafferis et al ’11, 
Klebanov et al ’11, N3/2 dof on M2-branes Drukker et al), can be used to 
check dualities (holographic, Seiberg-like, mirror)
The computation of more SUSY observables is possible via localization.
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• Some care needs to be taken when coupling the SUSY theory with 
curvature. Doing things properly requires the introduction of extra 
couplings between the matter fields and curvature. These couplings are 
determined by the choice of R-symmetry.

• In this way F becomes a function of the trial R-charges.

• Assuming that the R-symmetry does not mix with accidental flavor 

symmetries we can use the weak coupling formulation of the theory to 

compute F using localization techniques. For a CSM theory with gauge 

group G and chiral superfields in reps Ri one finds (after localization and 

appropriate regularization) a matrix integral:

ZS3 =

� �

Cartan

du eiπTru
2

det
Adj

(sinh(πu))
�

Chirals in rep Ri

det
Ri

�
e�(1−∆i)+iu)

�

�(z) := −z log
�
1− e2πiz

�
+

i

2

�
πz2 +

1

π
Li2

�
e2πiz

��
− iπ

12
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∂∆j |ZS3 |2 = 0

F-maximization



These arguments for F-maximization are plausible and the proposal has 

already passed a number of impressive non-trivial tests:

(1) Reproduces known perturbative results 

(Jafferis ’10, Amariti ’11, Amariti, Siani ’11)

(2) Reproduces Z-minimization 

(Herzog et al ’10, Martelli-Sparks ’11, Cheon-Kim2 ’11, Jafferis et al ’11)

(3) Verifies proposed Seiberg-like dualities 

(Kapustin ’11, Willett-Yaakov ’11)
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Besides a rigorous proof we would like to have more (qualitatively new) 

examples in order to:

(i) probe the validity and possible modifications of the principle in more 

`extreme’ situations, e.g. when some fields decouple and identifiable 

accidental symmetries appear

(ii) obtain more intuition about the matrix integrals that appear in the 

localized expression of Z

(generally complicated integrals, in large-N limits many different saddle 

points, dualities imply complicated (new) mathematical identities)

(iii) is there always a unique extremum of F and is it always a maximum?

We will now discuss an example of a class of theories where we can probe 

most of these properties.
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An+1 CSM theory

The theory of interest is:

    N=2 Chern-Simons at level k with gauge group G=U(N) coupled to one 
    chiral superfield X in the adjoint representation (NO superpotential)

• Important information about this theory can be obtained by studying the 
superpotential deformations

1-adjoint CSM theory
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Â CSM theory ⊕ Wn+1 = TrXn+1 , n = 1, 2, . . .

Â CSM theory



It is convenient to study these theories in the large-N ‘t Hooft limit

• It is believed (Gaiotto, Yin ’07) that the     theory is exactly superconformal 

at the quantum level at any value of the coupling λ.

At weak coupling the R-symmetry can be determined perturbatively and 

assigns R-charge 

to the chiral superfield X.

• No holographic description of this theory in supergravity is expected.

Cannot appeal to AdS/CFT for any information about this theory.

We would like to know the full (non-perturbative) dependence of R on λ.

N, k → ∞ , λ =
N

k
= fixed

Â

R(λ) � 1

2
− 2λ2 +O(λ4) , λ � 1
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• There are regimes along the λ-line where the superpotential deformations

are relevant and drive the theory to a new IR fixed point: the An+1 theory.

• From a D-brane construction we learn that:

(i) the superpotential deformation Wn+1 lifts the supersymmetric vacuum 

when  

(ii) the theory exhibits a Seiberg-like duality:    

NS5  :    0 1 2 3 4 5
(1,k) :    0 1 2 [3,7] 8 9
D3    :    0 1 2 6

n NS5

Nc D3

(1,k)

x6

Wn+1 =
gn+1

n+ 1
TrXn+1

N > nk (equivalently in
�
t Hooft limit λ > n)

U(N)k with Wn+1 ∼ U(nk −N)k with Wn+1

λ ↔ n− λ

can be argued also 
directly in field theory
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• This information has important implications for the undeformed    theory.

(1) The fact that Wn+1 can lift the supersymmetric vacuum at arbitrarily 

large integer values of λ implies that the R-charge decreases (with increasing 

λ) towards 0.

(2) More specifically, there has to be a sequence of critical couplings

where each time one of the chiral operators TrXn+1 becomes marginal. By 

definition 

Â

0 = λ∗
2 = λ∗

3 = λ∗
4 < λ∗

5 < · · · < λ∗
n < λ∗

n+1 < · · ·

R(λ∗
n+1) =

2

n+ 1
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(3) The generic operator TrXn+1 must become marginal before it becomes 

capable of lifting the SUSY vacuum at λ=n. This implies

(4) The existence of a ``conformal window’’ for Seiberg-like duality implies

(5) At λ=λ*
4(n+1) the operator TrXn+1 hits the unitarity bound, becomes free 

and decouples from the rest of the theory. At that point we can no longer use 

it to deform the theory without destabilizing the SUSY vacuum (F-term 

SUSY breaking). Hence, spontaneous SUSY breaking must occur before 

this point: 

λ∗
n+1 < n , R(n) <

2

n+ 1

λ∗
n+1 <

n

2
, R

�n
2

�
<

2

n+ 1 assuming R(λ)
is monotonic
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n < λ∗
4(n+1) ,

1

2(n+ 1)
< R(n)
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Summary

In the     theory the following inequalities are expected to hold:

At weak coupling TrX is already free and decoupled. As we further increase 

the coupling more and more of the chiral ring operators TrXn+1 hit the 

unitarity bound and decouple. At strong coupling there is a sequential 

decommissioning of the bottom part of the chiral ring.

Â

�
n− 3

4

�
≤ λ∗

n+1 <
n

2

1

2(λ+ 1)
≤ R(λ) <

2

λ+ 1
, λ = 1, 2, . . .

R(λ) <
2

2λ+ 1
, λ =

1

2
, 1,

3

2
, . . .

Seiberg-like duality
imposes more constraints

(see below)



F = − log
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N�

j=1

e
iπN
λ t2jdtj




N�

i<j

sinh2 (π(tij))
N�

i,j=1

e�(1−R+itij)

������

−F(λ, N) =
N�

i=1

iπN

λ
t2i +

N�

i<j

log sinh2(πtij) +
N�

i,j=1

�(1−R+ itij)

Ii ≡
i

λ
ti +

1

N

�

j �=i

�
coth(πtij)−

(1−R) sinh(2πtij) + tij sin(2πR)

cosh(2πtij)− cos(2πR)

�
= 0 , i = 1, 2, . . . , N

F-maximization answers

15

What does F-maximization have to say about all this?

• We are instructed to maximize the free energy

• We computed this function (and maximized) in the large-N limit using the 
saddle point approximation. This entails solving the algebraic equations 

at a saddle point configuration



• In general, the ti’s that solve these equations are complex numbers. 

• In lack of a better strategy we solved these equations numerically.

• Practically we introduce a ficticious time coordinate τ and solve the 

differential equations

With suitably chosen coefficient a the solution converges very quickly to the 

equilibrium configuration we are looking for.

• Implemented this approach numerically for various values of N. 

At N=100 the numerical result seems to approach the large-N asymptote 

within a few percent.

16

a
dti(τ)

dτ
= Ii
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 A typical distribution of the eigenvalues ti in the complex plane.

(this particular plot was obtained for N=100, λ=1, R=0.225) 
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 R(λ) after F-maximization 

0 2 4 6 8 10
Λ0.0

0.1

0.2

0.3

0.4

0.5

0.6
R!Λ"

no obvious violation of the bounds

the operators TrXn+1 decouple 
right above λ=n
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∆
�
TrX2

�
− 1

2
∼ 0.025 > 0
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• Checks

The numerical code reproduces very nicely the perturbative result. In fact, 

at leading order in λ the eigenvalue distribution is (Minwalla et al ’11)

The numerical result verifies this behavior.

We have written independently two different numerical codes (in 

Mathematica and Fortran) that reproduce the same result.

We have explored a wide range of initial conditions for the τ-differential 

equations and parameters a.

We find many different multi-cut solutions (both numerically and 

analytically at weak coupling). The 1-cut solution appears to be the 

dominant one and is the one that reproduces the perturbative field theory 

result (saddle-point crosses at stronger coupling??? probably no).
20

t = e
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√
λy , ρ(y) =

�
2

π
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• As we increase the coupling more and more operators hit the unitarity 

bound and decouple creating new accidental symmetries. The first operator 

that decouples non-perturbatively is TrX2 at λ~1. 

In principle, F-maximization in its current form can fail in such situations.

Recall what happens in 4D with a-maximization. In similar cases (e.g. in 4D 

1-adjoint SQCD) when fields decouple one is instructed to subtract the 

anomalies of the decoupling fields from a and maximize the remaining 

contributions (Kutasov, Parnachev, Sahakyan ’05).

In 4D 1-adjoint SQCD N2 dof decouple (mesons). In our CSM example 

order 1 dof decouple at                , hence their effects are not expected to 

have a sizable effect in the large-N limit in this regime.

Standard F-maximization should proceed unobstructed at large-N, finite λ.                 
21
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• Accordingly, there are no obvious violations of the bounds for                 .

• Before changing behavior to cross the first upper bound curve 

(presumably an effect of the accumulating decoupling operators), the 

numerically determined R-charge curve appears to asymptote at large λ to 

the curve       .

• The fact that the curve remains in the vicinity of the lower-bound 

curve               is a feature that has been observed also in 4D 1-adjoint 

SQCD and is natural to anticipate that it will persist for any λ.

λ ∼ O(1)

1

2λ

1

2(λ+ 1)



Perspectives

We have identified a CSM theory with enough complex dynamics that can 
pose as a useful new testing ground for non-perturbative techniques in 3D 
QFT, like F-maximization.

A combination of field and string theory techniques can be used to pose 
(independent) constraints on the theory beyond the perturbative regime.

Open problems:

1) Is the 1-cut saddle point contribution always the dominant one? 
Is the large-N limit amenable to analytic methods?
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2) What happens at stronger coupling where a significant number of fields 

decouple? Is there a proper modification of F-maximization? 

How does one implement such modifications?

3) In order to probe the effects of decoupling fields it will be interesting to 

consider the full CSM analog of 1-adjoint SQCD, namely

U(NC) Chern-Simons theory at level k coupled to:

- 1 chiral superfield in the adjoint

- NF chiral superfields in the fundamental

- NF chiral superfields in the anti-fundamental.

To simplify things it is interesting to consider the Veneziano-like limit

k, NC , NF → ∞ , λ =
NC

k
, x =

NC

NF
fixed
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Using information from string theory (VN ‘08, ’09) one can set some 

constraints on the R-charge function RX for the adjoint superfield X, e.g. 

now

RX(λ,x)  is presumably a monotonically decreasing function of λ at fixed x 

that approaches at strong ‘t Hooft coupling a limiting lowest value

No corresponding information is currently available for RQ, the R-charge 

functions for the quark multiplets.  

�
n−3
4

�
x

x−
�
n−3
4

� < λ∗
n+1 <

nx

x− n
, n ≤ [x]− 3

4

1

2([x] + 2)
< RX,lim <

2

[x] + 1
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4)  CSM theories with 2 adjoint chiral superfields (+ additional matter) are 

also interesting.

In 4D a-maximization has led to an intriguing picture of 2-adjoint N=1 

SCFTs that appear to admit a mysterious ADE classification. A web of RG 

flows connects different members of this classification.

In previous work VN ’09 we provided evidence for a similar structure in a 

subclass of 3D CSM SCFTs. F-maximization can help solidify and extend 

this picture.

It can also help find non-trivial evidence for another set of new Seiberg-

like dualities proposed in VN ’09.

The web of RG flows can be used to further test the proposed F-theorem.
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