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o Many condensed matter systems modeled by spin systems
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o Many condensed matter systems modeled by spin systems
« ConsiderHeisenberg typmodels

H=-J) 8§+, J>0
i

« With a discretge.g. the Ising model?,) or continuouse.g. the
XY model, U(1)) spin symmetry.
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Many condensed matter systems modeled by spin systems
ConsiderHeisenberg typenodels

H=-J) 8§+, J>0
L

with a discret€e.g. the Ising model/s) or continuouse.g. the
XY model, U(1)) spin symmetry.

Paramagnel’ > 7. to ferromagnet transitioft’ < 7. as the
system cools down.

TheU (1) XY model in 2D (Kosterlitz-Thouless model) or 3D
and the ‘©O(3) quantum rotor” in 3D, the Hubbard model. ete
canonical models for super-fluidity/super-conductivity.
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Many condensed matter systems modeled by spin systems
ConsiderHeisenberg typenodels

H=-J) 8§+, J>0
L

with a discret€e.g. the Ising model/s) or continuouse.g. the
XY model, U(1)) spin symmetry.

Paramagnel’ > 7. to ferromagnet transitioft’ < 7. as the
system cools down.

TheU (1) XY model in 2D (Kosterlitz-Thouless model) or 3D
and the ‘©O(3) quantum rotor” in 3D, the Hubbard model. ete
canonical models for super-fluidity/super-conductivity.

Non-trivial critical exponentat T, only computable by
Monte-Carlo forD > 2.
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Generalities
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« Landau approachni(z) =) d(x — x4)5,
« The partition functionZ = [ DieFFL(m)
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« Landau approachni(z) =) d(x — x4)5,
« The partition functionZ = [ DieFFL(m)

AroundT.
Fr, = [ d* 'z (ao(T)|0m(2)]? + ay(T)m(z)|* + az(T)|m(x)|*)
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« Landau approachni(z) =) d(x — x4)5,
« The partition functionZ = [ DieFFL(m)
Around T,

Fr = [d" 2 (ao(T)]|0m1(x)]? + a1 (T)|m(2)* + ao(T) | (2)|)
Zero modes of the system:

1. Goldstone mode (phase fluctuations)fo« T..
2. Longitudinalflat direction arises a$ — 7.
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. Mean field: )/ o a saddle-point of";, = [M| ~ [T — T,
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. Mean field: )/ o a saddle-point of";, = [M| ~ [T — T,

. Gaussian fluctuations.(z) = M + 6m(z).
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. Mean field: M/ « © a saddle-point of7, = M| ~ |T — T.|2

. Gaussian fluctuations.(z) = M + 6m(z).
The spin-spin correlaterordered phase:

L o—L/&(T) 1
(mi(L) m;(0)) = |M o5+ —pgmgpmvivi + Jamgry; (0 —vivy)

Divergingé (T') for T < T, = Goldstone mode.
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. Mean field: M/ « © a saddle-point of7, = M| ~ |T — T.|2

. Gaussian fluctuations.(z) = M + 6m(z).
The spin-spin correlaterordered phase:

. o—L/&(T) |
(mi(L) m;(0) = M Pvivj + =g oivy+ gy (0 —vivy)

Divergingé (T') for T < T, = Goldstone mode.
The spin-spin correlaterdisordered phase:

e_L/g(T)
(m;(L) mj<0)> - 7,d—3+n 0ij

Divergence of (7') and¢(T') asT' — T, = longitudinal zero

mode.
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. Mean field: M/ « © a saddle-point of7, = M| ~ |T — T.|2

. Gaussian fluctuations.(z) = M + 6m(z).
The spin-spin correlaterordered phase:

. o—L/&(T) |
(mi(L) m;(0) = M Pvivj + =g oivy+ gy (0 —vivy)

Divergingé (T') for T < T, = Goldstone mode.
The spin-spin correlaterdisordered phase:

e_L/g(T)
(m;(L) mj<0)> - 7,d—3+n 0ij

Divergence of (7') and¢(T') asT' — T, = longitudinal zero
mode. Mean-field Approxy = 0and{(T) ~ |T — TC|—%
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. Mean field: M/ « © a saddle-point of7, = [ M| ~ |T — T.|z

. Gaussian fluctuations.(z) = M + 6m(z).
The spin-spin correlaterordered phase:

_ e~ L/&(T) 1
(mi(L) m; (0)) = M1 P+ vyt Ly (6 —vivy)

Divergingé (T') for T < T, = Goldstone mode.
The spin-spin correlaterdisordered phase:

e_L/g(T)
(mi(L) m;(0)) = 7,d—3+n 0ij

Divergence of (7)) and¢(T') asT — T, = longitudinal zero
mode. Mean-field Approxy = 0 and&(T) ~ |T — Tc|_%

« Sound-speed of Goldstone mode:< |7|e¥ then
Fr, ~ [|M?(6¢)%.
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. Mean field: M/ « © a saddle-point of7, = [ M| ~ |T — T.|z

. Gaussian fluctuations.(z) = M + 6m(z).
The spin-spin correlaterordered phase:

_ e~ L/&(T) 1
(mi(L) m; (0)) = M1 P+ vyt Ly (6 —vivy)

Divergingé (T') for T < T, = Goldstone mode.
The spin-spin correlaterdisordered phase:

e_L/g(T)
(mi(L) m;(0)) = 7,d—3+n 0ij

Divergence of (7') and¢(T') asT' — T, = longitudinal zero
mode. Mean-field Approxy = 0and{(T) ~ |T — Tc|—%

« Sound-speed of Goldstone mode:< |7|e¥ then
Fp ~ [|MJ(64)%. IntheMFA ¢y ~ [M[?> ~ |T — T,|
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o« Can one model these basic features in GR?
o Can one go beyond the MFA?

Spin Models and Gravity — p.5



o« Can one model these basic features in GR?
« Can one go beyond the MFA?

The answer to both questions is in the affirmative.
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o« Can one model these basic features in GR?
« Can one go beyond the MFA?

The answer to both questions is in the affirmative.

o Map spin-modelss- Gauge theories
o Gauge theories:> GR!
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o« Can one model these basic features in GR?
« Can one go beyond the MFA?

The answer to both questions is in the affirmative.

« Map spin-modelss- Gauge theories
o Gauge theories:> GR!
o A new approach to holographic super-fluids/super-conascto
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Mapping spin-models to gauge theories

Realization of confinement-deconfinement transition in GR
Continuous Hawking-Page transitions in GR

Near transition region: linear-dilaton background

Calculation of observables:
. Second-sound
« Spin-spin correlators from string theory

Discussion
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Lattice gauge theory and Spin-models

Polyakov '78; Susskind '79
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Polyakov '78; Susskind '79

Any LGT with arbitrary gauge grou- in d-dimensionwith
arbitraryadjoint matter

Integrate out gauge invariant statesgenerate effective theory
for the Polyakov loop

Zyar(P;T) ~ Zspm (5,771
Ferromagnetic spin model = —.J .y 5 - 55 + -+
In d — 1 dimensionwith spin symmetrny_' = Center(G)
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o Inversion of temperature:
Deconfined (high T) phase in LG& Ordered (low T) phase of

Spin-model
Confined (low T) phase in LGE Disordered (high T) phase
of Spin-model
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o Inversion of temperature:
Deconfined (high T) phase in LG& Ordered (low T) phase of

Spin-model
Confined (low T) phase in LGE Disordered (high T) phase
of Spin-model

<P*(L)P(O)>conf ~ e—mL’ <P(x)> =0

(P*(L)P(0))accons ~ 1+ ™™, (P(z)) =0

Spin Models and Gravity — p.8



LGT - SpM equivalence

Polyakov '78; Susskind '79; Svetitsky and Yaffe '82
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LGT - SpM equivalence

Polyakov '78; Susskind '79; Svetitsky and Yaffe '82
Consider a LGTwith non-trivial center symmetry
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Polyakov '78; Susskind '79; Svetitsky and Yaffe '82
Consider a LGTwith non-trivial center symmetry
Lagrangian of LGTelectricUy, andmagneticlUy; link variables
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Polyakov '78; Susskind '79; Svetitsky and Yaffe '82

Consider a LGTwith non-trivial center symmetry

Lagrangian of LGTelectricUy, andmagneticlUy; link variables
Typical phase diagram:

T

(*) Polyakov loop
P o< [I05" Usypio i the order

n=0

parameter
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Polyakov '78; Susskind '79; Svetitsky and Yaffe '82

Consider a LGTwith non-trivial center symmetry

Lagrangian of LGTelectricUy, andmagneticlUy; link variables
Typical phase diagram:

T

(*) Polyakov loop
P o TIntg" Usypio is the order

n=0
parameter
(*) Svetitsky and Yaffe '82 At all T the

magnetic fluctuations are gapped
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Polyakov '78; Susskind '79; Svetitsky and Yaffe '82

Consider a LGTwith non-trivial center symmetry

Lagrangian of LGTelectricUy, andmagneticlUy; link variables
Typical phase diagram:

T

(*) Polyakov loop
P o< [I05" Usypio i the order

n=0 T
parameter
(*) Svetitsky and Yaffe '82 At all T the

magnetic fluctuations are gapped

« No long-range magnetic fluctuations integrate outU; ;
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Polyakov '78; Susskind '79; Svetitsky and Yaffe '82

Consider a LGTwith non-trivial center symmetry

Lagrangian of LGTelectricUy, andmagneticlUy; link variables
Typical phase diagram:

T

(*) Polyakov loop
P o< [I05" Usypio i the order

n=0 T
parameter
(*) Svetitsky and Yaffe '82 At all T the

magnetic fluctuations are gapped

« No long-range magnetic fluctuations integrate outU; ;
« The resulting theonZ|[P] describesong-range fluctuationat
criticality

e Polyakov '78; Susskind ‘70 Can be mapped ontosain-modewith
P < 5 (explicitly shown in the limitg > 1)
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LGT - SpM equivalence at criticality

Svetitsky and Yaffe '82
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Svetitsky and Yaffe 82

o If criticality survives thecontinuum limitof the LGT
then critical phenomena of the gauge theory and the Spin mode
are insame universality class
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Svetitsky and Yaffe 82

o If criticality survives thecontinuum limitof the LGT
then critical phenomena of the gauge theory and the Spin mode
are insame universality class

o« Some examples

1. PureSU(2) in d = 4 second order transition with, (Ising)
critical exponents,

2. SU(N) in d dimensions withV > 24,
Spin model withZy fixed pointflows toaU(1) XY model
L~ |0®? 4+ &N 4 &*N + || so the mass-term islevant
for N > 2d/(d—2): Zn — U(1).
d = 4 = non-trivial critical exponentsd > 4 = mean-field
exponents.
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Svetitsky and Yaffe 82

o If criticality survives thecontinuum limitof the LGT
then critical phenomena of the gauge theory and the Spin mode
are insame universality class

o« Some examples

1. PureSU(2) in d = 4 second order transition with, (Ising)
critical exponents,

2. SU(N) in d dimensions withV > 24,
Spin model withZy fixed pointflows toaU(1) XY model
L~ |0®? 4+ &N 4 &*N + || so the mass-term islevant
for N > 2d/(d—2): Zn — U(1).
d = 4 = non-trivial critical exponentsd > 4 = mean-field
exponents.

e FOCus on
SU(N)with N — oo,
Spin model withZ, — U(1) fixed point.
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Spontaneous breaking of/(1) in GR witten 9
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Witten '98

Thermal Gas Black-hole
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Witten '98

Thermal Gas Black-hole

\/
v
-
-
=

2
ds2. ., = b2(r) (d'r2 di? 4 d:z:?i_l) ds2, ,, = b2(r) ( A 4 f(r)dt? + da;fl_l)

« In addition “pure gaugeB,,, -field: ¥ = [, B = const.
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Witten '98

Thermal Gas Black-hole

x0 M ) x0 M .:

S

T ry

\

dst = 03(r) (dr? +di® +dad ) dshyy = 2(r) (45 + f(r)de? + da?_, )
« In addition “pure gaugeB,,, -field: ¥ = [, B = const.
o Topological shift symmetry — ¥ + const.
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Witten '98

Thermal Gas Black-hole

O>m M Jo M

o 0 . — e ——— - —— -

\

r | Iy

dst = 03(r) (dr? +di® +dad ) dshyy = 2(r) (45 + f(r)de? + da?_, )
« In addition “pure gaugeB,,, -field: ¥ = [, B = const.

o Topological shift symmetry — ¥ + const.
Only wrapped stringwith Sr oc [(G +iB + ®R(?)) charged
under thel/ (1) part of it
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Witten '98

Thermal Gas Black-hole

> x0 M )XO M

— 7 ry

2
dst = 03(r) (dr? +di® +dad ) dshyy = 2(r) (45 + f(r)de? + da?_, )

« In addition “pure gaugeB,,, -field: ¥ = [, B = const.

o Topological shift symmetry — ¥ + const.
Only wrapped stringwith Sr oc [(G +iB + ®R(?)) charged
under thel/ (1) part of it

o If (e=°F) = 0thenU/(1) spontaneously broken!
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Witten '98

Thermal Gas Black-hole
O > x0 M ) x0 M
r - T r

dst = 03(r) (dr? +di® +dad ) dshyy = 2(r) (45 + f(r)de? + da?_, )
« In addition “pure gaugeB,,, -field: ¥ = [, B = const.

o Topological shift symmetry — ¥ + const.
Only wrapped stringwith Sr oc [(G +iB + ®R(?)) charged
under thel/ (1) part of it

o If (¢e=°F) #£ 0thenl/(1) spontaneously broken!

o Identify (5) & (P) < (e~°F): Hawking-Page= spontaneous
magnetization!
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Witten '98

Thermal Gas Black-hole

\

r N Iy

2
dsa. = b3(r) (dr2 + dt? + d$3_1) ds% o = b2(r) (}i(r) + f(r)dt? + dazfl_l)

In addition “pure gauge’3,,, -field: ¥ = [, B = const.

Topological shift symmetryg — ¥ + const:
Only wrapped stringwith Sr oc [(G +iB + ®R(?)) charged
under thel/ (1) part of it

If (e=°F) - 0thenl/(1) spontaneously broken!

Identify (5) < (P) & (e~°F): Hawking-Page= spontaneous
magnetization!

Fluctuationsi¥ < Goldstone mode in the dual spin-model
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ldentification of the symmetries

Spin Models and Gravity — p.12



Gravity

Gauge theonry

Spin model

BH,[1)p

Deconf. [1)c

S.fluid Y1)g

TG,U1)p

Conf. U1)c

Normal U1)g

Spin Models and Gravity — p.12



Gravity | Gauge theory Spin model
T BH, 1) | Deconf. 1) S.fluid Y1)g
7 | TG, Ul)g | Conf. Ul)c Normal U1)g

Another condition for superfluidity:
Second speed, — 0 asT — 1. iff a continuous phase transition
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Gravity | Gauge theory Spin model T
T BH, 1) | Deconf. 1) S.fluid Y1)g -1
7 | TG, Ul)g | Conf. Ul)c Normal U1)g

Another condition for superfluidity:
Second speed, — 0 asT — 1. iff a continuous phase transition

Fr o« [|M2(06)% + 0(8]m|)% + - - -
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Gravity | Gauge theory Spin model T

T BH,U1)p | Deconf. {1)c S. fluid Y1)g -1
T i TG,Ul)p | Conf.U1l)c Normal U1)g

Another condition for superfluidity:
Second speed, — 0 asT — 1. iff a continuous phase transition

Fr, oc [|M[*(05v)2 + 9(8]mi|)* + - -
Continuous Hawking-Page- Normal-to-superfluid transition

GRAVITY/SPIN-MODEL CORRESPONDENCE
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Continuous HP In dilaton-Einstein uve. 10
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Continuous HP In dilaton-Einstein uve. 10

Specify
S oc N? [ dlzy/=g (R — £(09)2 + V(@) — e m1%(dB)?)
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U.G. 10
Specify
S x N2 [dHlz/—g (R _E(0D)? + V(D) — %e_%q’(dB)Q)
Look for solutions of the type:
ds2TG = b3(r) (dr2 I gt e d:c?l_l)
ds% = b2(r) ( O 1 f(r)de? + da:fi_l)
Requirements for aecond order Hawking-Page transition
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U.G.'10
Specify
S x N2 [dHlz/—g (R _E(0D)? + V(D) — %e—%q’@w)?)
Look for solutions of the type:
dste = b5(r) (dr? + dt* + dz3_,)
ds% = b2(r) ( O 1 f(r)de? + d:pfl_l)
Requirements for aecond order Hawking-Page transition

I.) There is a finitel,. at which:
Il.) AF(T.) =0. TG(BH) dominates fofl' < T, (T" > T).
i.) AS(7T.) =0

Iv.) Make sure that this happens between the thermodyndgnica
favored BH and TG branches.
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Solution to the constraints
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Solution to the constraints

All can be solved if ag” — T, horizon marginally traps the
singularity!
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All can be solved if ag” — T, horizon marginally traps the
singularity This happens iff

V(®) — voer\/g‘I’ (14 Vi (®))
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All can be solved if ag” — T, horizon marginally traps the
singularity This happens iff

V(@) — VoV ET® (1 4 V,04(D))

Nature of the transition is determined by,;.
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All can be solved if ag” — T, horizon marginally traps the
singularity This happens iff

V(@) — VoV ET® (1 4 V,04(D))

Nature of the transition is determined by,;. Definet = £-*=.

o Nthorder transition\ 7' ~ t":
whenV,,,(®) = e **, with k = % forn > 2
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All can be solved if ag” — T, horizon marginally traps the
singularity This happens iff

V(@) — VoV ET® (1 4 V,04(D))

Nature of the transition is determined by,;. Definet = £-*=.

o Nthorder transition\ 7' ~ t":
whenV,,,(®) = e **, with k = % forn > 2

_1
o BKT scalingAF ~ e ¢
whenVi,,(®) = &,
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Linear-dilaton near 7.
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Study vicinity of 7. in a Einstein-dilaton system 3D XY model:
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Study vicinity of 7. in a Einstein-dilaton syster- 3D XY model:

o Universal resultThe geometry becomeésiear-dilaton
background at criticality

ds* — dt* + dz?_, + dr?; O(r) — 3
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Study vicinity of 7. in a Einstein-dilaton syster- 3D XY model:

o Universal resultThe geometry becomeésiear-dilaton

background at criticality
ds* — dt* + dz?_, + dr?; O(r) — &

o EXxact solution to string theory to all ordersgi
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Study vicinity of 7. in a Einstein-dilaton syster- 3D XY model:

o Universal resultThe geometry becomeésiear-dilaton
background at criticality
ds* — dt* + dz?_, + dr?; O(r) — 3

o EXxact solution to string theory to all ordersgi
o Similar to “Little string theory in a double scaling limitiveon,

Kutasov '99

Spin Models and Gravity — p.15



Large N and o'
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« Boundary value of the dilatof
e Take®; — —oo, N — oo such thae®o N = ¢®o — const.
o Inthe large N limit it is dominated by the sphere diagrams.
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Boundary value of the dilatof,
Take®, — —oo, N — oo such thae®o N = ¢®o — const.

In the large N limit it is dominated by the sphere diagrams.

Expectationstrong correlationss o’ corrections suppressed
The correlation length ~ |T" — T,.| 7" — oo nearT,
In facta/ R, ~ e 2®» vanishes precisely whehn — T..
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Boundary value of the dilatof,
Take®, — —oo, N — oo such thae®o N = ¢®o — const.

In the large N limit it is dominated by the sphere diagrams.

Expectationstrong correlationss o’ corrections suppressed
The correlation length ~ |T" — T,.| 7" — oo nearT,
In facta/ R, ~ e 2®» vanishes precisely whehn — T..

However, another invariant” 9,90, ® — const ~ ;% as
T — 1T,
One has to take into accoumt corrections.
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Boundary value of the dilatof,
Take®, — —oo, N — oo such thae®o N = ¢®o — const.
In the large N limit it is dominated by the sphere diagrams.

Expectationstrong correlationss o’ corrections suppressed
The correlation length ~ |T" — T,.| 7" — oo nearT,
In facta/ R, ~ e 2®» vanishes precisely whehn — T..

However, another invariant” 9,90, ® — const ~ ;% as
T — 1T,
One has to take into accoumt corrections.

Can be done because this regime is governedlmear-dilaton
CFT on the world-sheet!
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Embedding in string theory?
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Embedding in string theory?
Considerd — 1 =3, n = 2.
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Considerd — 1 = 3, n = 2. Simplest example:

V = Vooe%q) (1 -+ 2€2®06_2¢)
A consistent truncation of 1IB with single scalatfilch-warner ‘00
N = 4 sYM softly broken by mass-term for a hyper-multiplet.
Near AdS minimum¥/”(0) = m?/* = 4 = A(4 — A) consistent
with mass-deformation.
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Considerd — 1 = 3, n = 2. Simplest example:
V = Vooe%q) (1 -+ 262%6_2@)

A consistent truncation of 1IB with single scalatfilch-warner ‘00

N = 4 sYM softly broken by mass-term for a hyper-multiplet.
Near AdS minimum¥/”(0) = m?/* = 4 = A(4 — A) consistent
with mass-deformation.

An analytic kink solution fronasymptotically AdSatr = 0,

O = Py

Cosh3( 7)
dsdg = e 3% — 20 (g2 4 da? | + dr?),
sinh®(57)
3
e®") = %0 cosh( 2;)
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Unfortunately this does not do the job:
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Unfortunately this does not do the job:
| Background is NOT linear-dilaton!

Spin Models and Gravity — p.18



Unfortunately this does not do the job:
I Background is NOT linear-dilaton!
I 2nd order HP af. happens in a sub-dominant branch

F
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Unfortunately this does not do the job:
I Background is NOT linear-dilaton!
I 2nd order HP af. happens in a sub-dominant branch

F

Very generic In Einstein-scalar system= Confinement-

deconfinement transition is genericatlyst orderin gauge theories.
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Second speed of sound
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« Landau theory: fluctuations of the order paramétére’”
Fp oc [ |M|?(ddep)* + - -
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« Landau theory: fluctuations of the order paramétére’”
Fp oc [ |M|?(ddep)* + - -

« Second sound vanishesc@sw IM|? ~ (T, —T)%
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. Landau theory: fluctuations of the order paramétéfe™”
Fp, oc [ |M]*(06¢)% + - -

« Second sound vanishesc@sw IM|? ~ (T, —T)%

« Gravity/Spin-Model correspondencej < A, on-shell, at
large N
Expect mean-field scaling, ~ (7. — 7).
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Landau theory: fluctuations of the order parametéte’”
Fr oc [|M|*(96¢)% + -

Second sound vanishes@s~ [M|* ~ (T. — T)*"

Gravity/Spin-Model correspondence;, < A, on-shell, at
large N
Expect mean-field scaling, ~ (7. — 7).

Equate the Landau free energy and iithgulatecon-shell
action:
Fr(T) = AA(T) = Apu(T) — Arc(T)
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Landau theory: fluctuations of the order parametéte’”
Fp oc [|M|*(96¢)* + - -
Second sound vanishes@s~ [M|* ~ (T. — T)*"

Gravity/Spin-Model correspondence;, < A, on-shell, at
large N
Expect mean-field scaling, ~ (7. — 7).

Equate the Landau free energy and iithgulatecon-shell
action:

Fr(T) = AA(T) = Apu(T) — Arc(T)

Associatey with fluctuations of the B-fieldy = [, B
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Landau theory: fluctuations of the order parametéte’”
Fr oc [|M|*(96¢)% + -

Second sound vanishes@s~ [M|* ~ (T. — T)*"

Gravity/Spin-Model correspondence;, < A, on-shell, at
large N
Expect mean-field scaling, ~ (7. — 7).

Equate the Landau free energy and thgulatecon-shell
action:

Fr(T) = AA(T) = Apu(T) — Ara(T)

Associatey with fluctuations of the B-fieldy = [, B
One findsc?, oc e=VVen ~ (T — T).

Second sound indeed vanishe§awith the mean-field
exponent!
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Critical exponents from probe strings
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Critical exponents from probe strings

o ldentification:(m(x)) < (Plxz]) & Wg)
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» In the superfluid (BH) phas& = |1 |i thenm ~ ReP,
m | r~ ImP.
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o ldentification:(m(z)) < (Plz]) & Wpg)
» In the superfluid (BH) phas& = |1 |i thenm ~ ReP,
m | r~ ImP.

« For the two-point function:
g m) (D) =ty ) - ey () e
+{my(x) - m1(0))(0s5 — vivj).
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o ldentification:(m(z)) < (Plz]) & Wpg)
» In the superfluid (BH) phas& = |1 |i thenm ~ ReP,
m | r~ ImP.

« For the two-point function:
g m) (D) =ty ) - ey () e
+{my(x) - m1(0))(0s5 — vivj).

<T?LJ_ : T?LJ_> X <[mP]mP>
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Quantum computation
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Quantum computation

Division of paths:r € (0,r,,) UV, r € (T1m,73) IR
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Division of paths:r € (0,7ry,) UV, r € (rm, ) IR
Forr;, — oo andr,, large enough, the IR region governed by the

linear-dilaton CFT.
T(z) = —2 : 0XFOX,, : +v,0° X"

with v, = —”‘2/°°5M,r
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Division of pathsir € (0,7,,) UV, 7 € (1, rh) IR

Forr;, — oo andr,, large enough, the IR region governed by the
linear-dilaton CFT..

T(z) = —2 : 0XFOX,, : +v,0° X"

with v, = V=4, .

The mass spectrum:

m2=2 (N+N—2)+p2 + (2rkT) + (5%5)" and level

~

matchingkw + N — N = 0.
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Forr;, — oo andr,, large enough, the IR region governed by the
linear-dilaton CFT..

T(z) = —2 : 0XFOX,, : +v,0° X"

with v, = Y¥=4, .

The mass spectrum:

m2=2 (N+N—2)+p2 + (2rkT) + (5%5)" and level

*

matchingkw + N — N = 0.
Semi-classical approximation:
Keep only the lowest mode in the path-integral.
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Forr;, — oo andr,, large enough, the IR region governed by the
linear-dilaton CFT..

T(z) = —2 : 0XFOX,, : +v,0° X"

with v, = Y¥=4,,

The mass spectrum:

m2=2 (N+N—2)+p2 + (2rkT) + (5%5)" and level

*

matchingkw + N — N = 0.
Semi-classical approximation:
Keep only the lowest mode in the path-integral.

One-point function vanishes a¥ (T') — |T — TC\% In the semi-

classical approx!
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Division of paths:r € (0,7ry,) UV, r € (rm, ) IR

Forr;, — oo andr,, large enough, the IR region governed by the
linear-dilaton CFT..

T(z) = —2 : 0XFOX,, : +v,0° X"

with v, = Y¥=4,,

The mass spectrum:

m2=2 (N+N—2)+p2 + (2rkT) + (5%5)" and level

*

matchingkw + N — N = 0.
Semi-classical approximation:
Keep only the lowest mode in the path-integral.

One-point function vanishes a¥ (T') — |T — TC\% In the semi-
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Three types of paths:

(b)

(@)
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Three types of paths:

(@) (m(L) - m(0)), = |M|?. Finite in BH, 0 for TG.

(b)

()
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Three types of paths:

(@) (b) ()

(@) (m(L) - m(0)), = |M|?. Finite in BH, 0 for TG.

(b) SF1 —>mTL—|----
4 (m(L) - m(0))y ~ e ™l for L > 1.
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Two-point function, cont’ed

(c) bulk exchange diagrams:

(17 (L) - 7 (0))e o (ReP[L]ReP[0]) ~ Sy
(71 (L) - M1 (0))e o< (ImP[LIImP[0]) ~ s
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Two-point function, cont’ed

(c) bulk exchange diagrams:

(A (L) - 7 (0))e o (ReP[L]ReP[0]) ~ &y

(M1 (L) -my(0))c oc (ImP|LIImP0]) ~ Sq=5-
m4+ minimum of theCT* modes:G,,,, ®, - - -
m_ minimum of theC'I'"™ modes:B,,,, - - -
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(c) bulk exchange diagrams:

(my (L) - 7y (0))e o (ReP[L]ReP[0]) ~ a5
(71 (L) - 171 (0))e oc (ImP[LIImP[0]) ~ ey
m- minimum of theCT* modes:G,,, D, - --

m—_ minimum of theC'I'™ modes:B,,,, - - -
Spectrum analysis.c., Kiritsis, Nitti'07: CT'T bounded from below for

any T.
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(c) bulk exchange diagrams:

() (L) - 11 (0))e < (ReP[L]ReP[0]) ~ s

(M1 (L) - m1(0))e o< (ImP[LIImP|0]) ~ Srg=5-
m- minimum of theCT* modes:G,,, D, - --
m—_ minimum of theC'I'™ modes:B,,,, - - -
Spectrum analysis.c., Kiritsis, Nitti'07: CT'T bounded from below for
any T.

CT~ include a zero-moden_ = 0 asy = [,, B is modulus:
Goldstone mode!

Correct qualitative behaviofu7 (L) - 17 (0)) ~ e_mij_@;mTL

(M1 (L) - 111 (0)) ~ fa=s
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(c) bulk exchange diagrams:

(e (L) - 11 (0))e o< (ReP[L]ReP[0]) ~ S=s-

(M (L) - m 1 (0))e o< (ImP[LIImP[0]) ~ S5
m- minimum of theCT* modes:G,,, D, - --
m_ minimum of theC'T"™ modes:B,,,, - - -
Spectrum analysis.c., Kiritsis, Nitti'07: CT'T bounded from below for
any T.

CT~ include a zero-moden_ = 0 asy = [,, B is modulus:
Goldstone mode!

Correct qualitative behaviofu7i (L) - 173 (0)) ~ ffm*zj_ g
(7.L(L) - 75.1(0)) ~ i3

Precisely the expected behavior from the XY model,

with §||_1 — min(mp,m4) for L > 1.
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Correlation length &
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(b) Connected paths:

X1
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(b) Connected paths:

X1

.- IRCFT
Propagator in the IRA z(x) ~ [ dp,d?2p, e P=0OL
Dominant mode is theWinding tachyory:

e = —ifns = (& + (b))
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(b) Connected paths:

X1

.- IRCFT
Propagator in the IRA z(x) ~ [ dp,d?2p, e P=0OL
Dominant mode is theWinding tachyory:

1
. 2\ 2
SZ_Z/p:c: (_é (QW%”Q’) )
Indeed diverges ikdentify with Hagedorn a la Atick-Witten

1

1 by (T-T.\ 2
T. = -7 and¢ ’2@( o )
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(b) Connected paths:

X1

.- IRCFT
Propagator in the IRA z(x) ~ [ dp,d?2p, e P=0OF
Dominant mode is theWinding tachyory:

1
. 2\ "2
SZ_Z/p:c: (_é (QW%”O/) )
Indeed diverges iidentify with Hagedorn a la Atick-Witten

1

_ 1 L bs (T=T.\ 2
T = ;- and¢§ — ( )

2v/2 Tc
Mean-field scaling again!
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Summary
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o A general connection between gravity and spin-models.
Normal-to-superfluid transitioss continuous HP in GR
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« A general connection between gravity and spin-models.
Normal-to-superfluid transitiogs continuous HP in GR

« Role of large N clarified: number of spin-states at a site geca
of SU(N).
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A general connection between gravity and spin-models.
Normal-to-superfluid transitiogs continuous HP in GR

Role of large N clarified: number of spin-states at a site seca

of SU(N).

A specific caseSU(N) at large N« XY-type models.

Two-derivative approximation fails nedy.
Physics around’. governed by linear-dilaton CFT
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A general connection between gravity and spin-models.
Normal-to-superfluid transitiogs continuous HP in GR

Role of large N clarified: number of spin-states at a site seca
of SU(N).

A specific caseSU(N) at large N« XY-type models.

Two-derivative approximation fails nedy.
Physics around’. governed by linear-dilaton CFT

Probe strings= spin fluctuations

Scaling in second sound and other critical expongrdadv
from GR as expected.
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Outlook
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o Top-down approach to AdAS/CMT: D-brane constructions,
embedding ircritical string theory
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« Corrections to critical exponents$/N anda’ corrections
beyond the semi-classical approximation?
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embedding ircritical string theory

« Corrections to critical exponents$/N anda’ corrections
beyond the semi-classical approximation?

« Generalization to other spin models e.g. discrete center:
e.g. 3D Ising model from the GR dual of largesy (N )?
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Top-down approach to AdS/CMT: D-brane constructions,
embedding ircritical string theory

Corrections to critical exponent$/N anda’ corrections
beyond the semi-classical approximation?

Generalization to other spin models e.g. discrete center:
e.g. 3D Ising model from the GR dual of largesy (N )?

Embedding in string theory - many examples with lineartdia
geometries, NS5 branes, etc.
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e.g. 3D Ising model from the GR dual of largesy (N )?

Embedding in string theory - many examples with lineartdia
geometries, NS5 branes, etc.

How about 2 spatial dimensions? vortex proliferation in
Kosterlitz-Thouless.
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Top-down approach to AdS/CMT: D-brane constructions,
embedding ircritical string theory

Corrections to critical exponent$/N anda’ corrections
beyond the semi-classical approximation?

Generalization to other spin models e.g. discrete center:
e.g. 3D Ising model from the GR dual of largesy (N )?

Embedding in string theory - many examples with lineartdia
geometries, NS5 branes, etc.

How about 2 spatial dimensions? vortex proliferation in
Kosterlitz-Thouless.

Continuous HP transitions in string theory.
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THANK YOU !
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Solving for the conditions
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. Conditioniii) : Entropy difference\ S = j2—eld=D40n),

can vanish only foBH — TG, i.e. when)M 3z — 0.
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. Conditioniii) : Entropy difference\ S = j2—eld=D40n),

can vanish only foBH — TG, i.e. when)M 3z — 0.
— T, corresponds to the point, — oo = horizon marginally
traps the singularity!
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. Conditioniii) : Entropy difference\ S = j2—eld=D40n),

can vanish only foBH — TG, i.e. when)M 3z — 0.
— T, corresponds to the point, — oo = horizon marginally
traps the singularity!

o Then conditioni) is automatic.
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Solving the conditions, cont’ed
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For conditioni) look at Einstein’s equations:

A// o A/2 5 (I)/Q _
+ = 0,
ff+d-1Af" = o0,
(d—1DA%f+Af +A"f - V 24 _

d—1
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For conditioni) look at Einstein’s equations:

§

A// o A/2 (I)/Q _
+ T 0,
ff+d-1Af" = o0,
(d—1)Af+ A f + A" f — dV 1€2A = 0.

One solves for théblackness function”
T o—(d—1)A

flr)=1- fo"Qh c—(d—1)A
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For conditioni) look at Einstein’s equations:

§

A" _ A2 (I)’Q _
+d—1 0,
' d=1Af = o

o 12 ! ¢! n"ne 4 2A  __
(d=DA2f + Af + A'f — —e* = 0.

One solves for theéblackness function”
T o—(d—1)A

flr)=1- fOTQh c—(d—1)A
TheHawking temperatures.
T-1 — gre(d—1)A(rs) [ o—(d—1)A(T) g,.
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For conditioni) look at Einstein’s equations:

§

A// o A/2 (I)/Q _
+ T 0,
ff+d-1Af" = o0,
(d—DA”f+ A f + A f - dV 1€2A = 0.

One solves for théblackness function”
T o—(d—1)A

flr)=1- fo"Qh c—(d—1)A
TheHawking temperatures.
T_l = 47T€(d_1)A(rh) f()rh e_(d_l)A<T)dr.

T — T. > 0inthe limit A(r;,) — —oo can only happen for
A(r) — —Ager + -+
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For conditioni) look at Einstein’s equations:

§

A// o A/2 (I)/Q _
+ T 0,
ff+d-1Af" = o0,
(d—DA”f+ A f + A f - dV 1€2A = 0.

One solves for théblackness function”
T o—(d—1)A

flr)=1- fo"Qh c—(d—1)A

TheHawking temperatures.
T_l = 47T€(d_1)A(rh) f()rh e_(d_l)A<T)dr.

T — T. > 0inthe limit A(r;,) — —oo can only happen for

A(r) = —Acor + -+ Plug in Einstein®(r) — +Aco(/Shr + - -

and finally:
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For conditioni) look at Einstein’s equations:

§

A// o A/2 (I)/Q _
+ a1 0,
14 @-DAf = o,
(d—DA”f+ A f + A f - dV 1€2A = 0.

One solves for théblackness function”
T o—(d—1)A

flr)=1- fo"Qh c—(d—1)A

TheHawking temperatures.
T_l = 47T€(d_1)A(rh) f()rh e_(d_l)A<T)dr.

T — T. > 0inthe limit A(r;,) — —oo can only happen for

A(r) = —Acor + -+ Plug in Einstein®(r) — +Aco(/Shr + - -

and finally:

&
V(®) = Voo e VTTY (14 Vi (@), & — 0
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