#### **Spin Models and Gravity**

**Umut Gürsoy** 

(CERN)

6th Regional Meeting in String Theory, Milos —June 25, 2011

• Many condensed matter systems modeled by spin systems

- Many condensed matter systems modeled by spin systems
- Consider Heisenberg type models

$$\mathcal{H} = -J\sum_{ij} \vec{s}_i \cdot \vec{s}_j + \cdots, \qquad J > 0$$

• with a discrete (e.g. the Ising model,  $Z_2$ ) or continuous (e.g. the XY model, U(1)) spin symmetry.

- Many condensed matter systems modeled by spin systems
- Consider Heisenberg type models

$$\mathcal{H} = -J\sum_{ij}\vec{s}_i \cdot \vec{s}_j + \cdots, \qquad J > 0$$

- with a discrete (e.g. the Ising model,  $Z_2$ ) or continuous (e.g. the XY model, U(1)) spin symmetry.
- Paramagnet  $T > T_c$  to ferromagnet transition  $T < T_c$  as the system cools down.
- The U(1) XY model in 2D (Kosterlitz-Thouless model) or 3D and the "O(3) quantum rotor" in 3D, the Hubbard model. etc  $\Rightarrow$  canonical models for super-fluidity/super-conductivity.

- Many condensed matter systems modeled by spin systems
- Consider Heisenberg type models

$$\mathcal{H} = -J\sum_{ij}\vec{s}_i \cdot \vec{s}_j + \cdots, \qquad J > 0$$

- with a discrete (e.g. the Ising model,  $Z_2$ ) or continuous (e.g. the XY model, U(1)) spin symmetry.
- Paramagnet  $T > T_c$  to ferromagnet transition  $T < T_c$  as the system cools down.
- The U(1) XY model in 2D (Kosterlitz-Thouless model) or 3D and the "O(3) quantum rotor" in 3D, the Hubbard model. etc  $\Rightarrow$  canonical models for super-fluidity/super-conductivity.
- Non-trivial critical exponents at  $T_c$  only computable by Monte-Carlo for D > 2.

- Landau approach:  $\vec{m}(x) = \sum_a \delta(x x_a) \vec{s}_a$
- The partition function  $Z = \int \mathcal{D}\vec{m}e^{-\beta F_L(m)}$

- Landau approach:  $\vec{m}(x) = \sum_{a} \delta(x x_a) \vec{s}_a$
- The partition function  $Z = \int \mathcal{D}\vec{m}e^{-\beta F_L(m)}$

Around 
$$T_c$$
  
 $F_L = \int d^{d-1}x \left(\alpha_0(T)|\partial \vec{m}(x)|^2 + \alpha_1(T)|\vec{m}(x)|^2 + \alpha_2(T)|\vec{m}(x)|^4\right)$ 

- Landau approach:  $\vec{m}(x) = \sum_{a} \delta(x x_a) \vec{s}_a$
- The partition function  $Z = \int \mathcal{D}\vec{m}e^{-\beta F_L(m)}$

Around  $T_c$  $F_L = \int d^{d-1}x \left(\alpha_0(T)|\partial \vec{m}(x)|^2 + \alpha_1(T)|\vec{m}(x)|^2 + \alpha_2(T)|\vec{m}(x)|^4\right)$ 

Zero modes of the system:

- 1. Goldstone mode (phase fluctuations) for  $T < T_c$ .
- 2. Longitudinal flat direction arises as  $T \rightarrow T_c$



• Mean field:  $\vec{M} \propto \hat{v}$  a saddle-point of  $F_L \Rightarrow |\vec{M}| \sim |T - T_c|^{\frac{1}{2}}$ 

- Mean field:  $\vec{M} \propto \hat{v}$  a saddle-point of  $F_L \Rightarrow |\vec{M}| \sim |T T_c|^{\frac{1}{2}}$
- Gaussian fluctuations:  $\vec{m}(x) = \vec{M} + \delta \vec{m}(x)$ .

- Mean field:  $\vec{M} \propto \hat{v}$  a saddle-point of  $F_L \Rightarrow |\vec{M}| \sim |T-T_c|^{\frac{1}{2}}$
- Gaussian fluctuations:  $\vec{m}(x) = \vec{M} + \delta \vec{m}(x)$ . The spin-spin correlator - ordered phase:

$$\langle m_i(L) m_j(0) \rangle = |\vec{M}|^2 v_i v_j + \frac{e^{-L/\xi_{\parallel}(T)}}{L^{d-3+\eta}} v_i v_j + \frac{1}{L^{d-3+\eta}} (\delta_{ij} - v_i v_j)$$

Diverging  $\xi_{\perp}(T)$  for  $T < T_c \Rightarrow$  Goldstone mode.

- Mean field:  $\vec{M} \propto \hat{v}$  a saddle-point of  $F_L \Rightarrow |\vec{M}| \sim |T T_c|^{\frac{1}{2}}$
- Gaussian fluctuations:  $\vec{m}(x) = \vec{M} + \delta \vec{m}(x)$ . The spin-spin correlator - ordered phase:

$$\langle m_i(L) m_j(0) \rangle = |\vec{M}|^2 v_i v_j + \frac{e^{-L/\xi_{\parallel}(T)}}{L^{d-3+\eta}} v_i v_j + \frac{1}{L^{d-3+\eta}} (\delta_{ij} - v_i v_j)$$

$$\langle m_i(L) \ m_j(0) \rangle = \frac{e^{-L/\xi(T)}}{L^{d-3+\eta}} \delta_{ij}$$

Divergence of  $\xi(T)$  and  $\xi_{\parallel}(T)$  as  $T \to T_c \Rightarrow$  longitudinal zero mode.

- Mean field:  $\vec{M} \propto \hat{v}$  a saddle-point of  $F_L \Rightarrow |\vec{M}| \sim |T T_c|^{\frac{1}{2}}$
- Gaussian fluctuations:  $\vec{m}(x) = \vec{M} + \delta \vec{m}(x)$ . The spin-spin correlator - ordered phase:

$$\langle m_i(L) m_j(0) \rangle = |\vec{M}|^2 v_i v_j + \frac{e^{-L/\xi_{\parallel}(T)}}{L^{d-3+\eta}} v_i v_j + \frac{1}{L^{d-3+\eta}} (\delta_{ij} - v_i v_j)$$

$$\langle m_i(L) \ m_j(0) \rangle = \frac{e^{-L/\xi(T)}}{L^{d-3+\eta}} \delta_{ij}$$

Divergence of  $\xi(T)$  and  $\xi_{\parallel}(T)$  as  $T \to T_c \Rightarrow$  longitudinal zero mode. Mean-field Approx:  $\eta = 0$  and  $\xi(T) \sim |T - T_c|^{-\frac{1}{2}}$ 

- Mean field:  $\vec{M} \propto \hat{v}$  a saddle-point of  $F_L \Rightarrow |\vec{M}| \sim |T-T_c|^{\frac{1}{2}}$
- Gaussian fluctuations:  $\vec{m}(x) = \vec{M} + \delta \vec{m}(x)$ . The spin-spin correlator - ordered phase:

$$\langle m_i(L) m_j(0) \rangle = |\vec{M}|^2 v_i v_j + \frac{e^{-L/\xi_{\parallel}(T)}}{L^{d-3+\eta}} v_i v_j + \frac{1}{L^{d-3+\eta}} (\delta_{ij} - v_i v_j)$$

$$\langle m_i(L) \ m_j(0) \rangle = \frac{e^{-L/\xi(T)}}{L^{d-3+\eta}} \delta_{ij}$$

Divergence of  $\xi(T)$  and  $\xi_{\parallel}(T)$  as  $T \to T_c \Rightarrow$  longitudinal zero mode. Mean-field Approx:  $\eta = 0$  and  $\xi(T) \sim |T - T_c|^{-\frac{1}{2}}$ 

• Sound-speed of Goldstone mode:  $\vec{m} \Leftrightarrow |\vec{m}|e^{i\psi}$  then  $F_L \sim \int |\vec{M}|^2 (\delta \psi)^2$ .

- Mean field:  $\vec{M} \propto \hat{v}$  a saddle-point of  $F_L \Rightarrow |\vec{M}| \sim |T-T_c|^{\frac{1}{2}}$
- Gaussian fluctuations:  $\vec{m}(x) = \vec{M} + \delta \vec{m}(x)$ . The spin-spin correlator - ordered phase:

$$\langle m_i(L) m_j(0) \rangle = |\vec{M}|^2 v_i v_j + \frac{e^{-L/\xi_{\parallel}(T)}}{L^{d-3+\eta}} v_i v_j + \frac{1}{L^{d-3+\eta}} (\delta_{ij} - v_i v_j)$$

$$\langle m_i(L) \ m_j(0) \rangle = \frac{e^{-L/\xi(T)}}{L^{d-3+\eta}} \delta_{ij}$$

Divergence of  $\xi(T)$  and  $\xi_{\parallel}(T)$  as  $T \to T_c \Rightarrow$  longitudinal zero mode. Mean-field Approx:  $\eta = 0$  and  $\xi(T) \sim |T - T_c|^{-\frac{1}{2}}$ 

• Sound-speed of Goldstone mode:  $\vec{m} \Leftrightarrow |\vec{m}|e^{i\psi}$  then  $F_L \sim \int |\vec{M}|^2 (\delta\psi)^2$ . In the MFA  $c_\psi \sim |\vec{M}|^2 \sim |T-T_c|$ 

- Can one model these basic features in GR?
- Can one go beyond the MFA?

- Can one model these basic features in GR?
- Can one go beyond the MFA?

The answer to both questions is in the affirmative.

- Can one model these basic features in GR?
- Can one go beyond the MFA?

The answer to both questions is in the affirmative.

- Map spin-models  $\Rightarrow$  Gauge theories
- Gauge theories  $\Rightarrow$  GR!

- Can one model these basic features in GR?
- Can one go beyond the MFA?

The answer to both questions is in the affirmative.

- Map spin-models  $\Rightarrow$  Gauge theories
- Gauge theories  $\Rightarrow$  GR!
- A new approach to holographic super-fluids/super-conductors

#### **Outline**

- Mapping spin-models to gauge theories
- Realization of confinement-deconfinement transition in GR
- Continuous Hawking-Page transitions in GR
- Near transition region: linear-dilaton background
- Calculation of observables:
  - Second-sound
  - Spin-spin correlators from string theory
- Discussion

## Lattice gauge theory and Spin-models

Polyakov '78; Susskind '79

#### Lattice gauge theory and Spin-models

#### Polyakov '78; Susskind '79

- Any LGT with arbitrary gauge group G in d-dimensions with arbitrary adjoint matter
- Integrate out gauge invariant states ⇒ generate effective theory for the Polyakov loop
- $Z_{LGT}(P;T) \sim Z_{SpM}(\vec{s};T^{-1})$
- Ferromagnetic spin model  $\mathcal{H} = -J \sum_{\langle ij \rangle} \vec{s_i} \cdot \vec{s_j} + \cdots$  in d-1 dimensions with spin symmetry C = Center(G)

#### • Inversion of temperature:

Deconfined (high T) phase in LGT  $\Leftrightarrow$  Ordered (low T) phase of Spin-model

Confined (low T) phase in LGT  $\Leftrightarrow$  Disordered (high T) phase of Spin-model

#### • Inversion of temperature:

Deconfined (high T) phase in LGT  $\Leftrightarrow$  Ordered (low T) phase of Spin-model

Confined (low T) phase in LGT  $\Leftrightarrow$  Disordered (high T) phase of Spin-model

$$\langle P^*(L)P(0)\rangle_{conf} \sim e^{-mL}, \qquad \langle P(x)\rangle = 0$$

$$\langle P^*(L)P(0)\rangle_{deconf} \sim 1 + e^{-mL}, \qquad \langle P(x)\rangle = 0$$

Polyakov '78; Susskind '79; Svetitsky and Yaffe '82

Polyakov '78; Susskind '79; Svetitsky and Yaffe '82

Consider a LGT with non-trivial center symmetry

Polyakov '78; Susskind '79; Svetitsky and Yaffe '82

Consider a LGT with non-trivial center symmetry

Lagrangian of LGT: electric  $U_{\vec{r},0}$  and magnetic  $U_{\vec{r},i}$  link variables

Polyakov '78; Susskind '79; Svetitsky and Yaffe '82

Consider a LGT with non-trivial center symmetry

Lagrangian of LGT: electric  $U_{\vec{r},0}$  and magnetic  $U_{\vec{r},i}$  link variables Typical phase diagram:



(\*) Polyakov loop

 $P \propto \prod_{n=0}^{N_t-1} U_{\vec{r}+n\hat{t},0}$  is the order parameter

Polyakov '78; Susskind '79; Svetitsky and Yaffe '82

Consider a LGT with non-trivial center symmetry

Lagrangian of LGT: electric  $U_{\vec{r},0}$  and magnetic  $U_{\vec{r},i}$  link variables Typical phase diagram:



(\*) Polyakov loop

 $P \propto \prod_{n=0}^{N_t-1} U_{\vec{r}+n\hat{t},0}$  is the order parameter

(\*) Svetitsky and Yaffe '82: At all T the magnetic fluctuations are gapped.

Polyakov '78; Susskind '79; Svetitsky and Yaffe '82

Consider a LGT with non-trivial center symmetry

Lagrangian of LGT: electric  $U_{\vec{r},0}$  and magnetic  $U_{\vec{r},i}$  link variables Typical phase diagram:



• No long-range magnetic fluctuations  $\Rightarrow$  integrate out  $U_{\vec{r},j}$ 

Polyakov '78; Susskind '79; Svetitsky and Yaffe '82

Consider a LGT with non-trivial center symmetry

Lagrangian of LGT: electric  $U_{\vec{r},0}$  and magnetic  $U_{\vec{r},i}$  link variables Typical phase diagram:



(\*) Polyakov loop

 $P \propto \prod_{n=0}^{N_t-1} U_{\vec{r}+n\hat{t},0}$  is the order parameter

(\*) Svetitsky and Yaffe '82: At all T the magnetic fluctuations are gapped.

- No long-range magnetic fluctuations  $\Rightarrow$  integrate out  $U_{\vec{r},j}$
- The resulting theory  $\mathcal{L}[P]$  describes long-range fluctuations at criticality
- Polyakov '78; Susskind '79: Can be mapped onto a spin-model with  $P \Leftrightarrow \vec{s}$  (explicitly shown in the limit  $g \gg 1$ )

Svetitsky and Yaffe '82

Svetitsky and Yaffe '82

• If criticality survives the continuum limit of the LGT then critical phenomena of the gauge theory and the Spin model are in same universality class.

Svetitsky and Yaffe '82

- If criticality survives the continuum limit of the LGT then critical phenomena of the gauge theory and the Spin model are in same universality class.
- Some examples:
  - 1. Pure SU(2) in d=4 second order transition with  $Z_2$  (Ising) critical exponents,
  - 2. SU(N) in d dimensions with  $N > \frac{2d}{d-2}$ , Spin model with  $Z_N$  fixed point flows to a U(1) XY model  $\mathcal{L} \sim |\partial\Phi|^2 + \Phi^N + \Phi^{*N} + |\Phi|^2$  so the mass-term is relevant for N > 2d/(d-2):  $Z_N \to U(1)$ .  $d=4 \Rightarrow$  non-trivial critical exponents;  $d>4 \Rightarrow$  mean-field exponents.

Svetitsky and Yaffe '82

- If criticality survives the continuum limit of the LGT then critical phenomena of the gauge theory and the Spin model are in same universality class.
- Some examples:
  - 1. Pure SU(2) in d=4 second order transition with  $Z_2$  (Ising) critical exponents,
  - 2. SU(N) in d dimensions with  $N > \frac{2d}{d-2}$ , Spin model with  $Z_N$  fixed point flows to a U(1) XY model  $\mathcal{L} \sim |\partial\Phi|^2 + \Phi^N + \Phi^{*N} + |\Phi|^2$  so the mass-term is relevant for N > 2d/(d-2):  $Z_N \to U(1)$ .  $d=4 \Rightarrow$  non-trivial critical exponents;  $d>4 \Rightarrow$  mean-field exponents.
- Focus on

SU(N) with  $N \to \infty$ , Spin model with  $Z_N \to U(1)$  fixed point.



$$ds_{TG}^2 = b_0^2(r) \left( dr^2 + dt^2 + dx_{d-1}^2 \right)$$



$$ds_{TG}^2 = b_0^2(r) \left( dr^2 + dt^2 + dx_{d-1}^2 \right) \qquad ds_{BH}^2 = b^2(r) \left( \frac{dr^2}{f(r)} + f(r) dt^2 + dx_{d-1}^2 \right)$$





$$ds_{TG}^2 = b_0^2(r) \left( dr^2 + dt^2 + dx_{d-1}^2 \right)$$

$$ds_{TG}^2 = b_0^2(r) \left( dr^2 + dt^2 + dx_{d-1}^2 \right) \qquad ds_{BH}^2 = b^2(r) \left( \frac{dr^2}{f(r)} + f(r) dt^2 + dx_{d-1}^2 \right)$$

• In addition "pure gauge"  $B_{\mu\nu}$ -field:  $\Psi = \int_M B = const.$ 





$$ds_{TG}^2 = b_0^2(r) \left( dr^2 + dt^2 + dx_{d-1}^2 \right)$$

$$ds_{TG}^2 = b_0^2(r) \left( dr^2 + dt^2 + dx_{d-1}^2 \right) \qquad ds_{BH}^2 = b^2(r) \left( \frac{dr^2}{f(r)} + f(r) dt^2 + dx_{d-1}^2 \right)$$

- In addition "pure gauge"  $B_{\mu\nu}$ -field:  $\Psi = \int_M B = const.$
- Topological shift symmetry  $\Psi \to \Psi + const$ :





$$ds_{TG}^2 = b_0^2(r) \left( dr^2 + dt^2 + dx_{d-1}^2 \right)$$

$$ds_{TG}^2 = b_0^2(r) \left( dr^2 + dt^2 + dx_{d-1}^2 \right) \qquad ds_{BH}^2 = b^2(r) \left( \frac{dr^2}{f(r)} + f(r) dt^2 + dx_{d-1}^2 \right)$$

- In addition "pure gauge"  $B_{\mu\nu}$ -field:  $\Psi = \int_M B = const.$
- Topological shift symmetry  $\Psi \to \Psi + const$ : Only wrapped strings with  $S_F \propto \int (G + iB + \bar{\Phi}R^{(2)})$  charged under the U(1) part of it





$$ds_{TG}^{2} = b_{0}^{2}(r) \left( dr^{2} + dt^{2} + dx_{d-1}^{2} \right)$$

$$ds_{TG}^2 = b_0^2(r) \left( dr^2 + dt^2 + dx_{d-1}^2 \right) \qquad ds_{BH}^2 = b^2(r) \left( \frac{dr^2}{f(r)} + f(r) dt^2 + dx_{d-1}^2 \right)$$

- In addition "pure gauge"  $B_{\mu\nu}$ -field:  $\Psi = \int_M B = const.$
- Topological shift symmetry  $\Psi \to \Psi + const$ : Only wrapped strings with  $S_F \propto \int (G + iB + \bar{\Phi}R^{(2)})$  charged under the U(1) part of it
- If  $\langle e^{-S_F} \rangle \neq 0$  then U(1) spontaneously broken!





$$ds_{TG}^2 = b_0^2(r) \left( dr^2 + dt^2 + dx_{d-1}^2 \right)$$

$$ds_{TG}^2 = b_0^2(r) \left( dr^2 + dt^2 + dx_{d-1}^2 \right) \qquad ds_{BH}^2 = b^2(r) \left( \frac{dr^2}{f(r)} + f(r)dt^2 + dx_{d-1}^2 \right)$$

- In addition "pure gauge"  $B_{\mu\nu}$ -field:  $\Psi = \int_M B = const.$
- Topological shift symmetry  $\Psi \to \Psi + const$ : Only wrapped strings with  $S_F \propto \int (G + iB + \bar{\Phi}R^{(2)})$  charged under the U(1) part of it
- If  $\langle e^{-S_F} \rangle \neq 0$  then U(1) spontaneously broken!
- Identify  $\langle \vec{s} \rangle \Leftrightarrow \langle P \rangle \Leftrightarrow \langle e^{-S_F} \rangle$ : Hawking-Page  $\Leftrightarrow$  spontaneous magnetization!





$$ds_{TG}^{2} = b_{0}^{2}(r) \left( dr^{2} + dt^{2} + dx_{d-1}^{2} \right)$$

$$ds_{TG}^2 = b_0^2(r) \left( dr^2 + dt^2 + dx_{d-1}^2 \right) \qquad ds_{BH}^2 = b^2(r) \left( \frac{dr^2}{f(r)} + f(r)dt^2 + dx_{d-1}^2 \right)$$

- In addition "pure gauge"  $B_{\mu\nu}$ -field:  $\Psi = \int_M B = const.$
- Topological shift symmetry  $\Psi \to \Psi + const$ : Only wrapped strings with  $S_F \propto \int (G + iB + \bar{\Phi}R^{(2)})$  charged under the U(1) part of it
- If  $\langle e^{-S_F} \rangle \neq 0$  then U(1) spontaneously broken!
- Identify  $\langle \vec{s} \rangle \Leftrightarrow \langle P \rangle \Leftrightarrow \langle e^{-S_F} \rangle$ : Hawking-Page  $\Leftrightarrow$  spontaneous magnetization!
- Fluctuations  $\delta\Psi \Leftrightarrow$  Goldstone mode in the dual spin-model

|              | Gravity      | Gauge theory                 | Spin model       | T        |
|--------------|--------------|------------------------------|------------------|----------|
| $\int_{T_a}$ | $BH, U(1)_B$ | Deconf. $U(1)_{\mathcal{C}}$ | S.fluid $U(1)_S$ | $T^{-1}$ |
| $T^{-1}c$    | $TG, U(1)_B$ | $Conf. U(1)_{\mathcal{C}}$   | $Normal\ U(1)_S$ |          |

|   |                   | Gravity      | Gauge theory                         | Spin model       | $\mid T \mid$ |
|---|-------------------|--------------|--------------------------------------|------------------|---------------|
|   | $\Gamma_{\alpha}$ | $BH, V(1)_B$ | $Deconf. \cline{U}(1)_{\mathcal{C}}$ | S.fluid $U(1)_S$ | $T^{-1}$      |
| T | -c                |              | $Conf. U(1)_{\mathcal{C}}$           | $Normal\ U(1)_S$ |               |

#### Another condition for superfluidity:

Second speed  $c_{\psi} \to 0$  as  $T \to T_c$  iff a continuous phase transition

|                    | Gravity      | Gauge theory                         | Spin model               | $\mid T \mid$ |
|--------------------|--------------|--------------------------------------|--------------------------|---------------|
| $\Big \Big _{T_a}$ | $BH, U(1)_B$ | $Deconf. \cline{U}(1)_{\mathcal{C}}$ | $S.fluid \clipsup (1)_S$ | $T^{-1}$      |
| $T^{-1}c$          | $TG, U(1)_B$ | $Conf. U(1)_{\mathcal{C}}$           | $Normal\ U(1)_S$         |               |

#### Another condition for superfluidity:

Second speed  $c_{\psi} \to 0$  as  $T \to T_c$  iff a continuous phase transition

$$F_L \propto \int |\vec{M}|^2 (\partial \delta \psi)^2 + \partial (\delta |\vec{m}|)^2 + \cdots$$

|                | Gravity      | Gauge theory                                 | Spin model               | $\mid T \mid$ |
|----------------|--------------|----------------------------------------------|--------------------------|---------------|
| $\int_{T_{a}}$ | $BH, U(1)_B$ | $oxed{Deconf. \cline{V}\!(1)_{\mathcal{C}}}$ | $S.fluid \clipsup (1)_S$ | $T^{-1}$      |
| $T^{-c}$       | $TG, U(1)_B$ | $Conf. U(1)_{\mathcal{C}}$                   | $Normal\ U(1)_S$         |               |

Another condition for superfluidity:

Second speed  $c_{\psi} \to 0$  as  $T \to T_c$  iff a continuous phase transition

$$F_L \propto \int |\vec{M}|^2 (\partial \delta \psi)^2 + \partial (\delta |\vec{m}|)^2 + \cdots$$

Continuous Hawking-Page ⇔ Normal-to-superfluid transition

GRAVITY/SPIN-MODEL CORRESPONDENCE

### Continuous HP in dilaton-Einstein u.g. '10

#### Continuous HP in dilaton-Einstein v.g. '10

Specify

$$\mathcal{S} \propto N^2 \int d^{d+1}x \sqrt{-g} \left( R - \xi(\partial \Phi)^2 + V(\Phi) - \frac{1}{12} e^{-\frac{8}{d-1}\Phi} (dB)^2 \right)$$

#### Continuous HP in dilaton-Einstein v.g. '10

Specify

$$\mathcal{S} \propto N^2 \int d^{d+1}x \sqrt{-g} \left( R - \xi(\partial\Phi)^2 + V(\Phi) - \frac{1}{12} e^{-\frac{8}{d-1}\Phi} (dB)^2 \right)$$

Look for solutions of the type:

$$\begin{split} ds_{TG}^2 &= b_0^2(r) \left( dr^2 + dt^2 + dx_{d-1}^2 \right) \\ ds_{BH}^2 &= b^2(r) \left( \frac{dr^2}{f(r)} + f(r) dt^2 + dx_{d-1}^2 \right) \end{split}$$

Requirements for a second order Hawking-Page transition:

#### Continuous HP in dilaton-Einstein v.g. '10

Specify

$$\mathcal{S} \propto N^2 \int d^{d+1}x \sqrt{-g} \left( R - \xi(\partial \Phi)^2 + V(\Phi) - \frac{1}{12} e^{-\frac{8}{d-1}\Phi} (dB)^2 \right)$$

Look for solutions of the type:

$$\begin{split} ds_{TG}^2 &= b_0^2(r) \left( dr^2 + dt^2 + dx_{d-1}^2 \right) \\ ds_{BH}^2 &= b^2(r) \left( \frac{dr^2}{f(r)} + f(r) dt^2 + dx_{d-1}^2 \right) \end{split}$$

Requirements for a second order Hawking-Page transition:

- i.) There is a finite  $T_c$  at which:
- ii.)  $\Delta F(T_c) = 0$ . TG(BH) dominates for  $T < T_c$   $(T > T_c)$ .
- iii.)  $\Delta S(T_c) = 0$
- iv.) Make sure that this happens between the thermodynamically favored BH and TG branches.

All can be solved if as  $T \to T_c$  horizon marginally traps the singularity!

All can be solved if as  $T \to T_c$  horizon marginally traps the singularity! This happens iff

$$V(\Phi) \to V_{\infty} e^{2\sqrt{\frac{\xi}{d-1}}\Phi} \left(1 + V_{sub}(\Phi)\right)$$

All can be solved if as  $T \to T_c$  horizon marginally traps the singularity! This happens iff

$$V(\Phi) \to V_{\infty} e^{2\sqrt{\frac{\xi}{d-1}}\Phi} \left(1 + V_{sub}(\Phi)\right)$$

Nature of the transition is determined by  $V_{sub}$ .

All can be solved if as  $T \to T_c$  horizon marginally traps the singularity! This happens iff

$$V(\Phi) \to V_{\infty} e^{2\sqrt{\frac{\xi}{d-1}}\Phi} \left(1 + V_{sub}(\Phi)\right)$$

Nature of the transition is determined by  $V_{sub}$ . Define  $t = \frac{T - T_c}{T_c}$ .

• nth order transition  $\Delta F \sim t^n$ :

when 
$$V_{sub}(\Phi) = e^{-\kappa \Phi}$$
, with  $\kappa = \sqrt{\frac{\zeta(d-1)}{n-1}}$  for  $n \geq 2$ 

All can be solved if as  $T \to T_c$  horizon marginally traps the singularity! This happens iff

$$V(\Phi) \to V_{\infty} e^{2\sqrt{\frac{\xi}{d-1}}\Phi} \left(1 + V_{sub}(\Phi)\right)$$

Nature of the transition is determined by  $V_{sub}$ . Define  $t = \frac{T - T_c}{T_c}$ .

- nth order transition  $\Delta F \sim t^n$ : when  $V_{sub}(\Phi) = e^{-\kappa \Phi}$ , with  $\kappa = \sqrt{\frac{\zeta(d-1)}{n-1}}$  for  $n \geq 2$
- BKT scaling  $\Delta F \sim e^{-ct^{-\frac{1}{\alpha}}}$ : when  $V_{sub}(\Phi) = \Phi^{-\alpha}$ .

Study vicinity of  $T_c$  in a Einstein-dilaton system  $\Leftrightarrow$  3D XY model:

Study vicinity of  $T_c$  in a Einstein-dilaton system  $\Leftrightarrow$  3D XY model:

• Universal result: The geometry becomes linear-dilaton background at criticality:

$$ds^2 \to dt^2 + dx_{d-1}^2 + dr^2; \qquad \Phi(r) \to \frac{3r}{2\ell}$$

Study vicinity of  $T_c$  in a Einstein-dilaton system  $\Leftrightarrow$  3D XY model:

• Universal result: The geometry becomes linear-dilaton background at criticality:

$$ds^2 \to dt^2 + dx_{d-1}^2 + dr^2; \qquad \Phi(r) \to \frac{3r}{2\ell}$$

• Exact solution to string theory to all orders in  $\ell_s!$ 

Study vicinity of  $T_c$  in a Einstein-dilaton system  $\Leftrightarrow$  3D XY model:

• Universal result: The geometry becomes linear-dilaton background at criticality:

$$ds^2 \to dt^2 + dx_{d-1}^2 + dr^2; \qquad \Phi(r) \to \frac{3r}{2\ell}$$

- Exact solution to string theory to all orders in  $\ell_s!$
- Similar to "Little string theory in a double scaling limit" Giveon, Kutasov '99

- Boundary value of the dilaton  $\bar{\Phi}_0$
- Take  $\bar{\Phi}_0 \to -\infty$ ,  $N \to \infty$  such that  $e^{\bar{\Phi}_0}N = e^{\Phi_0} = const.$
- In the large N limit it is dominated by the sphere diagrams.

- Boundary value of the dilaton  $\bar{\Phi}_0$
- Take  $\bar{\Phi}_0 \to -\infty$ ,  $N \to \infty$  such that  $e^{\bar{\Phi}_0}N = e^{\Phi_0} = const.$
- In the large N limit it is dominated by the sphere diagrams.
- Expectation: strong correlations  $\Leftrightarrow \alpha'$  corrections suppressed
- The correlation length  $\xi \sim |T T_c|^{-\nu} \to \infty$  near  $T_c$
- In fact  $\alpha' R_s \sim e^{-2\Phi_h}$  vanishes precisely when  $T \to T_c$ .

- Boundary value of the dilaton  $\bar{\Phi}_0$
- Take  $\bar{\Phi}_0 \to -\infty$ ,  $N \to \infty$  such that  $e^{\bar{\Phi}_0}N = e^{\Phi_0} = const.$
- In the large N limit it is dominated by the sphere diagrams.
- Expectation: strong correlations  $\Leftrightarrow \alpha'$  corrections suppressed
- The correlation length  $\xi \sim |T T_c|^{-\nu} \to \infty$  near  $T_c$
- In fact  $\alpha' R_s \sim e^{-2\Phi_h}$  vanishes precisely when  $T \to T_c$ .
- However, another invariant  $g_s^{\mu\nu}\partial_\mu\Phi\partial_\nu\Phi\to const\sim\ell_s^{-2}$  as  $T\to T_c$

One has to take into account  $\alpha'$  corrections.

## Large N and $\alpha'$

- Boundary value of the dilaton  $\bar{\Phi}_0$
- Take  $\bar{\Phi}_0 \to -\infty$ ,  $N \to \infty$  such that  $e^{\bar{\Phi}_0}N = e^{\Phi_0} = const.$
- In the large N limit it is dominated by the sphere diagrams.
- Expectation: strong correlations  $\Leftrightarrow \alpha'$  corrections suppressed
- The correlation length  $\xi \sim |T T_c|^{-\nu} \to \infty$  near  $T_c$
- In fact  $\alpha' R_s \sim e^{-2\Phi_h}$  vanishes precisely when  $T \to T_c$ .
- However, another invariant  $g_s^{\mu\nu}\partial_\mu\Phi\partial_\nu\Phi\to const\sim\ell_s^{-2}$  as  $T\to T_c$

One has to take into account  $\alpha'$  corrections.

Can be done because this regime is governed by a linear-dilaton
 CFT on the world-sheet!

Consider d - 1 = 3, n = 2.

Consider d - 1 = 3, n = 2. Simplest example:

$$V = V_{\infty} e^{\frac{4}{3}\Phi} \left( 1 + 2e^{2\Phi_0} e^{-2\Phi} \right)$$

A consistent truncation of IIB with single scalar! Pilch-Warner '00  $\mathcal{N}=4$  sYM softly broken by mass-term for a hyper-multiplet. Near AdS minimum:  $V''(0)=m^2\ell^2=4=\Delta(4-\Delta)$  consistent with mass-deformation.

Consider d - 1 = 3, n = 2. Simplest example:

$$V = V_{\infty} e^{\frac{4}{3}\Phi} \left( 1 + 2e^{2\Phi_0} e^{-2\Phi} \right)$$

A consistent truncation of IIB with single scalar! Pilch-Warner '00  $\mathcal{N} = 4$  sYM softly broken by mass-term for a hyper-multiplet.

Near AdS minimum:  $V''(0) = m^2 \ell^2 = 4 = \Delta(4 - \Delta)$  consistent with mass-deformation.

An analytic kink solution from asymptotically AdS at r = 0,  $\Phi = \Phi_0$ :

$$ds_{TG}^{2} = e^{-\frac{4}{3}\Phi_{0}} \frac{\cosh^{\frac{2}{3}}(\frac{3r}{2\ell})}{\sinh^{2}(\frac{3r}{2\ell})} (dt^{2} + dx_{d-1}^{2} + dr^{2}),$$

$$e^{\Phi(r)} = e^{\Phi_{0}} \cosh(\frac{3r}{2\ell}).$$

! Background is NOT linear-dilaton!

- ! Background is NOT linear-dilaton!
- ! 2nd order HP at  $T_c$  happens in a sub-dominant branch



- ! Background is NOT linear-dilaton!
- ! 2nd order HP at  $T_c$  happens in a sub-dominant branch



Very generic in Einstein-scalar system  $\Leftrightarrow$  Confinement-deconfinement transition is generically first order in gauge theories.

• Landau theory: fluctuations of the order parameter  $|M|e^{i\psi}$  $F_L \propto \int |M|^2 (\partial \delta \psi)^2 + \cdots$ 

- Landau theory: fluctuations of the order parameter  $|M|e^{i\psi}$  $F_L \propto \int |M|^2 (\partial \delta \psi)^2 + \cdots$
- Second sound vanishes as  $c_{\psi}^2 \sim |M|^2 \sim (T_c T)^{2\beta}$

- Landau theory: fluctuations of the order parameter  $|M|e^{i\psi}$  $F_L \propto \int |M|^2 (\partial \delta \psi)^2 + \cdots$
- Second sound vanishes as  $c_{\psi}^2 \sim |M|^2 \sim (T_c T)^{2\beta}$
- Gravity/Spin-Model correspondence:  $F_L \Leftrightarrow \mathcal{A}_{gr}$  on-shell, at large N

- Landau theory: fluctuations of the order parameter  $|M|e^{i\psi}$  $F_L \propto \int |M|^2 (\partial \delta \psi)^2 + \cdots$
- Second sound vanishes as  $c_{\psi}^2 \sim |M|^2 \sim (T_c T)^{2\beta}$
- Gravity/Spin-Model correspondence:  $F_L \Leftrightarrow \mathcal{A}_{gr}$  on-shell, at large N Expect mean-field scaling  $c_{\psi}^2 \sim (T_c T)$ .
- Equate the Landau free energy and the regulated on-shell action:

$$F_L(T) = \Delta A(T) = A_{BH}(T) - A_{TG}(T)$$

- Landau theory: fluctuations of the order parameter  $|M|e^{i\psi}$   $F_L \propto \int |M|^2 (\partial \delta \psi)^2 + \cdots$
- Second sound vanishes as  $c_{\psi}^2 \sim |M|^2 \sim (T_c T)^{2\beta}$
- Gravity/Spin-Model correspondence:  $F_L \Leftrightarrow \mathcal{A}_{gr}$  on-shell, at large N Expect mean-field scaling  $c_{\psi}^2 \sim (T_c T)$ .
- Equate the Landau free energy and the regulated on-shell action:

$$F_L(T) = \Delta A(T) = A_{BH}(T) - A_{TG}(T)$$

• Associate  $\delta \psi$  with fluctuations of the B-field:  $\psi = \int_M B$ 

- Landau theory: fluctuations of the order parameter  $|M|e^{i\psi}$  $F_L \propto \int |M|^2 (\partial \delta \psi)^2 + \cdots$
- Second sound vanishes as  $c_{\psi}^2 \sim |M|^2 \sim (T_c T)^{2\beta}$
- Gravity/Spin-Model correspondence:  $F_L \Leftrightarrow \mathcal{A}_{gr}$  on-shell, at large N Expect mean-field scaling  $c_{\psi}^2 \sim (T_c T)$ .
- Equate the Landau free energy and the regulated on-shell action:

$$F_L(T) = \Delta A(T) = A_{BH}(T) - A_{TG}(T)$$

- Associate  $\delta \psi$  with fluctuations of the B-field:  $\psi = \int_M B$
- One finds  $c_{\psi}^2 \propto e^{-\sqrt{V_{\infty}}r_h} \sim (T T_c)$ .
- Second sound indeed vanishes at  $T_c$  with the mean-field exponent!

• Identification:  $\langle \vec{m}(x) \rangle \Leftrightarrow \langle P[x] \rangle \Leftrightarrow \langle \mathcal{W}_F \rangle$ 

- Identification:  $\langle \vec{m}(x) \rangle \Leftrightarrow \langle P[x] \rangle \Leftrightarrow \langle \mathcal{W}_F \rangle$
- In the superfluid (BH) phase  $\vec{m}=|\vec{M}|\vec{v}$  then  $m_{\parallel}\sim ReP$ ,  $m_{\perp}\sim ImP$ .

- Identification:  $\langle \vec{m}(x) \rangle \Leftrightarrow \langle P[x] \rangle \Leftrightarrow \langle \mathcal{W}_F \rangle$
- In the superfluid (BH) phase  $\vec{m}=|\vec{M}|\vec{v}$  then  $m_{\parallel}\sim ReP$ ,  $m_{\perp}\sim ImP$ .
- For the two-point function:

$$\langle m_i(x) m_j(0) \rangle = \langle \vec{m}_{\parallel}(x) \cdot \vec{m}_{\parallel}(0) \rangle v_i v_j + \langle \vec{m}_{\perp}(x) \cdot \vec{m}_{\perp}(0) \rangle (\delta_{ij} - v_i v_j).$$

- Identification:  $\langle \vec{m}(x) \rangle \Leftrightarrow \langle P[x] \rangle \Leftrightarrow \langle \mathcal{W}_F \rangle$
- In the superfluid (BH) phase  $\vec{m}=|\vec{M}|\vec{v}$  then  $m_{\parallel}\sim ReP$ ,  $m_{\perp}\sim ImP$ .
- For the two-point function:

$$\langle m_{i}(x) m_{j}(0) \rangle = \langle \vec{m}_{\parallel}(x) \cdot \vec{m}_{\parallel}(0) \rangle v_{i} v_{j}$$

$$+ \langle \vec{m}_{\perp}(x) \cdot \vec{m}_{\perp}(0) \rangle (\delta_{ij} - v_{i} v_{j}).$$

$$\langle \vec{m}_{\parallel} \cdot \vec{m}_{\parallel} \rangle \propto \langle RePReP \rangle$$

$$\langle \vec{m}_{\perp} \cdot \vec{m}_{\perp} \rangle \propto \langle ImPImP \rangle$$

Division of paths:  $r \in (0, r_m)$  UV,  $r \in (r_m, r_h)$  IR

Division of paths:  $r \in (0, r_m)$  UV,  $r \in (r_m, r_h)$  IR

For  $r_h \to \infty$  and  $r_m$  large enough, the IR region governed by the linear-dilaton CFT:.

$$T(z) = -\frac{1}{\alpha'} : \partial X^{\mu} \partial X_{\mu} : +v_{\mu} \partial^{2} X^{\mu}$$

with 
$$v_{\mu} = \frac{\sqrt{V_{\infty}}}{2} \delta_{\mu,r}$$

Division of paths:  $r \in (0, r_m)$  UV,  $r \in (r_m, r_h)$  IR

For  $r_h \to \infty$  and  $r_m$  large enough, the IR region governed by the linear-dilaton CFT:.

$$T(z) = -\frac{1}{\alpha'} : \partial X^{\mu} \partial X_{\mu} : +v_{\mu} \partial^2 X^{\mu}$$

with 
$$v_{\mu}=rac{\sqrt{V_{\infty}}}{2}\delta_{\mu,r}$$

The mass spectrum:

$$m_*^2 \equiv \frac{2}{\alpha'} \left( N + \tilde{N} - 2 \right) + p_\perp^2 + (2\pi kT)^2 + \left( \frac{w}{2\pi T \alpha'} \right)^2$$
 and level matching  $kw + N - \tilde{N} = 0$ .

Division of paths:  $r \in (0, r_m)$  UV,  $r \in (r_m, r_h)$  IR

For  $r_h \to \infty$  and  $r_m$  large enough, the IR region governed by the linear-dilaton CFT:.

$$T(z) = -\frac{1}{\alpha'} : \partial X^{\mu} \partial X_{\mu} : +v_{\mu} \partial^2 X^{\mu}$$

with 
$$v_{\mu} = \frac{\sqrt{V_{\infty}}}{2} \delta_{\mu,r}$$

The mass spectrum:

$$m_*^2 \equiv \frac{2}{\alpha'} \left( N + \tilde{N} - 2 \right) + p_\perp^2 + (2\pi kT)^2 + \left( \frac{w}{2\pi T \alpha'} \right)^2$$
 and level

matching  $kw + N - \tilde{N} = 0$ .

Semi-classical approximation:

Keep only the lowest mode in the path-integral.

Division of paths:  $r \in (0, r_m)$  UV,  $r \in (r_m, r_h)$  IR

For  $r_h \to \infty$  and  $r_m$  large enough, the IR region governed by the linear-dilaton CFT:.

$$T(z) = -\frac{1}{\alpha'} : \partial X^{\mu} \partial X_{\mu} : +v_{\mu} \partial^2 X^{\mu}$$

with 
$$v_{\mu}=rac{\sqrt{V_{\infty}}}{2}\delta_{\mu,r}$$

The mass spectrum:

$$m_*^2 \equiv \frac{2}{\alpha'} \left( N + \tilde{N} - 2 \right) + p_\perp^2 + (2\pi kT)^2 + \left( \frac{w}{2\pi T \alpha'} \right)^2$$
 and level

matching  $kw + N - \tilde{N} = 0$ .

Semi-classical approximation:

Keep only the lowest mode in the path-integral.

One-point function vanishes as  $M(T) \to |T - T_c|^{\frac{1}{2}}$  in the semiclassical approx!

Division of paths:  $r \in (0, r_m)$  UV,  $r \in (r_m, r_h)$  IR

For  $r_h \to \infty$  and  $r_m$  large enough, the IR region governed by the linear-dilaton CFT:.

$$T(z) = -\frac{1}{\alpha'} : \partial X^{\mu} \partial X_{\mu} : +v_{\mu} \partial^2 X^{\mu}$$

with 
$$v_{\mu} = \frac{\sqrt{V_{\infty}}}{2} \delta_{\mu,r}$$

The mass spectrum:

$$m_*^2 \equiv \frac{2}{\alpha'} \left( N + \tilde{N} - 2 \right) + p_\perp^2 + (2\pi kT)^2 + \left( \frac{w}{2\pi T \alpha'} \right)^2$$
 and level

matching  $kw + N - \tilde{N} = 0$ .

Semi-classical approximation:

Keep only the lowest mode in the path-integral.

One-point function vanishes as  $M(T) \to |T - T_c|^{\frac{1}{2}}$  in the semiclassical approx!

# **Two-point function**

Three types of paths:



## **Two-point function**

Three types of paths:



(a)  $\langle \vec{m}(L) \cdot \vec{m}(0) \rangle_a = |\vec{M}|^2$ . Finite in BH, 0 for TG.

## **Two-point function**

Three types of paths:



- (a)  $\langle \vec{m}(L) \cdot \vec{m}(0) \rangle_a = |\vec{M}|^2$ . Finite in BH, 0 for TG.
- (b)  $S_{F1} \to m_T L + \cdots$  $4 \langle \vec{m}(L) \cdot \vec{m}(0) \rangle_b \sim e^{-m_T L + \cdots}$  for  $L \gg 1$ .

(c) bulk exchange diagrams:

$$\begin{split} & \langle \vec{m}_{\parallel}(L) \cdot \vec{m}_{\parallel}(0) \rangle_{c} \propto \langle ReP[L]ReP[0] \rangle \sim \frac{e^{-m_{+}L}}{L^{d-3}} \\ & \langle \vec{m}_{\perp}(L) \cdot \vec{m}_{\perp}(0) \rangle_{c} \propto \langle ImP[L]ImP[0] \rangle \sim \frac{e^{-m_{-}L}}{L^{d-3}} \end{split}$$

(c) bulk exchange diagrams:

```
\langle \vec{m}_{\parallel}(L) \cdot \vec{m}_{\parallel}(0) \rangle_c \propto \langle ReP[L]ReP[0] \rangle \sim \frac{e^{-m_+L}}{L^{d-3}}
\langle \vec{m}_{\perp}(L) \cdot \vec{m}_{\perp}(0) \rangle_c \propto \langle ImP[L]ImP[0] \rangle \sim \frac{e^{-m_-L}}{L^{d-3}}
m_+ minimum of the CT^+ modes: G_{\mu\nu}, \Phi, \cdots
m_- minimum of the CT^- modes: B_{\mu\nu}, \cdots
```

(c) bulk exchange diagrams:

```
\langle \vec{m}_{\parallel}(L) \cdot \vec{m}_{\parallel}(0) \rangle_c \propto \langle ReP[L]ReP[0] \rangle \sim \frac{e^{-m_+L}}{L^{d-3}} \langle \vec{m}_{\perp}(L) \cdot \vec{m}_{\perp}(0) \rangle_c \propto \langle ImP[L]ImP[0] \rangle \sim \frac{e^{-m_-L}}{L^{d-3}} m_+ minimum of the CT^+ modes: G_{\mu\nu}, \Phi, \cdots m_- minimum of the CT^- modes: B_{\mu\nu}, \cdots Spectrum analysis U.G., Kiritsis, Nitti '07: CT^+ bounded from below for any T.
```

(c) bulk exchange diagrams:

$$\langle \vec{m}_{\parallel}(L) \cdot \vec{m}_{\parallel}(0) \rangle_c \propto \langle ReP[L]ReP[0] \rangle \sim \frac{e^{-m_+L}}{L^{d-3}}$$
 $\langle \vec{m}_{\perp}(L) \cdot \vec{m}_{\perp}(0) \rangle_c \propto \langle ImP[L]ImP[0] \rangle \sim \frac{e^{-m_-L}}{L^{d-3}}$ 
 $m_+$  minimum of the  $CT^+$  modes:  $G_{\mu\nu}, \Phi, \cdots$ 
 $m_-$  minimum of the  $CT^-$  modes:  $B_{\mu\nu}, \cdots$ 

Spectrum analysis U.G., Kiritsis, Nitti '07:  $CT^+$  bounded from below for any T.

 $CT^-$  include a zero-mode:  $m_- = 0$  as  $\psi = \int_M B$  is modulus:

#### Goldstone mode!

Correct qualitative behavior: 
$$\langle \vec{m}_{\parallel}(L) \cdot \vec{m}_{\parallel}(0) \rangle \sim \frac{e^{-m_{+}L} + e^{-m_{T}L}}{L^{d-3}}$$
  
 $\langle \vec{m}_{\perp}(L) \cdot \vec{m}_{\perp}(0) \rangle \sim \frac{1}{L^{d-3}}$ 

(c) bulk exchange diagrams:

$$\langle \vec{m}_{\parallel}(L) \cdot \vec{m}_{\parallel}(0) \rangle_c \propto \langle ReP[L]ReP[0] \rangle \sim \frac{e^{-m_+L}}{L^{d-3}}$$
 $\langle \vec{m}_{\perp}(L) \cdot \vec{m}_{\perp}(0) \rangle_c \propto \langle ImP[L]ImP[0] \rangle \sim \frac{e^{-m_-L}}{L^{d-3}}$ 
 $m_+$  minimum of the  $CT^+$  modes:  $G_{\mu\nu}, \Phi, \cdots$ 
 $m_-$  minimum of the  $CT^-$  modes:  $B_{\mu\nu}, \cdots$ 

Spectrum analysis U.G., Kiritsis, Nitti '07:  $CT^+$  bounded from below for any T.

 $CT^-$  include a zero-mode:  $m_- = 0$  as  $\psi = \int_M B$  is modulus:

#### Goldstone mode!

Correct qualitative behavior: 
$$\langle \vec{m}_{\parallel}(L) \cdot \vec{m}_{\parallel}(0) \rangle \sim \frac{e^{-m_{+}L} + e^{-m_{T}L}}{L^{d-3}}$$

$$\langle \vec{m}_{\perp}(L) \cdot \vec{m}_{\perp}(0) \rangle \sim \frac{1}{L^{d-3}}$$

Precisely the expected behavior from the XY model,

with 
$$\xi_{\parallel}^{-1} \to min(m_T, m_+)$$
 for  $L \gg 1$ .

(b) Connected paths:



(b) Connected paths:



Propagator in the IR:  $\Delta_{IR}(\chi) \sim \int dp_r d^{d-2} p_{\perp} e^{-ip_x^*(\chi)L}$ 

(b) Connected paths:



Propagator in the IR:  $\Delta_{IR}(\chi) \sim \int dp_r d^{d-2}p_{\perp}e^{-ip_x^*(\chi)L}$ Dominant mode is the "winding tachyon":

$$\xi = -i/p_x^* = \left(-\frac{4}{\alpha'} + \left(\frac{1}{2\pi T \alpha'}\right)^2\right)^{-\frac{1}{2}}$$

(b) Connected paths:



Propagator in the IR:  $\Delta_{IR}(\chi) \sim \int dp_r d^{d-2}p_{\perp}e^{-ip_x^*(\chi)L}$ Dominant mode is the "winding tachyon":

$$\xi = -i/p_x^* = \left(-\frac{4}{\alpha'} + \left(\frac{1}{2\pi T \alpha'}\right)^2\right)^{-\frac{1}{2}}$$

Indeed diverges if identify with Hagedorn a la Atick-Witten

$$T_c = rac{1}{4\pi\ell_s} ext{ and } \xi 
ightarrow rac{\ell_s}{2\sqrt{2}} \left(rac{T-T_c}{T_c}
ight)^{-rac{1}{2}}$$

(b) Connected paths:



Propagator in the IR:  $\Delta_{IR}(\chi) \sim \int dp_r d^{d-2}p_{\perp}e^{-ip_x^*(\chi)L}$ Dominant mode is the "winding tachyon":

$$\xi = -i/p_x^* = \left(-\frac{4}{\alpha'} + \left(\frac{1}{2\pi T \alpha'}\right)^2\right)^{-\frac{1}{2}}$$

Indeed diverges if identify with Hagedorn a la Atick-Witten

$$T_c = rac{1}{4\pi\ell_s} ext{ and } \xi 
ightarrow rac{\ell_s}{2\sqrt{2}} \left(rac{T-T_c}{T_c}
ight)^{-rac{1}{2}}$$

Mean-field scaling again!

• A general connection between gravity and spin-models. Normal-to-superfluid transition ⇔ continuous HP in GR.

- A general connection between gravity and spin-models.
   Normal-to-superfluid transition ⇔ continuous HP in GR.
- Role of large N clarified: number of spin-states at a site in case of SU(N).

- A general connection between gravity and spin-models.
   Normal-to-superfluid transition ⇔ continuous HP in GR.
- Role of large N clarified: number of spin-states at a site in case of SU(N).
- A specific case: SU(N) at large N  $\Leftrightarrow$  XY-type models.
- Two-derivative approximation fails near  $T_c$ . Physics around  $T_c$  governed by linear-dilaton CFT

- A general connection between gravity and spin-models.
   Normal-to-superfluid transition ⇔ continuous HP in GR.
- Role of large N clarified: number of spin-states at a site in case of SU(N).
- A specific case: SU(N) at large N  $\Leftrightarrow$  XY-type models.
- Two-derivative approximation fails near  $T_c$ . Physics around  $T_c$  governed by linear-dilaton CFT
- Probe strings ⇔ spin fluctuations
- Scaling in second sound and other critical exponents  $\beta$  and  $\nu$  from GR as expected.

• Top-down approach to AdS/CMT: D-brane constructions, embedding in *critical* string theory

- Top-down approach to AdS/CMT: D-brane constructions, embedding in *critical* string theory
- Corrections to critical exponents: 1/N and  $\alpha'$  corrections beyond the semi-classical approximation?

- Top-down approach to AdS/CMT: D-brane constructions, embedding in *critical* string theory
- Corrections to critical exponents: 1/N and  $\alpha'$  corrections beyond the semi-classical approximation?
- Generalization to other spin models e.g. discrete center: e.g. 3D Ising model from the GR dual of large-N Sp(N)?

- Top-down approach to AdS/CMT: D-brane constructions, embedding in *critical* string theory
- Corrections to critical exponents: 1/N and  $\alpha'$  corrections beyond the semi-classical approximation?
- Generalization to other spin models e.g. discrete center: e.g. 3D Ising model from the GR dual of large-N Sp(N)?
- Embedding in string theory many examples with linear-dilaton geometries, NS5 branes, etc.

- Top-down approach to AdS/CMT: D-brane constructions, embedding in *critical* string theory
- Corrections to critical exponents: 1/N and  $\alpha'$  corrections beyond the semi-classical approximation?
- Generalization to other spin models e.g. discrete center: e.g. 3D Ising model from the GR dual of large-N Sp(N)?
- Embedding in string theory many examples with linear-dilaton geometries, NS5 branes, etc.
- How about 2 spatial dimensions? vortex proliferation in Kosterlitz-Thouless.

- Top-down approach to AdS/CMT: D-brane constructions, embedding in *critical* string theory
- Corrections to critical exponents: 1/N and  $\alpha'$  corrections beyond the semi-classical approximation?
- Generalization to other spin models e.g. discrete center: e.g. 3D Ising model from the GR dual of large-N Sp(N)?
- Embedding in string theory many examples with linear-dilaton geometries, NS5 branes, etc.
- How about 2 spatial dimensions? vortex proliferation in Kosterlitz-Thouless.
- Continuous HP transitions in string theory.

#### THANK YOU!

• Condition iii): Entropy difference  $\Delta S = \frac{1}{4G_D} e^{(d-1)A(r_h)}$ . can vanish only for BH  $\rightarrow$  TG, i.e. when  $M_{BH} \rightarrow 0$ .

• Condition iii): Entropy difference  $\Delta S = \frac{1}{4G_D} e^{(d-1)A(r_h)}$ . can vanish only for BH  $\rightarrow$  TG, i.e. when  $M_{BH} \rightarrow 0$ .  $\Rightarrow T_c$  corresponds to the point  $r_h \rightarrow \infty \Rightarrow$  horizon marginally traps the singularity!

- Condition iii): Entropy difference  $\Delta S = \frac{1}{4G_D}e^{(d-1)A(r_h)}$ . can vanish only for BH  $\rightarrow$  TG, i.e. when  $M_{BH} \rightarrow 0$ .  $\Rightarrow T_c$  corresponds to the point  $r_h \rightarrow \infty \Rightarrow$  horizon marginally traps the singularity!
- Then condition ii) is automatic.

For condition i) look at Einstein's equations:

$$A'' - A'^{2} + \frac{\xi}{d-1} \Phi'^{2} = 0,$$

$$f'' + (d-1)A'f' = 0,$$

$$(d-1)A'^{2}f + A'f' + A''f - \frac{V}{d-1}e^{2A} = 0.$$

For condition i) look at Einstein's equations:

$$A'' - A'^{2} + \frac{\xi}{d-1} \Phi'^{2} = 0,$$

$$f'' + (d-1)A'f' = 0,$$

$$(d-1)A'^{2}f + A'f' + A''f - \frac{V}{d-1}e^{2A} = 0.$$

One solves for the "blackness function"

$$f(r) = 1 - \frac{\int_0^r e^{-(d-1)A}}{\int_0^{r_h} e^{-(d-1)A}}.$$

For condition i) look at Einstein's equations:

$$A'' - A'^{2} + \frac{\xi}{d-1}\Phi^{2} = 0,$$

$$f'' + (d-1)A'f' = 0,$$

$$(d-1)A'^{2}f + A'f' + A''f - \frac{V}{d-1}e^{2A} = 0.$$

One solves for the "blackness function"

$$f(r) = 1 - \frac{\int_0^r e^{-(d-1)A}}{\int_0^{r_h} e^{-(d-1)A}}.$$

The Hawking temperature is:

$$T^{-1} = 4\pi e^{(d-1)A(r_h)} \int_0^{r_h} e^{-(d-1)A(r)} dr.$$

For condition i) look at Einstein's equations:

$$A'' - A'^{2} + \frac{\xi}{d-1} \Phi'^{2} = 0,$$

$$f'' + (d-1)A'f' = 0,$$

$$(d-1)A'^{2}f + A'f' + A''f - \frac{V}{d-1}e^{2A} = 0.$$

One solves for the "blackness function"

$$f(r) = 1 - \frac{\int_0^r e^{-(d-1)A}}{\int_0^{r_h} e^{-(d-1)A}}.$$

The Hawking temperature is:

$$T^{-1} = 4\pi e^{(d-1)A(r_h)} \int_0^{r_h} e^{-(d-1)A(r)} dr.$$

 $T \to T_c > 0$  in the limit  $A(r_h) \to -\infty$  can only happen for

$$A(r) \rightarrow -A_{\infty}r + \cdots$$

For condition i) look at Einstein's equations:

$$A'' - A'^{2} + \frac{\xi}{d-1} \Phi'^{2} = 0,$$

$$f'' + (d-1)A'f' = 0,$$

$$(d-1)A'^{2}f + A'f' + A''f - \frac{V}{d-1}e^{2A} = 0.$$

One solves for the "blackness function"

$$f(r) = 1 - \frac{\int_0^r e^{-(d-1)A}}{\int_0^{r_h} e^{-(d-1)A}}.$$

The Hawking temperature is:

$$T^{-1} = 4\pi e^{(d-1)A(r_h)} \int_0^{r_h} e^{-(d-1)A(r)} dr.$$

 $T \to T_c > 0$  in the limit  $A(r_h) \to -\infty$  can only happen for

$$A(r) \to -A_{\infty}r + \cdots$$
 Plug in Einstein:  $\Phi(r) \to +A_{\infty}\sqrt{\frac{d-1}{\xi}}r + \cdots$ 

and finally:

For condition i) look at Einstein's equations:

$$A'' - A'^{2} + \frac{\xi}{d-1} \Phi^{2} = 0,$$

$$f'' + (d-1)A'f' = 0,$$

$$(d-1)A'^{2}f + A'f' + A''f - \frac{V}{d-1}e^{2A} = 0.$$

One solves for the "blackness function"

$$f(r) = 1 - \frac{\int_0^r e^{-(d-1)A}}{\int_0^{r_h} e^{-(d-1)A}}.$$

The Hawking temperature is:

$$T^{-1} = 4\pi e^{(d-1)A(r_h)} \int_0^{r_h} e^{-(d-1)A(r)} dr.$$

 $T \to T_c > 0$  in the limit  $A(r_h) \to -\infty$  can only happen for

$$A(r) \to -A_{\infty}r + \cdots$$
 Plug in Einstein:  $\Phi(r) \to +A_{\infty}\sqrt{\frac{d-1}{\xi}}r + \cdots$ 

and finally:

$$V(\Phi) \to V_{\infty} e^{2\sqrt{\frac{\xi}{d-1}}\Phi} \left(1 + V_{sub}(\Phi)\right), \qquad \Phi \to \infty$$