Special Geometry of Black Hole Horizons

George Papadopoulos

King's College London

SIXTH REGIONAL MEETING ON STRING THEORY

Milos, June 2011

Work in collaboration with

Jan Gutowski and Ulf Gran

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons	M-Horizons
●00	0000	000000000000000000000000000000000000000	00	000

Classifying supersymmetric backgrounds

Some of the results so far

- The KSEs of all supergravity theories can be solved for backgrounds preserving one supersymmetry. This includes type II in 10 dim and 11-dim supergravities
- All maximally and nearly maximally supersymmetric backgrounds can be classified in all supergravity theories
- Supergravities for which the KSEs have been solved for backgrounds preserving any number of supersymmetries include:
 - Heterotic
 - $\mathcal{N} = 1, D = 4$ with the most general couplings
 - (1,0), D = 6 with the most general couplings
 - · Several others with special couplings

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons 00	M-Horizons 000

Some properties include

- Supersymmetric backgrounds exhibit special geometric structures. The existence of such structures is related to the question for existence of solutions to non-linear differential equations on manifolds reminiscent to those of the Calabi conjecture, Yamabe problem and Hermitian-Einstein connections.
- Not all BPS configurations are allowed. For example solutions that preserve 31 supersymmetries, allowed by the D=11 algebra of supercharges, do not exist.
- An outstanding problem is
 - ► The solution of KSEs of type II and 11-dimensional supergravities in all cases.

Geometry and supersymmetry ○○●	Black holes	Heterotic Horizons	IIB Horizons OO	M-Horizons 000
Applications				

Some of the applications in physics considered include

- Classification of vacua of compactification with fluxes scenarios
- Classification of the gravitational duals of gauge theories in the context of gauge/gravity correspondences
- Understanding the topology and geometry of black hole horizons and explore uniqueness theorems for black holes
- Find black holes in higher dimensional supergravities which have horizons with exotic topology.

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons 00	M-Horizons 000

Uniqueness theorems for black holes

- It is known that the most general asymptotically flat vacuum black hole solution in 4-d is the Kerr black hole [Israel, Carter, Hawking, Robinson]
- ▶ In 5-d there is not such a uniqueness theorem. There are black holes with spherical and $S^1 \times S^2$ horizon sections, the BMPV black hole and black ring [Elvang, Emparan, Mateos, Reall], respectively. The possibility of a black hole with horizon section T^3 has not been ruled out.
- In higher dimensions, the question remains open. It has been mostly pursued either for static black holes [Gibbons, Ida, Shiromizu; Rogatko; Emparan, Harmark, Niarchos, Obers] or for black holes which preserve some supersymmetry.

Geometry and s	upersymmetr	У	Blacl ○●0	k holes OO	Heterotic Horizons	0	IIB Horizons 00	M-Horizons 000
~ .								

Gaussian null coordinates

Assume that the event horizon is a Killing horizon, ie that the black hole admits a timelike Killing vector field which becomes null at the horizon. Then a coordinate system can be adapted such that a black hole metric is [Friedrich, Racz, Wald]

$$ds^{2} = 2du[dr + rh_{I}(r, y)dy^{I} + rf(r, y)du] + \gamma_{IJ}(y, r)dy^{I}dy^{J}$$

Using analyticity in *r*, the near horizon limit can be taken for extreme black holes

$$f(0, y) = 0$$

leading to a near horizon metric

$$ds^{2} = 2du[dr + r h_{I}dy^{I} + r^{2} \Delta du] + \gamma_{IJ}dy^{I}dy^{J}$$

where

$$h_I = h_I(0, y)$$
, $\Delta = \partial_r f|_{r=0}$, $\gamma_{IJ} = \gamma_{IJ}(0, y)$

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons	M-Horizons
000	0000	000000000000000000000000000000000000000	00	000

► The near horizon metric has two isometries generated by translations in *u* and the scale transformation

 $u \to \ell^{-1} u$, $r \to \ell r$

The two Killing vectors

$$\partial_u$$
, $-u\partial_u + r\partial_r$

do not commute

- The Gaussian null coordinate system can be adapted in the presence of other fields like Maxwell and k-form gauge potentials. Under some assumptions in the extreme case a near horizon geometry can again be defined
- ► The co-dimension 2 space given by u = const, r = 0 is the horizon section, S, and it is required to be compact without boundary.

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons	M-Horizons
000	0000	000000000000000000000000000000000000000	00	000

Gravitational duals from horizons

The near horizon geometries for black holes include the gravitational dual backgrounds, $AdS_n \times_w X$;

$$ds^{2} = A^{2} \left[e^{2z/\ell} \left(2dudv + \sum_{k>1} (dx^{k})^{2} \right) + dz^{2} \right] + ds^{2}(X)$$

After a coordinate transformation

$$v = A^{-2}e^{-2z/\ell}r$$
, $u = u$, $z = z$, $x^k = x^k$,

it can be rewritten as the near horizon metric

$$ds^{2} = 2du(dr - \frac{2r}{\ell}dz - rd\log A^{2}) + A^{2}\left(e^{2z/\ell}\sum_{k>1}(dx^{k})^{2} + dz^{2}\right) + ds^{2}(X)$$

Therefore

$$\mathcal{S} = H^{n-2} \times_w X$$

 H^{n-2} hyperbolic space.

 Locally, the classification of near horizon geometries include those of the gravitational duals of gauge/gravity correspondences and flux compactifications.

Geometry and supersymmetry	Black holes	Heterotic Horizons •000000000000000000000000000000000000	IIB Horizons 00	M-Horizons 000
Heterotic backgrounds				

The Killing spinor equations of Heterotic supergravities (10-dimensions) are

$$\hat{\nabla}_{\mu}\epsilon = \nabla_{\mu}\epsilon - \frac{1}{8}H_{\mu\nu\rho}\Gamma^{\nu\rho}\epsilon + \mathcal{O}(\alpha') = 0 ,$$

$$\Gamma^{\mu}\partial_{\mu}\Phi\epsilon - \frac{1}{24}H_{\mu\nu\rho}\Gamma^{\mu\nu\rho}\epsilon + \mathcal{O}(\alpha') = 0 , \quad \epsilon \in \Delta_{16}^{+}$$

These are valid up to 2-loops in the sigma model perturbation theory. Both have been solved in all cases [Gran, Lohrmann, GP; Gran, Roest, Sloane, GP].

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons	M-Horizons
000	0000	000000000000000000000000000000000000000	00	000

Solution of KSE for dH = 0. Black hole horizons are indicated in red.

L	$\operatorname{Stab}(\epsilon_1,\ldots,\epsilon_L)$	N
1	$Spin(7) \ltimes \mathbb{R}^8$	1
2	$SU(4)\ltimes \mathbb{R}^8$, 2
3	$Sp(2)\ltimes \mathbb{R}^8$, -, 3
4	$(\times^2 SU(2)) \ltimes \mathbb{R}^8$	-, -, -, 4
5	$SU(2)\ltimes \mathbb{R}^8$	-, -, -, -, 5
6	$U(1)\ltimes \mathbb{R}^8$	-, -, -, -, 6
8	\mathbb{R}^{8}	-, -, -, -, -, -, 8
2	G_2	1, 2
4	SU(3)	1, 2, -, 4
8	SU(2)	-, 2, -, 4, -, 6 , -, 8
16	{1}	8, 10, 12, 14, 1 <mark>6</mark>

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons 00	M-Horizons 000
Heterotic horizons				

The near horizon geometry of a supersymmetric black hole, preserving one supersymmetry, in heterotic supergravity can be written [Gutowski, GP] as

$$\begin{array}{rcl} ds^2 &=& 2e^-e^+ + d\tilde{s}^2_{(8)} \;, & d\tilde{s}^2_{(8)} = \delta_{ij}e^ie^j \;, \\ H &=& d(e^- \wedge e^+) + \tilde{H}_{(8)} \;, & \tilde{H}_{(8)} = dW \;, \\ \Phi &=& \Phi(y) \;, & e^- = dr + rh_ie^i \;, & e^+ = du \;, \; e^i = e^i{}_I dy^I \;. \end{array}$$

The dilaton field equation is

$$\tilde{\nabla}^2 \Phi - 2 \tilde{\nabla}^i \Phi \tilde{\nabla}_i \Phi + \frac{1}{12} (\tilde{H}_{(8)})_{ijk} (\tilde{H}_{(8)})^{ijk} - \frac{1}{2} h_i h^i = 0 ,$$

• The Killing vector ∂_u is null and $\operatorname{hol}(\hat{\nabla}) \subseteq Spin(7) \ltimes \mathbb{R}^8$.

Geometry and supersymmetry 000	Black holes	Heterotic Horizons	IIB Horizons OO	M-Horizons 000

- ► The horizon section r = 0, u = const is a compact 8-dimensional manifold.
- If h = 0, the dilaton field equation and compactness imply that $M = \mathbb{R}^{1,1} \times X_8$, where X_8 is a product of Berger manifolds that admit parallel spinors, H = 0 and Φ is constant.
- If $h \neq 0$, N = 1 supersymmetry and compactness of S imply that $\hat{\nabla}_{(8)}h = 0$.
- The holonomy of $\hat{\nabla}$ reduces to G_2 , hol $(\hat{\nabla}) \subseteq G_2$, and M admits 2 supersymmetries.

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons	M-Horizons
000	0000	000000000000000000000000000000000000000	00	000

Heterotic horizons, $h \neq 0$, always preserve even number of supersymmetries.

Ν	$\operatorname{hol}(\hat{\nabla})$
2	G_2
4	SU(3)
6	SU(2)
8	SU(2)

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons	M-Horizons
000	0000		OO	000
N = 4, SU(3)				

The near horizon geometries are $SL(2, \mathbb{R}) \times U(1)$ fibrations over a Hermitian 6-dimensional manifold B^6 with structure group U(3) and equipped with a compatible connection with skew-symmetric torsion. The metric and torsion are

$$\begin{aligned} ds^2 &= \eta_{ab}\lambda^a\lambda^b + ds^2_{(6)} \\ H &= CS(\lambda) + H_{(6)} , \end{aligned}$$

where the connection 1-forms are

$$\begin{split} \lambda^{-} &= e^{-} , \quad \lambda^{+} = e^{+} - \frac{1}{2}k^{2}u^{2}e^{-} - uh , \\ \lambda^{1} &= k^{-1}(h + k^{2}ue^{-}) , \quad \lambda^{6} = k^{-1}\ell , \end{split}$$

where $h^2 = k^2$, k constant. The Lie algebra of the associated vector fields is

 $[\xi_+, \xi_-] = -k\xi_1, \qquad [\xi_+, \xi_1] = k\xi_+, \qquad [\xi_-, \xi_1] = -k\xi_-, \qquad [\xi_a, \xi_6] = 0$ which is isomorphic to $\mathfrak{sl}(2, \mathbb{R}) \oplus \mathbb{R}$.

Geometry and supersymmetry I	Black holes	Heterotic Horizons	IIB Horizons	M-Horizons
000	0000	000000000000000000000000000000000000000	00	000

The Killing spinors are

$$\begin{split} \epsilon^1 &= 1 + e_{1234} , \quad \epsilon^2 &= -k^2 u (1 + e_{1234}) + h_i \Gamma^{+i} (1 + e_{1234}) , \\ \epsilon^3 &= i (1 - e_{1234}) , \quad \epsilon^4 &= -i k^2 u (1 - e_{1234}) + i h_i \Gamma^{+i} (1 - e_{1234}) , \end{split}$$

The curvature of λ is

$$\mathcal{F}^+ = -u(1 + \frac{1}{2}k^2ru)dh , \quad \mathcal{F}^- = rdh ,$$

$$\mathcal{F}^1 = k^{-1}(1 + k^2ru)dh \quad \mathcal{F}^6 = k^{-1}d\ell ,$$

where h and ℓ are Hermitian-Einstein

 $dh \in \mathfrak{su}(3)$, $d\ell \in \mathfrak{u}(3)$

with $d\ell_{ij}\omega_{(6)}^{ij} = -2k^2$. In particular, The horizon section S is a holomorphic T^2 fibration over B^6

 $ds_{(8)}^2 = k^{-2}h^2 + k^{-2}\ell^2 + ds_{(6)}^2, \quad H_{(8)} = k^{-2}h \wedge dh + k^{-2}\ell \wedge d\ell + H_{(6)}$

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons	M-Horizons
000	0000	000000000000000000000000000000000000000	00	000

The conditions that remain be solved to find a solutions are

$$\begin{split} dh \wedge \omega_{(6)}^2 &= 0 \;, \quad d\ell \wedge \omega_{(6)}^2 = -\frac{k^2}{3} \,\omega_{(6)}^3 \;, \quad d\left(e^{-2\Phi}\omega_{(6)}^2\right) = 0 \;, \\ \hat{\tilde{\rho}}_{(6)} - d\ell &= 0 \;, \quad k^{-2}dh \wedge dh + k^{-2}d\ell \wedge d\ell - di_{I_{(6)}}d\omega_{(6)} = 0 \;. \end{split}$$

where

$$\hat{\tilde{\rho}}_{(6)} = \frac{1}{4} \hat{\tilde{R}}_{k\ell, j} {}^{i}_{j} (I_{(6)})^{j}_{i} e^{k} \wedge e^{\ell} = -i\partial\bar{\partial}\log\det g_{(6)} + 4i\partial\bar{\partial}\Phi ,$$

Necessary conditions for the existence of solutions are

$$c_1(P) \wedge [e^{-2\Phi}\omega_{(6)}^2] = 0 , \quad c_1(Q) \wedge [e^{-2\Phi}\omega_{(6)}^2] = -\frac{k^2}{6\pi} [e^{-2\Phi}\omega_{(6)}^3] , \\ c_1(B^6) - c_1(Q) = 0 , \quad c_1(P) \wedge c_1(P) + c_1(Q) \wedge c_1(Q) = 0 ,$$

000 00000000000000000000000000000000000	Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons	M-Horizons
···· ··· ··· ··· ··· ··· ··· ··· ···	000	0000	000000000000000000000000000000000000000	00	000

- ► S is a holomorphic T^2 -fibration over B^6 and the fibre connection is (h, ℓ) .
- ► S is a complex manifold with Hermitian form $\omega_{(8)} = k^{-2}h \wedge \ell + \omega_{(6)}$
- A comparative table of the properties of S and B^6 are

Geometry	B^6	${\mathcal S}$
Hermitian	yes	yes
$\theta = 2d\Phi$	yes	no
$\operatorname{hol}(\hat{\nabla}) \subseteq SU(3)$	no	yes
$\operatorname{hol}(\hat{\nabla}) \subseteq U(3)$	yes	no
$dH_{(n)}=0$	no	yes

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons 00	M-Horizons 000

Examples

Explicit examples include

- $\blacktriangleright S^3 \times S^3 \times T^2$
- ► *SU*(3)
- $S^1 \times S^3 \times K_3$

Geometry and supersymmetry 000	Black holes	Heterotic Horizons	IIB Horizons OO	M-Horizons 000
S as T^4 -fibrations				

Many examples can be constructed by taking B^6 to be a holomorphic T^2 fibration over a 4-d Kähler manifold X^4 with Kähler from κ .

Thus S is a holomorphic T^4 -fibration over X^4 , the supersymmetry conditions can be written as

$$\begin{aligned} dh^1 \wedge \kappa &= 0 , \quad dh^2 \wedge \kappa = 0 , \quad dh^3 \wedge \kappa = 0 , \quad d\ell \wedge \kappa = -\frac{k^2}{2} e^{2\Phi} \kappa^2 , \\ -i\partial \bar{\partial} \log \det(i\kappa) - d\ell &= 0 , \\ dh^1 \wedge dh^1 + dh^2 \wedge dh^2 + dh^3 \wedge dh^3 + d\ell \wedge d\ell + 2k^2 i \partial \bar{\partial} e^{2\Phi} \wedge \kappa = 0 , \end{aligned}$$

where $h^1 = h$, and h^2 and h^3 are along the two new fibre directions.

- These are 6 equations for 6 unknown functions on X^4 .
- One of the equations is the Monge-Amperé equation but the system cannot be separated.

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons	M-Horizons
000	0000	000000000000000000000000000000000000000	00	000

The associated co-homological system is

$$c_1(P_1) \wedge [\kappa] = 0, \quad c_1(P_2) \wedge [\kappa] = 0, \quad c_1(P_3) \wedge [\kappa] = 0,$$

$$c_1(Q) \wedge [\kappa] = -\frac{k^2}{4\pi} \left[e^{2\Phi} \kappa^2 \right], \quad c_1(X) - c_1(Q) = 0,$$

$$\sum_{r=1}^3 c_1(P_r) \wedge c_1(P_r) + c_1(Q) \wedge c_1(Q) = 0.$$

Suppose that there are manifolds X^4 such that the cohomological system has solutions.

Question: Are these cohomological conditions necessary and sufficient for the existence of heterotic horizons?

Geometry and supersymmetry 000	Black holes	Heterotic Horizons	IIB Horizons OO	M-Horizons 000

 $X^4 = S^2 \times S^2$

Take as metric and hermitian form on $\mathcal{S} = S^3 \times S^3 \times T^2$

$$\begin{aligned} ds^2_{(8)} &= (\sigma^3)^2 + (\sigma^1)^2 + (\sigma^2)^2 + (\rho^3)^2 + (\rho^1)^2 + (\rho^2)^2 + (\tau^1)^2 + (\tau^2)^2 , \\ \omega_{(8)} &= -\sigma^3 \wedge \rho^3 - \sigma^1 \wedge \sigma^2 - \rho^1 \wedge \rho^2 - \tau^1 \wedge \tau^2 , \end{aligned}$$

 $S^3 \times S^3 \times T^2$ is not (conformally) balanced. Set

$$\omega = -\sigma^1 \wedge \sigma^2 - \rho^1 \wedge \rho^2 - \tau^1 \wedge \tau^2 , \quad \chi = \frac{1}{2\sqrt{2}} (\sigma^1 + i\sigma^2) \wedge (\rho^1 + i\rho^2) \wedge (\tau^1 + i\tau^2) ,$$

on $S^3\times S^3\times T^2,$ and $h=-(\sigma^3-\rho^3)\ ,\quad \ell=(\sigma^3+\rho^3)\ .$

Moreover

$$i_{\sigma^3}\omega=i_{\rho^3}\omega=0\;,\quad i_{\sigma^3}\chi=i_{\rho^3}\chi=0\;,$$

and

$$\mathcal{L}_{\sigma^3}\omega = \mathcal{L}_{\rho^3}\omega = 0 , \quad \mathcal{L}_{\sigma^3+\rho^3}\chi = 2i\chi , \quad \mathcal{L}_{\sigma^3-\rho^3}\chi = 0 .$$

Thus s $\omega_{(6)} = \omega$ on $B^6 = S^2 \times S^2 \times T^2$. $d\omega_{(6)} = 0$, so $B = S^2 \times S^2 \times T^2$ is Kähler The dilaton is constant.

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons	M-Horizons
000	0000	000000000000000000000000000000000000000	00	000

- The canonical bundle of $S^2 \times S^2 \times T^2$ is not trivial but it is trivial on $S^3 \times S^3 \times T^2$.
- Since $B = S^2 \times S^2 \times T^2$, the 4-dimensional Kähler manifold X is $X = S^2 \times S^2$. with Kähler form

$$\kappa = -\sigma^1 \wedge \sigma^2 - \rho^1 \wedge \rho^2 \; .$$

- $S^3 \times S^3 \times T^2$ is a T^4 fibration over $S^2 \times S^2$ with principal bundle connection $\ell = \ell, h^1 = h, h^2 = \tau^1$ and $h^3 = \tau^2$.
- The horizon is isometric to $(AdS_3 \times S^3 \times S^3)/S^1 \times T^2$.

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons 00	M-Horizons 000

del Pezzo

 $X^4 = dP_{9-k}$ del Pezzo surface, ie CP^2 blown up at k < 9 points. The second cohomology of dP_{9-k} has a basis

 $-K = 3H - E_1 - \dots - E_k$, $\alpha_i = E_i - E_{i+1}$, i < k, $\alpha_k = H - E_1 - E_2 - E_3$,

where E_i are the exceptional divisors and K the canonical divisor. The intersection matrix is

 $K \cdot \alpha_i = 0$, $\alpha_i \cdot \alpha_j = -A_{ij}$, $i, j = 1, \ldots, k$,

where (A_{ij}) is the Cartan matrix of exceptional Lie algebras \mathbf{E}_k .

k	\mathbf{E}_k
1	A_1
2	$A_1 \oplus A_1$
3	$A_2 \oplus A_1$
4	A_4
5	D_5
6	\mathbf{E}_{6}
k	$\mathbf{E}_k, k > 6$

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons 00	M-Horizons 000

- There is a solution of the cohomological conditions for every del Pezzo surface
- There are no solutions for k > 9 unless $dH \neq 0$
- ► The horizon sections have topologies which include $((k-1)S^2 \times S^4 \# kS^3 \times S^3) \times T^2$

For example for k = 3

$$c_1(Q) = K$$
, $c_1(P_1) = c_1(P_2) = c_1(P_3) = E_1 - E_2$.

The solution for the del Pezzo surface $X^4 = S^2 \times S^2$ has been constructed explicitly.

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons 00	M-Horizons 000
N = 8, SU(2)				

The heterotic horizons with N = 8 supersymmetries are $AdS_3 \times S^3 \times T^4$, $AdS_3 \times S^3 \times K_3$

The radii of S^3 and AdS_3 are equal and the dilaton is constant.

Geometry and supersymmetry 000	Black holes	Heterotic Horizons	IIB Horizons 00	M-Horizons 000
IIB horizons				

Consider the KSEs of IIB supergravity with only 5-form flux

$$\mathcal{D}_M \epsilon = \nabla_M \epsilon + \frac{i}{48} F_{MN_1...N_4} \Gamma^{N_1...N_4} \epsilon = 0$$

- Unlike the heterotic case there is no classification of solutions to IIB KSEs
- The KSEs have been solved for backgrounds preserving one supersymmetry [Gutowski, Gran, Roest, GP]
- The backgrounds preserving 28 supersymmetries have been classified and those preserving more than 28 are maximally supersymmetric [Gutowski, Gran, Roest, GP]
- The maximally supersymmetric backgrounds have been classified [Figueroa O'Farril, GP]
- The KSEs have also been solved for backgrounds with only 5-form flux preserving 2 supersymmetries.

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons	M-Horizons 000

IIB horizon geometry

The horizon is an 8-dimensional 2-strong Calabi-Yau with torsion [Gran, Gutowski, GP], ie it is Hermitian with hidden skew-symmetric torsion *H* such that

 $\hat{
ho}=0\;,\;\; d(\omega\wedge H)=\partial\bar{\partial}\omega^2=0\;,$

where $\hat{\rho}$ is the Ricci form of the compatible connection $\hat{\nabla}$ with torsion *H*.

- H is hidden because it is not identified with either the RR or NSNS 3-form field strengths as they have been set to zero.
- Many solutions exist mostly constructed as torus fibrations over products of Kähler-Einstein and Calabi-Yau spaces. This gives many examples of new horizon geometries
- There are several generalizations of these geometries including imposing the k-strong condition

$$d(\omega^{k-1} \wedge H) = \partial \bar{\partial} \omega^k = 0$$

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons O●	M-Horizons 000
Applications				

- ► For the gravitational dual backgrounds $AdS_n \times_w X$, n=3,5,7, $H_{n-2} \times X$ has a 2-strong Calabi-Yau geometry with torsion. This geometry includes the well-known Sasakian-Einstein structure on X for n = 5
- Solutions $AdS_7 \times_w X$ do not exist.
- ▶ Does any Hermitian 2n-dimensional manifold admit a k-strong structure? For k = n 1, it is true as a consequence of the Gauduchon theorem. The problem for the rest of the cases is open.

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons 00	M-Horizons •00
Static M-horizons				

The Killing spinor equation of 11-dimensional supergravity is

$$\nabla_M \epsilon + \left(-\frac{1}{288} \Gamma_M{}^{L_1 L_2 L_3 L_4} F_{L_1 L_2 L_3 L_4} + \frac{1}{36} F_{M L_1 L_2 L_3} \Gamma^{L_1 L_2 L_3} \right) \epsilon = 0 ,$$

- This has been solved for backgrounds preserving one supersymmetry [Gauntlett,Pakis, Gutowski], [Gillard, Gran, GP]
- The solutions preserving 30 and 31 supersymmetries are maximally supersymmetric [Gran, Gutowski, Roest, GP]
- The maximally supersymmetric backgrounds have been classified [Figueroa O'Farril, GP]

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons 00	M-Horizons O●O

- ► All static M-horizons are products $AdS_2 \times X^9$, where X^9 has an SU(4) structure [Gutowski, GP].
- ► The horizon sections of all electric static horizons is a circle bundle over a Kähler-Yamabe 8-dimensional manifold *B*,

$$ds^2(\mathcal{S}) = \lambda^2 + ds^2(B)$$

where

$$d\lambda =
ho(B) , \ \
ho(B)^2 = {
m const}$$

and $d\lambda$ is Hermitian-Einstein.

- ► Examples include AdS₂ × S³ × CY₆. There are many other examples constructed as fibrations over products of Kähler-Einstein and Calabi-Yau spaces. For AdS₂ × S³ × CY₆, B = S² × CY₆
- ▶ *B* is not Kähler-Einstein and S is not Sasakian.

Geometry and supersymmetry	Black holes	Heterotic Horizons	IIB Horizons 00	M-Horizons 00●
Concluding remarks				

- Evidence suggest that there is a large number of black holes in heterotic, type II and 11-dimensional theories. Some of them are of Kaluza-Klein type and some others may have exotic topologies
- The horizons sections have special geometry and their existence is closely related the existence of solutions to non-linear differential equations on manifolds. In the heterotic case, the differential system is of Calabi type and includes the Monge-Ampére equation. The associated cohomological system has solutions on all del Pezzo surfaces
- ► IIB horizons with 5-form flux are 2-strong Calabi-Yau manifolds with torsion.
- ► Static M-horizons are products AdS₂ × X⁹, where X⁹ has a SU(4) structure. For electric horizons, X⁹ is a fibration over a Kähler-Yamabe manifold and the length of Ricci form is constant.