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Classifying supersymmetric backgrounds

Some of the results so far
I The KSEs of all supergravity theories can be solved for

backgrounds preserving one supersymmetry. This includes type II
in 10 dim and 11-dim supergravities

I All maximally and nearly maximally supersymmetric
backgrounds can be classified in all supergravity theories

I Supergravities for which the KSEs have been solved for
backgrounds preserving any number of supersymmetries include:

• Heterotic
• N = 1,D = 4 with the most general couplings
• (1, 0),D = 6 with the most general couplings
• Several others with special couplings
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Some properties include

I Supersymmetric backgrounds exhibit special geometric
structures. The existence of such structures is related to the
question for existence of solutions to non-linear differential
equations on manifolds reminiscent to those of the Calabi
conjecture, Yamabe problem and Hermitian-Einstein connections.

I Not all BPS configurations are allowed. For example solutions
that preserve 31 supersymmetries, allowed by the D=11 algebra
of supercharges, do not exist.

An outstanding problem is

I The solution of KSEs of type II and 11-dimensional
supergravities in all cases.
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Applications

Some of the applications in physics considered include

I Classification of vacua of compactification with fluxes scenarios

I Classification of the gravitational duals of gauge theories in the
context of gauge/gravity correspondences

I Understanding the topology and geometry of black hole horizons
and explore uniqueness theorems for black holes

I Find black holes in higher dimensional supergravities which have
horizons with exotic topology.
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Uniqueness theorems for black holes

I It is known that the most general asymptotically flat vacuum
black hole solution in 4-d is the Kerr black hole [Israel, Carter,

Hawking, Robinson]

I In 5-d there is not such a uniqueness theorem. There are black
holes with spherical and S1 × S2 horizon sections, the BMPV
black hole and black ring [Elvang, Emparan, Mateos, Reall], respectively.
The possibility of a black hole with horizon section T3 has not
been ruled out.

I In higher dimensions, the question remains open. It has been
mostly pursued either for static black holes [Gibbons, Ida, Shiromizu;

Rogatko; Emparan, Harmark, Niarchos, Obers] or for black holes which
preserve some supersymmetry.
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Gaussian null coordinates

Assume that the event horizon is a Killing horizon, ie that the black
hole admits a timelike Killing vector field which becomes null at the
horizon. Then a coordinate system can be adapted such that a black
hole metric is [Friedrich, Racz, Wald]

ds2 = 2du[dr + r hI(r, y)dyI + r f (r, y)du] + γIJ(y, r)dyIdyJ

Using analyticity in r, the near horizon limit can be taken for extreme
black holes

f (0, y) = 0

leading to a near horizon metric

ds2 = 2du[dr + r hIdyI + r2 ∆du] + γIJdyIdyJ

where

hI = hI(0, y) , ∆ = ∂rf |r=0 , γIJ = γIJ(0, y)
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I The near horizon metric has two isometries generated by translations in
u and the scale transformation

u→ `−1u , r → `r

I The two Killing vectors

∂u , −u∂u + r∂r

do not commute
I The Gaussian null coordinate system can be adapted in the presence of

other fields like Maxwell and k-form gauge potentials. Under some
assumptions in the extreme case a near horizon geometry can again be
defined

I The co-dimension 2 space given by u = const, r = 0 is the horizon
section, S, and it is required to be compact without boundary.
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Gravitational duals from horizons

The near horizon geometries for black holes include the gravitational dual
backgrounds, AdSn ×w X;

ds2 = A2[e2z/`(2dudv +
∑
k>1

(dxk)2)+ dz2]+ ds2(X)

After a coordinate transformation

v = A−2e−2z/`r , u = u , z = z , xk = xk ,

it can be rewritten as the near horizon metric

ds2 = 2du(dr − 2r
`

dz− rd log A2) + A2(e2z/`
∑
k>1

(dxk)2 + dz2)+ ds2(X)

Therefore

S = Hn−2 ×w X

Hn−2 hyperbolic space.
I Locally, the classification of near horizon geometries include those of

the gravitational duals of gauge/gravity correspondences and flux
compactifications.
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Heterotic backgrounds

The Killing spinor equations of Heterotic supergravities
(10-dimensions) are

∇̂µε = ∇µε−
1
8

HµνρΓ
νρε+O(α′) = 0 ,

Γµ∂µΦε− 1
24

HµνρΓ
µνρε+O(α′) = 0 , ε ∈ ∆+

16

These are valid up to 2-loops in the sigma model perturbation theory.
Both have been solved in all cases [Gran, Lohrmann, GP; Gran, Roest, Sloane,

GP].
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Solution of KSE for dH = 0. Black hole horizons are indicated in red.

L Stab(ε1, . . . , εL) N

1 Spin(7)n R8 1

2 SU(4)n R8 , 2

3 Sp(2)n R8 , −, 3

4 (×2SU(2))n R8 −, −, −, 4

5 SU(2)n R8 −, −, −, −, 5

6 U(1)n R8 −, −, −, −, −, 6

8 R8 −, −, −, −, −, −, −, 8

2 G2 1, 2

4 SU(3) 1, 2, −, 4

8 SU(2) −, 2, −, 4, −, 6, −, 8

16 {1} 8, 10, 12, 14, 16
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Heterotic horizons

The near horizon geometry of a supersymmetric black hole,
preserving one supersymmetry, in heterotic supergravity can be
written [Gutowski, GP] as

ds2 = 2e−e+ + ds̃2
(8) , ds̃2

(8) = δijeiej ,

H = d(e− ∧ e+) + H̃(8) , H̃(8) = dW ,

Φ = Φ(y) , e− = dr + rhiei , e+ = du , ei = ei
IdyI .

The dilaton field equation is

∇̃2Φ− 2∇̃iΦ∇̃iΦ +
1
12

(H̃(8))ijk(H̃(8))
ijk − 1

2
hihi = 0 ,

I The Killing vector ∂u is null and hol(∇̂) ⊆ Spin(7) n R8.
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I The horizon section r = 0, u = const is a compact 8-dimensional
manifold.

I If h = 0, the dilaton field equation and compactness imply that
M = R1,1 × X8, where X8 is a product of Berger manifolds that
admit parallel spinors, H = 0 and Φ is constant.

I If h 6= 0, N = 1 supersymmetry and compactness of S imply that
ˆ̃∇(8)h = 0.

I The holonomy of ∇̂ reduces to G2, hol(∇̂) ⊆ G2, and M admits 2
supersymmetries.
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Heterotic horizons, h 6= 0, always preserve even number of
supersymmetries.

N hol(∇̂)

2 G2

4 SU(3)

6 SU(2)

8 SU(2)
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N = 4, SU(3)

The near horizon geometries are SL(2,R)×U(1) fibrations over a Hermitian
6-dimensional manifold B6 with structure group U(3) and equipped with a
compatible connection with skew-symmetric torsion.
The metric and torsion are

ds2 = ηabλ
aλb + ds2

(6)
H = CS(λ) + H(6) ,

where the connection 1-forms are

λ− = e− , λ+ = e+ − 1
2

k2u2e− − uh ,

λ1 = k−1(h + k2ue−
)
, λ6 = k−1` ,

where h2 = k2, k constant.
The Lie algebra of the associated vector fields is

[ξ+, ξ−] = −kξ1, [ξ+, ξ1] = kξ+, [ξ−, ξ1] = −kξ− , [ξa, ξ6] = 0

which is isomorphic to sl(2,R)⊕ R.
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The Killing spinors are

ε1 = 1 + e1234 , ε2 = −k2u(1 + e1234) + hiΓ
+i(1 + e1234) ,

ε3 = i(1− e1234) , ε4 = −ik2u(1− e1234) + ihiΓ
+i(1− e1234) ,

The curvature of λ is

F+ = −u(1 +
1
2

k2ru)dh , F− = rdh ,

F1 = k−1(1 + k2ru)dh F6 = k−1d` ,

where h and ` are Hermitian-Einstein

dh ∈ su(3) , d` ∈ u(3)

with d`ijω
ij
(6) = −2k2. In particular,

The horizon section S is a holomorphic T2 fibration over B6

ds2
(8) = k−2h2 + k−2`2 + ds2

(6) , H(8) = k−2h ∧ dh + k−2` ∧ d`+ H(6)



Geometry and supersymmetry Black holes Heterotic Horizons IIB Horizons M-Horizons

The conditions that remain be solved to find a solutions are

dh ∧ ω2
(6) = 0 , d` ∧ ω2

(6) = −k2

3
ω3

(6) , d
(
e−2Φω2

(6)

)
= 0 ,

ˆ̃ρ(6) − d` = 0 , k−2dh ∧ dh + k−2d` ∧ d`− diI(6)dω(6) = 0 .

where

ˆ̃ρ(6) =
1
4

ˆ̃Rk`,
i
j(I(6))

j
i ek ∧ e` = −i∂∂̄ log det g(6) + 4i∂∂̄Φ ,

Necessary conditions for the existence of solutions are

c1(P) ∧ [e−2Φω2
(6)] = 0 , c1(Q) ∧ [e−2Φω2

(6)] = − k2

6π
[e−2Φω3

(6)] ,

c1(B6)− c1(Q) = 0 , c1(P) ∧ c1(P) + c1(Q) ∧ c1(Q) = 0 ,
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I S is a holomorphic T2-fibration over B6 and the fibre connection
is (h, `).

I S is a complex manifold with Hermitian form
ω(8) = k−2h ∧ `+ ω(6)

A comparative table of the properties of S and B6 are

Geometry B6 S
Hermitian yes yes

θ = 2dΦ yes no

hol(∇̂) ⊆ SU(3) no yes

hol(∇̂) ⊆ U(3) yes no

dH(n) = 0 no yes
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Examples

Explicit examples include

I S3 × S3 × T2

I SU(3)

I S1 × S3 × K3
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S as T4-fibrations

Many examples can be constructed by taking B6 to be a holomorphic
T2 fibration over a 4-d Kähler manifold X4 with Kähler from κ.

Thus S is a holomorphic T4-fibration over X4, the supersymmetry
conditions can be written as

dh1 ∧ κ = 0 , dh2 ∧ κ = 0 , dh3 ∧ κ = 0 , d` ∧ κ = −k2

2
e2Φκ2 ,

−i∂∂̄ log det(iκ)− d` = 0 , dκ = 0 ,
dh1 ∧ dh1 + dh2 ∧ dh2 + dh3 ∧ dh3 + d` ∧ d`+ 2k2i∂∂̄e2Φ ∧ κ = 0 ,

where h1 = h, and h2 and h3 are along the two new fibre directions.

I These are 6 equations for 6 unknown functions on X4.
I One of the equations is the Monge-Amperé equation but the

system cannot be separated.
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The associated co-homological system is

c1(P1) ∧ [κ] = 0 , c1(P2) ∧ [κ] = 0 , c1(P3) ∧ [κ] = 0 ,

c1(Q) ∧ [κ] = − k2

4π
[e2Φκ2] , c1(X)− c1(Q) = 0 ,

3∑
r=1

c1(Pr) ∧ c1(Pr) + c1(Q) ∧ c1(Q) = 0 .

Suppose that there are manifolds X4 such that the cohomological
system has solutions.

Question: Are these cohomological conditions necessary and
sufficient for the existence of heterotic horizons?
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X4 = S2 × S2

Take as metric and hermitian form on S = S3 × S3 × T2

ds2
(8) = (σ3)2 + (σ1)2 + (σ2)2 + (ρ3)2 + (ρ1)2 + (ρ2)2 + (τ 1)2 + (τ 2)2 ,

ω(8) = −σ3 ∧ ρ3 − σ1 ∧ σ2 − ρ1 ∧ ρ2 − τ 1 ∧ τ 2 ,

S3 × S3 × T2 is not (conformally) balanced.
Set

ω = −σ1 ∧ σ2 − ρ1 ∧ ρ2 − τ 1 ∧ τ 2 , χ =
1

2
√

2
(σ1 + iσ2) ∧ (ρ1 + iρ2) ∧ (τ 1 + iτ 2) ,

on S3 × S3 × T2, and

h = −(σ3 − ρ3) , ` = (σ3 + ρ3) .

Moreover

iσ3ω = iρ3ω = 0 , iσ3χ = iρ3χ = 0 ,

and

Lσ3ω = Lρ3ω = 0 , Lσ3+ρ3χ = 2iχ , Lσ3−ρ3χ = 0 .

Thus s ω(6) = ω on B6 = S2 × S2 × T2. dω(6) = 0, so B = S2 × S2 × T2 is Kähler
The dilaton is constant.
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I The canonical bundle of S2 × S2 × T2 is not trivial but it is trivial on
S3 × S3 × T2.

I Since B = S2 × S2 × T2, the 4-dimensional Kähler manifold X is X = S2 × S2.
with Kähler form

κ = −σ1 ∧ σ2 − ρ1 ∧ ρ2 .

I S3 × S3 × T2 is a T4 fibration over S2 × S2 with principal bundle connection
` = `, h1 = h, h2 = τ 1 and h3 = τ 2.

I The horizon is isometric to (AdS3 × S3 × S3)/S1 × T2.
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del Pezzo

X4 = dP9−k del Pezzo surface, ie CP2 blown up at k < 9 points. The second
cohomology of dP9−k has a basis

−K = 3H − E1 − · · · − Ek , αi = Ei − Ei+1 , i < k , αk = H − E1 − E2 − E3 ,

where Ei are the exceptional divisors and K the canonical divisor.
The intersection matrix is

K · αi = 0 , αi · αj = −Aij , i, j = 1, . . . , k ,
where (Aij) is the Cartan matrix of exceptional Lie algebras Ek.

k Ek

1 A1

2 A1 ⊕ A1

3 A2 ⊕ A1

4 A4

5 D5

6 E6

k Ek, k > 6
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I There is a solution of the cohomological conditions for every del
Pezzo surface

I There are no solutions for k > 9 unless dH 6= 0
I The horizon sections have topologies which include(

(k − 1)S2 × S4#kS3 × S3
)
× T2

For example for k = 3

c1(Q) = K , c1(P1) = c1(P2) = c1(P3) = E1 − E2 .

The solution for the del Pezzo surface X4 = S2 × S2 has been
constructed explicitly.
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N = 8, SU(2)

The heterotic horizons with N = 8 supersymmetries are

AdS3 × S3 × T4 , AdS3 × S3 × K3

The radii of S3 and AdS3 are equal and the dilaton is constant.
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IIB horizons

Consider the KSEs of IIB supergravity with only 5-form flux

DMε = ∇Mε+
i

48
FMN1...N4Γ

N1...N4ε = 0

I Unlike the heterotic case there is no classification of solutions to
IIB KSEs

I The KSEs have been solved for backgrounds preserving one
supersymmetry [Gutowski, Gran, Roest, GP]

I The backgrounds preserving 28 supersymmetries have been
classified and those preserving more than 28 are maximally
supersymmetric [Gutowski, Gran, Roest, GP]

I The maximally supersymmetric backgrounds have been classified
[Figueroa O’Farril, GP]

I The KSEs have also been solved for backgrounds with only
5-form flux preserving 2 supersymmetries.
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IIB horizon geometry

The horizon is an 8-dimensional 2-strong Calabi-Yau with torsion
[Gran, Gutowski, GP], ie it is Hermitian with hidden skew-symmetric
torsion H such that

ρ̂ = 0 , d(ω ∧ H) = ∂∂̄ω2 = 0 ,

where ρ̂ is the Ricci form of the compatible connection ∇̂ with torsion
H.

I H is hidden because it is not identified with either the RR or
NSNS 3-form field strengths as they have been set to zero.

I Many solutions exist mostly constructed as torus fibrations over
products of Kähler-Einstein and Calabi-Yau spaces. This gives
many examples of new horizon geometries

I There are several generalizations of these geometries including
imposing the k-strong condition

d(ωk−1 ∧ H) = ∂∂̄ωk = 0
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Applications

I For the gravitational dual backgrounds AdSn ×w X, n=3,5,7,
Hn−2 × X has a 2-strong Calabi-Yau geometry with torsion. This
geometry includes the well-known Sasakian-Einstein structure on
X for n = 5

I Solutions AdS7 ×w X do not exist.

I Does any Hermitian 2n-dimensional manifold admit a k-strong
structure? For k = n− 1, it is true as a consequence of the
Gauduchon theorem. The problem for the rest of the cases is
open.
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Static M-horizons

The Killing spinor equation of 11-dimensional supergravity is

∇Mε+

(
− 1

288
ΓM

L1L2L3L4FL1L2L3L4 +
1

36
FML1L2L3Γ

L1L2L3

)
ε = 0 ,

I This has been solved for backgrounds preserving one
supersymmetry [Gauntlett,Pakis, Gutowski], [Gillard, Gran, GP]

I The solutions preserving 30 and 31 supersymmetries are
maximally supersymmetric [Gran, Gutowski, Roest, GP]

I The maximally supersymmetric backgrounds have been classified
[Figueroa O’Farril, GP]
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I All static M-horizons are products AdS2 × X9, where X9 has an SU(4)
structure [Gutowski, GP].

I The horizon sections of all electric static horizons is a circle bundle over
a Kähler-Yamabe 8-dimensional manifold B,

ds2(S) = λ2 + ds2(B)

where

dλ = ρ(B) , ρ(B)2 = const

and dλ is Hermitian-Einstein.
I Examples include AdS2 × S3 × CY6. There are many other examples

constructed as fibrations over products of Kähler-Einstein and
Calabi-Yau spaces. For AdS2 × S3 × CY6, B = S2 × CY6

I B is not Kähler-Einstein and S is not Sasakian.
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Concluding remarks

I Evidence suggest that there is a large number of black holes in
heterotic, type II and 11-dimensional theories. Some of them are
of Kaluza-Klein type and some others may have exotic topologies

I The horizons sections have special geometry and their existence
is closely related the existence of solutions to non-linear
differential equations on manifolds. In the heterotic case, the
differential system is of Calabi type and includes the
Monge-Ampére equation. The associated cohomological system
has solutions on all del Pezzo surfaces

I IIB horizons with 5-form flux are 2-strong Calabi-Yau manifolds
with torsion.

I Static M-horizons are products AdS2 × X9, where X9 has a SU(4)
structure. For electric horizons, X9 is a fibration over a
Kähler-Yamabe manifold and the length of Ricci form is constant.
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