Sphere partition functions and the 3 d superconformal \boldsymbol{R}-charge

Daniel L. Jafferis

Harvard University

Based on: D.J. (1012.3210)
D.J., Klebanov, Pufu, Safdi (1103.1181)

6 ${ }^{\text {th }}$ Regional Meeting in
String Theory
Milos
24 June, 2011

See also: Hama Hosomichi Lee, Martelli Sparks, Cheon Kim Kim

- Motivation: c-theorems and R-symmetries
- Supersymmetry on the round sphere
- Non-renormalization of Z: localization
- The exact superconformal R-charge
- Holographic examples

c-theorems in various dimensions

- A measure of the number of degrees of freedom in interacting field theories. It should decrease along rg flow.
- Most obvious conjecture is the thermal free energy. In 3d, the critical $\mathrm{O}(\mathrm{N})$ model is a counter-example. Also, not constant along conformal manifolds.

c-theorems in various dimensions

- In 2d, the coefficient of the trace anomaly famously has this property. RG flow is the gradient flow for this quantity.

■ In $4 \mathrm{~d}, 16 \pi^{2}\left\langle T^{\mu}{ }_{\mu}\right\rangle=c(\text { Weyl })^{2}-2 a($ Euler $)$, and it is conjectured that a plays this role.

- In odd dimensions, there are no anomalies, so this has long been an open problem.

Superconformal \boldsymbol{R}-charge

- Theories with 4 supercharges admit a U(1) R-symmetry, under which the susies are charged. $R+F$ is again an $R-$ symmetry for any flavor generator, F.

$$
R=R_{0}+\sum_{j=1}^{f} a_{j} F_{j}
$$

- SCFTs must be R -symmetric, as the (now unique) R charge appears in anti-commutators. The dimensions of chiral primaries are given by their R-charge.
- The superconformal R in the IR typically differs from that in the UV SCFT by mixing with abelian flavor symmetries.

4d a-maximization

- Solved using 't Hooft anomaly matching
- The trace anomaly, $a=\frac{3}{32}\left(3 \operatorname{Tr} R^{3}-\operatorname{Tr} R\right)$, in terms of the exact superconformal R.

Anselmi Freedman Grisaru Johansen

- It was shown that a is maximized as a function of a trial R-charge. Intrigator Wecht
- Gives evidence for the a-theorem.

Other proposals in 3d

- The two point function of an R-current is maximized for the superconformal one, since R-currents and flavor currents sit in different multiplets. However, it is quantum corrected and seems not to be exactly calculable in 3 d .

Barnes Gorbatov Intriligator Wright

- Myers and Sinha proposed an entanglement entropy, which reproduces a in 4 d . It was later shown to be equivalent to the sphere partition function in 3 d .

Partition functions on S^{3}

- Calculated by Kapustin Willett Yaakov using localization when there are no anomalous dimenions.
- This partition function of the Euclidean theory is given in classical supergravity by minus the Euclidean Einstein action of the AdS.

$$
S=-\frac{1}{16 \pi G_{N}} \int d^{4} x \sqrt{g}(R-2 \Lambda)+S_{\text {surf }}+S_{c t}=\frac{\pi}{2 G_{N}}
$$

[Henningsson Skenderis; Emparan Johnson Myers]

- Matrix integral for the $N=6$ theory solved by Drukker Marino Putrov, reproducing $\mathrm{N}^{3 / 2}$ behavior.

Z-minimization

- Return to Cardy's original motivation - consider the theory on S^{3}. Finite after power law divergences are removed.

■ Susy preserving curvature couplings parameterized by an R-charge.

- Can be calculated exactly using supersymmetry (localization) as a function of R.

■ Minimized by the IR R-charge, that uniquely corresponds to conformal coupling to curvature.

$\mathbf{N}=2$ Chern-Simons-matter theory

- Consists of a vector multiplet in the adjoint of the gauge group, and chiral multiplets in representations R_{i}

$$
S_{C S}^{\mathcal{N}}=\bar{S}^{2}=\frac{k}{4 \pi} \int\left(A \wedge d A+\frac{2}{3} A^{3}-\bar{\chi} \chi+2 D \sigma\right)
$$

- The kinetic term for the chiral multiplets includes couplings $-\bar{\phi}_{i} \sigma^{2} \phi_{i}-\bar{\psi}_{i} \sigma \psi_{i}$

■ There is the usual D term $\bar{\phi}_{i} D \phi_{i}$

Integrate out D, σ, and χ

$$
\begin{gathered}
S^{\mathcal{N}=2}=\int \frac{k}{4 \pi}\left(A \wedge d A+\frac{2}{3} A^{3}\right)+D_{\mu} \bar{\phi}_{i} D^{\mu} \phi_{i}+i \bar{\psi}_{i} \gamma^{\mu} D_{\mu} \psi_{i} \\
-\frac{16 \pi^{2}}{k^{2}}\left(\bar{\phi}_{i} T_{R_{i}}^{a} \phi_{i}\right)\left(\bar{\phi}_{j} T_{R_{j}}^{b} \phi_{j}\right)\left(\bar{\phi}_{k} T_{R_{k}}^{a} T_{R_{k}}^{b} \phi_{k}\right)-\frac{4 \pi}{k}\left(\bar{\phi}_{i} T_{R_{i}}^{a} \phi_{i}\right)\left(\bar{\psi}_{j} T_{R_{j}}^{a} \psi_{j}\right) \\
-\frac{8 \pi}{k}\left(\bar{\psi}_{i} T_{R_{i}}^{a} \phi_{i}\right)\left(\bar{\phi}_{j} T_{R_{j}}^{a} \psi_{j}\right) .
\end{gathered}
$$

Note that this action has classically marginal couplings. It is has been argued that it does not renormalize, up to shift of k , and so is a CFT.

The recipe

$$
Z=\int \prod_{\text {Cartan }} \frac{d \sigma}{2 \pi} \exp \left[\frac{i}{4 \pi} \operatorname{tr}_{k} \sigma^{2}\right] \operatorname{Det}_{\text {Ad }}\left(\sinh \frac{\sigma}{2}\right)
$$

$$
\times \prod_{\text {in }}^{\text {chiralap }} \operatorname{sep}_{R_{i}} \operatorname{Det}_{R_{i}}\left(e^{\ell\left(1-\Delta_{i}+i \frac{\sigma}{2 \pi}\right)}\right)
$$

$$
\begin{gathered}
\ell(z)=-z \log \left(1-e^{2 \pi i z}\right)+\frac{i}{2}\left(\pi z^{2}+\frac{1}{\pi} \mathrm{Li}_{2}\left(e^{2 \pi i z}\right)\right)-\frac{i \pi}{12} \\
\partial_{z} \ell(z)=-\pi z \cot (\pi z)
\end{gathered}
$$

Superconformal symmetries on \mathbf{S}^{3}

- The conformal group in 3d is $\operatorname{USp}(4)=\operatorname{SO}(3,2)$.
- In Euclidean signature, one has the real form $\operatorname{USp}(2,2)$ $=\mathrm{SO}(4,1)$.
- On S^{3}, the $\operatorname{USp}(2) \times \operatorname{USp}(2)=\operatorname{SO}(4)$ subgroup acts as rotations of the sphere.
- The $N=2$ superconformal group is $\operatorname{OSp}(2 \mid 4)$.
- The R -symmetry is $\mathrm{SO}(2)=\mathrm{U}(1)$.

Supersymmetry on the sphere

- The sphere possesses homogeneous Killing spinors, $\nabla_{\mu} \epsilon= \pm \frac{i}{2} \gamma_{\mu} \epsilon$, so one expects that supersymmetry is preserved. The associated generators square to isometries.
- It corresponds to keeping Q and S while throwing away \bar{Q} and \bar{S} of the superconformal algebra.
- Closely related to the 4 d superconformal index on $S^{3} \times R$.

$\mathrm{OSp}(2 \mid 2) \times \mathrm{SU}(2)$

- The $\operatorname{OSp}(2 \mid 2)$ subgroup of $\operatorname{OSp}(2 \mid 2,2)$ does not contain any conformal transformations. The bosonic generators are the R -symmetry and $\mathrm{SU}(2)_{\mathrm{L}}$ isometries.

$$
\left\{Q_{A}^{i}, Q_{B}^{j}\right\}=\delta^{i j} J_{A B}+i \epsilon_{A B} \epsilon_{i j} R
$$

- Parity exchanges the two $\mathrm{SU}(2) \mathrm{s}$ and is broken by this choice.

$$
\delta=\frac{1}{\sqrt{2}}\left(Q_{1}^{1}+i Q_{1}^{2}\right), \tilde{\delta}=\frac{1}{\sqrt{2}}\left(Q_{2}^{1}-i Q_{2}^{2}\right)
$$

$$
\begin{aligned}
& \delta \phi=0 \\
& \delta \bar{\phi}=\bar{\psi} \varepsilon \\
& \delta \psi=\left(-i \gamma^{\mu} D_{\mu} \phi-i \sigma \phi+\frac{\Delta}{r} \phi\right) \varepsilon \\
& \delta \bar{\psi}=\varepsilon \bar{F} \\
& \delta F=\varepsilon\left(-i \gamma^{\mu} D_{\mu} \psi+i \sigma \psi+\frac{1}{r}\left(\frac{1}{2}-\Delta\right) \psi+i \lambda \phi\right) \\
& \delta \bar{F}=0,
\end{aligned}
$$

$$
\begin{aligned}
\delta A_{\mu} & =-\frac{i}{2} \lambda^{\dagger} \gamma_{\mu} \varepsilon \\
\delta \sigma & =-\frac{1}{2} \bar{\lambda} \varepsilon \\
\delta \lambda & =\left(-\frac{1}{2} \gamma^{\mu \nu} F_{\mu \nu}-D+i \gamma^{\mu} \partial_{\mu} \sigma-\frac{1}{r} \sigma\right) \varepsilon \\
\delta \bar{\lambda} & =0 \\
\delta D & =\left(-\frac{i}{2}\left(D_{\mu} \bar{\lambda}\right) \gamma^{\mu}+\frac{1}{4 r} \bar{\lambda}\right) \varepsilon .
\end{aligned}
$$

May be obtained by writing OSp(2|2)/U(1) superfields in components. Equivalently, these are the unique transformations that satisfy the algebra.

Or by coupling to gravity, putting the theory on the sphere, and taking M_{PI} to infinity. Certain background fields must be turned on to preserve supersymmetry. The fully nonlinear theory involves corrections that terminate at order $1 / \mathrm{r}^{2}$, together with covariantized derivatives.
[Festuccia Seiberg]

Curvature couplings

- To put a non-conformal theory on the sphere, one needs to specify how to couple it to curvature.

■ If the theory were conformal, those couplings could be uniquely determined by requiring Weyl invariance.

- $\operatorname{OSp}(2 \mid 2)$ invariance also determines the couplings uniquely, for any R-charge.

$$
\begin{aligned}
S=\int \sqrt{g}\left(D_{\mu} \phi^{\dagger} D^{\mu} \phi+i \psi^{\dagger} D \psi+\right. & F^{\dagger} F+\phi^{\dagger} \sigma^{2} \phi+i \phi^{\dagger} D \phi-i \psi^{\dagger} \sigma \psi+i \phi^{\dagger} \lambda^{\dagger} \psi-i \psi^{\dagger} \lambda \phi \\
\text { [D. Sen; Romelsberger] } & \left.+\frac{\Delta-\frac{1}{2}}{r} \psi^{\dagger} \psi+\frac{2 i}{r}\left(\Delta-\frac{1}{2}\right) \phi^{\dagger} \sigma \phi+\frac{\Delta(2-\Delta)}{r^{2}} \phi^{\dagger} \phi\right) .
\end{aligned}
$$

From UV to IR

- Supersymmetric localization implies that the partition function is independent of the radius of the sphere, even in the non-conformal case.
- Given the R-charge that sits in the susy algebra, one may do the calculation on a small sphere, using the UV theory, and obtain the IR result for a large sphere.
- The difference between UV and IR theories is Q-exact, if both are coupled to curvature using the same R multiplet.

Localizing the path integral

- In Euclidean path integrals, the meaning of supersymmetry is that the expectation values of $\mathrm{Q}(.$. vanish.

> [Witten; Duistermaat Heckman; Pestun; Kapustin Willett Yaakov]

- This can sometimes be used to show that the full partition function localizes to an integral over Q-fixed configurations. There is a 1 -loop determinant from integrating out the other modes.

$$
\begin{gathered}
S_{\text {loc }}=\{Q, V\}, \quad\left[Q^{2}, V\right]=0 \quad Z(t)=\int \Pi d \Phi e^{-S-t S_{\text {loc }}} \\
\frac{d}{d t} Z=-\int \Pi d \Phi e^{-S-t S_{\text {loo }}\{Q, V\}=0}
\end{gathered}
$$

Gauge sector

- The unique supersymmetrization of the Yang-Mills action on the sphere is

$$
\begin{aligned}
& \frac{1}{g_{Y M}^{2}} \int \sqrt{g} \operatorname{Tr}\left(\frac{1}{2} F^{\mu \nu} F_{\mu \nu}+D_{\mu} \sigma D^{\mu} \sigma+D^{2}\right. \\
&\left.+i \lambda^{\dagger} \nabla \lambda+i\left[\lambda^{\dagger}, \sigma\right] \lambda+\frac{2}{r} D \sigma-\frac{1}{2 r} \lambda^{\dagger} \lambda+\frac{1}{r^{2}} \sigma^{2}\right)
\end{aligned}
$$

■ It is Q -exact. There is a massless field, $\sigma=-D r$, whose zero mode survives the localization.

- The Chern-Simons action is non-zero on space of supersymmetric configurations:

$$
\frac{i k}{4 \pi} \int_{S^{3}} 2(D \sigma)=i \pi k r^{2}\left(\sigma^{2}\right)
$$

Matter sector

- A chiral multiplet has a one parameter family of supersymmetry preserving actions on the sphere.

$$
\begin{aligned}
S=\int \sqrt{g}\left(D_{\mu} \phi^{\dagger} D^{\mu} \phi+i \psi^{\dagger} D \psi+\right. & F^{\dagger} F+\phi^{\dagger} \sigma^{2} \phi+i \phi^{\dagger} D \phi-i \psi^{\dagger} \sigma \psi+i \phi^{\dagger} \lambda^{\dagger} \psi-i \psi^{\dagger} \lambda \phi \\
& \left.+\frac{\Delta-\frac{1}{2}}{r} \psi^{\dagger} \psi+\frac{2 i}{r}\left(\Delta-\frac{1}{2}\right) \phi^{\dagger} \sigma \phi+\frac{\Delta(2-\Delta)}{r^{2}} \phi^{\dagger} \phi\right)
\end{aligned}
$$

■ Superpotential terms may be supersymmetrized if they do not break the R-symmetry.

- These actions are all Q -exact.

Computing the determinants

- On a tiny sphere, the theory is gaussian, except for the zero mode scalar in the vector multiplets.
- One expands the fields in angular momentum modes to determine the 1-loop determinant.
- For the vector multiplets, the result is

$$
\prod_{\text {roots } \alpha} \frac{\sinh (\alpha(\sigma / 2))}{\alpha(\sigma)}
$$

1-loop matter determinant

$$
Z_{1-l o o p}=\prod_{n=1}^{\infty}\left(\frac{n+1+i r \sigma-\Delta}{n-1-i r \sigma+\Delta}\right)^{n}
$$

$$
\text { Define } z=1-\Delta+i r \sigma \text {, and let } \ell(z)=\log Z_{1-l o o p}
$$

$$
\begin{gathered}
\ell(z)=-z \log \left(1-e^{2 \pi i z}\right)+\frac{i}{2}\left(\pi z^{2}+\frac{1}{\pi} \operatorname{Li}_{2}\left(e^{2 \pi i z}\right)\right)-\frac{i \pi}{12} \\
\partial_{z} \ell(z)=-\pi z \cot (\pi z)
\end{gathered}
$$

The matrix integral

$$
Z=\int \prod_{\text {Cartan }} \frac{d \sigma}{2 \pi} \exp \left[\frac{i}{4 \pi} \operatorname{tr}_{k} \sigma^{2}\right] \operatorname{Det}_{\mathrm{Ad}}\left(\sinh \frac{\sigma}{2}\right)
$$

$$
\times \prod_{\text {in rep } R_{i}}^{\text {chirals }} \operatorname{Det}_{R_{i}}\left(e^{\ell\left(1-\Delta_{i}+i \frac{\sigma}{2 \pi}\right)}\right)
$$

Real masses

- These are background values of the real scalar in a background vector multiplet coupled to an abelian flavor symmetry.

$$
\int d^{4} \theta \bar{Q} e^{m \theta \bar{\theta}} Q
$$

- On the sphere, one needs to set $D=-\frac{\sigma}{r}$ to preserve supersymmetry.

$$
\{\delta, \tilde{\delta}\}=J+\frac{1}{r}\left(R_{U V}+a F\right)-i m F
$$

A holomorphy

- One can check that the actions depend holomorphically on the parameters

$$
z_{j}=a_{j}-i r m_{j}
$$

- Thus so does the partition function. This allows one to relate the less familiar dependence on curvature couplings to a familiar dependence on real mass deformations.

1-point functions

- Unbroken conformal invariance implies that all 1points vanish, except for the identity operator.

■ One would expect that $\frac{1}{Z} \partial_{m} Z=0$, when evaluated at $m=0$ and the superconformal value of R.

- However, there is a subtlety - the operator defined in the UV as the real mass may contain the identity for the theory on the sphere.
- Partition function is complex due to framing of ChernSimons theory (susy preserving UV regulator violates reflection positivity - work in progress).

Parity

- Recall that parity switches the two $\operatorname{SU}(2)$ isometries of S^{3}. Thus parity together with $\operatorname{OSp}(2 \mid 2)$ generates the entire superconformal group.
- The real mass is parity odd. Therefore in a parity preserving theory, its VEV must vanish.
- In a parity violating CFT, only the parity even identity operator has a VEV. Thus $\operatorname{Im}\left(\frac{1}{Z} \partial_{m} Z\right)=0$

$|Z|$ extremization

- Using the holomorphy, this implies that

$$
\partial_{\Delta}|Z|=0
$$

at the superconformal value of Δ.

- Holographic evidence and examples indicate that $|Z|$ is always minimized. Need to control 2-point functions to prove this in field theory.

AdS dual of \mathbf{Z}

■ 3d CFT describing N M2 branes on a CalabiYau cone is dual to $\mathrm{AdS}_{4} \times$ Sasaki-Einstein 7manifold.

- The theory on S^{3} is dual to euclidean AdS.

$$
-\log \left(Z_{S^{3}}\right)=\frac{\pi L_{A d S}^{2}}{2 G_{N}^{4 d}}=N^{3 / 2} \sqrt{\frac{2 \pi^{6}}{27 \operatorname{Vol}(Y)}}
$$

Where the metric on Y is normalized such that $R_{i j}=6 g_{i j}$

Quiver CSM theories

- $\mathrm{U}(\mathrm{N})_{k} \times \mathrm{U}(\mathrm{N})_{-\mathrm{k}} \mathrm{CSM}$ with a pair of bifundamental hypermultiplets

$$
\begin{aligned}
Z= & \frac{1}{(2 \pi)^{2 N}} \int \prod_{i=1}^{N} d \sigma_{i} d \tilde{\sigma}_{i} \exp \left[\frac{i k}{4 \pi}\left(\operatorname{tr} \sigma^{2}-\operatorname{tr} \tilde{\sigma}^{2}\right)\right] \\
& \times \prod_{i<j} \sinh ^{2}\left(\frac{\sigma_{i}-\sigma_{j}}{2}\right) \sinh ^{2}\left(\frac{\tilde{t}_{i}-\tilde{\sigma}_{j}}{2}\right) \prod_{\text {in chireplal }} \operatorname{Det}_{R_{i}}\left(e^{\ell\left(1-\Delta_{i}+i \frac{\tau_{2 \pi}}{2 \pi}\right)}\right)
\end{aligned}
$$

$$
W=\frac{2 \pi}{k} \epsilon_{a b} \epsilon_{\dot{a} \dot{b}}\left(A_{a} B_{\dot{a}} A_{b} B_{\dot{b}}\right)
$$

Large \mathbf{N} limits

- In the 't Hooft limit, the eigenvalues form a density. The clump has size of order 1. Thus $\mathrm{F} \sim \mathrm{N}^{2} \mathrm{f}(\lambda)$ to leading order, as expected from the saddle point solution to matrix models.
- For large N at fixed k , there is still a density, but the clump has size of order $\sqrt{ } \mathrm{N}$. Requires cancellation of long range forces.

Matrix models for $N=2$ quivers

- The saddle point equations are given by the vanishing of the forces:

$$
\begin{gathered}
F_{i}^{(a)}=F_{i, \text { ext }}^{(a)}+F_{i, \text { self }}^{(a)}+\sum_{b} F_{i, \text { inter }}^{(a, b)}+\sum_{b} F_{i, \text { inter }}^{(b, a)} \\
F_{i, \text { ext }}^{(a)}=\frac{i k_{a}}{2 \pi} \lambda_{i}^{(a)} \\
F_{i, \mathrm{self}}^{(a)}=\sum_{j \neq i} \operatorname{coth} \frac{\lambda_{i}^{(a)}-\lambda_{j}^{(a)}}{2} \\
F_{i, \text { inter }}^{(a, b)}=\sum_{j}\left[\frac{\Delta_{(a, b)}-1}{2}-i \frac{\lambda_{i}^{(a)}-\lambda_{j}^{(b)}}{4 \pi}\right] \operatorname{coth}\left[\frac{\lambda_{i}^{(a)}-\lambda_{j}^{(b)}}{2}-i \pi\left(1-\Delta_{(a, b)}\right)\right]
\end{gathered}
$$

Ansatz

- Want a clump of size strictly between $\mathrm{O}(1)$ and $\mathrm{O}(\mathrm{N})$ long range forces must then cancel.

$$
\lambda_{i}^{(a)}=N^{1 / 2} x_{i}+i y_{a, i}+o\left(N^{0}\right)
$$

- Use an eigenvalue density, $\varrho(\mathrm{x})$, for the universal x components, and functions $\mathrm{y}_{\mathrm{a}}(\mathrm{x})$.

$$
\begin{aligned}
& \frac{k_{a}}{2 \pi} N^{3 / 2} \int d x \rho(x) x y_{a}(x)+\Delta_{m}^{(a)} N^{3 / 2} \int d x \rho(x) x \\
& -N^{3 / 2} \frac{2-\Delta_{(a, b)}^{+}}{2} \int d x \rho(x)^{2}\left[\left(y_{a}-y_{b}+\pi \Delta_{(a, b)}^{-}\right)^{2}-\frac{1}{3} \pi^{2} \Delta_{(a, b)}^{+}\left(4-\Delta_{(a, b)}^{+}\right)\right] \\
& N^{3 / 2} \int d x \rho(x) x\left(\frac{1-\Delta_{a}}{2}-\frac{1}{4 \pi} y_{a}(x)\right)
\end{aligned}
$$

- Algebraic in ϱ !

An example

$$
\mathcal{W}_{f l}=p_{1} A_{1} q_{1}+p_{2} A_{2} q_{2}
$$

- Describes M2 branes on a CY cone. 1-loop quantum corrections are crucial to finding the moduli space. At level 0 , gives $\mathrm{AdS}_{4} \times \mathrm{Q}^{111}$.

$$
F=\frac{4 \sqrt{2} \pi N^{3 / 2}}{3} \frac{\hat{\Delta}(\hat{\Delta}+k+1)}{\sqrt{(k+1)^{2}(k-1)-4(k+1) \hat{\Delta}-2 \hat{\Delta}^{2}}}
$$

- To leading order in N , independent of the fundamental flavor R-charge.

Volume minimization

- In Sasaki-Einstein geometry, the Reeb vector is paired with the radial direction in the Kahler form on the CY cone.
- For toric SE , it is part of the $\mathrm{U}(1)^{4}$ isometry.
- The volume can be computed as a function of this embedding (in general, a Sasakian manifold with Kahler cone). It is minimized by the SE one.
- The whole function matches the field theory Z!

Summary

- Explained 3d $N=2$ R-symmetric theories on the sphere.
- Computed the IR partition function exactly in the UV theory as a function of R-charge parameterized curvature couplings.
- $|Z|$ is minimized by the IR superconformal R.

■ Looked at examples with M-theory AdS $_{4}$ duals.

