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MOTIVATION



• The spectrum of excitations in black hole backgrounds
provide useful information about the black hole.

Geodesics: classical geometry of the black hole
Quasi-normal modes: information of the relaxation times
Absorption cross-section

•In some rare examples, one has the situation where the
motion of strings in the black hole background can be solved
and quantized

The black hole in 2d string theory: exact CFT
The BTZ black hole with WZW term

Maldacena & Ooguri: Euclidean case
J. Troost: Minkowski case



•We will be interested in studying string propagation in the
Lorentzian BTZ black hole without the WZW term

• The string world sheet in the BTZ background is integrable
might be expected.

3d gravity is a Chern-Simons theory and is topological.
quasi-normal modes of scalars, spinor, vectors are exactly
solvable.

• This is not the situation for strings in black holes of higher
dimensional Anti-de Sitter space.

Basu, et. al, Zayas, et. al



• The BTZ black hole is locally AdS3. Strings on AdS3 is
integrable.

Integrability and the existence of infinite set of charges relies on
the construction of a flat connection, a local concept.

This goes through for the BTZ case.

The construction of the charges need to be done with some
care due to the quotienting.

• Our analysis follows the methods of

Kazakov, Marshakov, Minahan, Zarembo sigma model on
R × S3.

Kazakov, Zarembo sigma model on AdS3 × S1



FLAT CONNECTION AND INTEGRABILITY



• Recall the construction of the flat connection for a
sigma-model propagating on a group manifold.

S = −
√
λ

4π

∫
dσdτ

(
Tr

1
2

(g−1∂agg−1∂ag)

)
We can construct

j± = g−1∂±g, σ± =
1
2

(τ ± σ)

The equations of motion is given by

∂+j− + ∂−j+ = 0

From the definition of j± we can show

∂+j− − ∂−j+ + [j+, j−] = 0



• Now we can construct the flat connection

J±(x) =
j±

1∓ x

which satisfies

∂+J− − ∂−J+ + [J+, J−] = 0



• The construction of the charges is through the monodromy
matrix

Ω(x) = P exp

(
−
∫ 2π

0
dσJσ

)
Using the flatness of J can show

∂τΩ(x) = −(Jτ (2π)Ω(x)− Ω(x)Jτ (0))

Thus if
Jτ (2π) = Jτ (0)

we have
Tr(Ω(x))

is a world sheet time independent quantity.

This forms the generating function for the infinite set of
non-local charges.



•Group manifold with identification

Consider the identification

g ∼ ÃgA

Then the string in general has the following boundary
conditions

g(τ, σ + 2π) = Ãkg(τ, σ)Ak

Tracing this to the current J we obtain the condition

J(τ, σ + 2π) = (A−1)kJ(τ, σ)Ak

• Because of this boundary condition, we need to consider the
modified monodromy matrix

Ω̃ = Ak Ω,

∂τ Ω̃ = −(AkJτ (2π)Ω(x)− Ak Ω(x)Jτ (0))



Thus
Tr Ω̃(x)

is world sheet time independent and generates the infinite set
of non-local charges.

• The BTZ black hole is a quotient of AdS3 which is a SL(2,R)
group manifold.

Therefore we can construct infinite set of non-local charges for
the world sheet theory.



• Recall: BTZ is a quotient of the AdS3 hyperboloid.
(Discuss the non-extremal case.)

The AdS3 hyperboloid is a SL(2,R)

−u2 − v2 + x2 + y2 = −1

g =

(
u + x y + v
y − v u − x

)
The BTZ black hole is obtained by the identification

g ∼ ÃgA

Ã =

(
e(r+−r−)πk 0

0 e−(r+−r−)πk

)
A =

(
e(r−+r+)πk 0

0 e−(r−+r+)πk

)
.

Note that the identifications are the exponential of the σ3

matrix.



• Recall: the parametrization for region r > r+

u =
√

A(r) cosh φ̃(t , φ), x =
√

A(r) sinh φ̃(t , φ),

y =
√

B(r) cosh t̃(t , φ), v =
√

B(r) sin t̃(t , φ)

Where

A(r) =
r2 − r2

−
r2
+ − r2

−
, B(r) =

r2 − r2
+

r2
+ − r2

−
,

t̃ = r+t − r−φ, φ̃ = −r−t + r+φ.

Note
A(r)− B(r) = 1.

The SL(2,R) generators are

t1 = σ1, t2 = iσ2, t3 = σ3



USING INTEGRABILITY TO CHARACTERIZE
CLASSICAL SOLUTIONS



•We will consider the sigma model BTZ×S1

S = −λ
2

∫
d2σ

(
1
2
Tr(g−1∂agg−1∂ag−1) + ∂aZ∂aZ

)
Z parametrizes the S1.

We fix the gauge

Z =
Ĵ

2π
τ + m̂σ



• The following global charges play an important role:

Translations along BTZ time→ Energy E .

Translations along φ of the BTZ→ Spin S

A convenient combination is

E + S =
λ

2
(r+ − r−)

∫ 2π

0
dσTr(∂τgg−1σ3),

E − S = −λ
2

(r+ + r−)

∫ 2π

0
dσTr(g−1∂τgσ3).

Note that these charges are conserved for all the winding
sectors k .

• The Virasoro constraints

Tr(j2±) = 2

(
Ĵ

2πλ
± m̂

)



• The monodromy matrix Ω̂(x) plays an important role.

Since it belongs to SL(2,R) we can write its eigen values in the
form

{exp(ip(x)),exp(−ip(x))}

p(x) is called the quasi-momentum.

Thus
Tr Ω̂(x) = 2 cos p(x)



• The strategy to determine the form of p(x) is to study its
analytical properties in the complex x plane

•We then use complex analysis to determine equations that
constrain p(x) given the charges E ,S, Ĵ, m̂.



•We list the properties of the quasi-momemtum p(x).

• p(x) has simple poles at x = ±1

p(x) ∼ π
Ĵ

2πλ ± m̂
x ∓ 1



• x →∞

for k = 0
p(x) ∼ i

2x

√
Q2

R

with

Q2
R = (Q1

R)2 − (Q2
R)2 + (Q3

R)2

Qi
R =

∫ 2π

0
dσTr

(
g−1∂τgt i

)

for k 6= 0

p(x) ∼ iπk(r+ + r−)− i
1
x

E − S
λ(r+ + r−)



• x → 0
for k = 0

p(x)→ 2πm + i
x
2

√
Q2

L

where

Q2
L = (Q1

L)2 − (Q2
L)2 + (Q3

L)2

Qi
L =

∫ 2π

0
dσTr(t i∂τgg−1)

for k 6= 0

p(x) ∼ 2πm + iπk(r+ − r−) + ix
E + S

λ(r+ − r−)



• Across the branch cuts we have the condition

p(x + iε) + p(x − iε) = 2πn

where n is an integer.

This condition arises due to the uni-modular property of the
monodromy matrix Ω(x).

• Note that the analytic behaviour is determined by the global
charges.

These conditions are sufficient to constrain a K branch cut
solutions such that the only undetermined parameters in p(x)
are K − 1 numbers called filling fractions.



• It is useful to rewrite these constraints in terms of of a spectral
density ρ(x) .

Introduce the resolvent

G(x) = p(x)− π
Ĵ

2πλ + m̂
x − 1

− π
Ĵ

2πλ − m̂
x + 1

, k = 0

G(x) = p(x)− π
Ĵ

2πλ + m̂
x − 1

− π
Ĵ

2πλ − m̂
x + 1

− iπk(r+ + r−), k 6= 0

• Since G(x) is analytic except for possible branch cuts using
complex analysis it can be written as

G(x) =

∫
dξ

ρ(x)

x − ξ
where the integral is along the cuts.

In fact ρ is given by

ρ(x) =
1

2πi
(G(x + iε)−G(x − iε))



• For the case k = 0,
the behaviour of the quasi-momentum at∞ leads to∫

dξρ(ξ) = − Ĵ
λ

+
i
2

√
Q2

R.

The behaviour at the origin leads to

−
∫

dξ
ρ(ξ)

ξ
= 2π(m + m̂),

−
∫

dξ
ρ(ξ)

ξ2 =
J
λ

+
i
2

√
Q2

L .

The jump condition at the branch cuts leads to

2
∫
ξ 6=x

dξ
ρ(ξ)

x − ξ
= −

2π( Ĵ
2πλ + m̂)

x − 1
−

2π( Ĵ
2πλ − m̂)

x + 1
+ 2πnl



• For the case k 6= 0,
the behaviour of the quasi-momentum at∞ leads to∫

dξρ(ξ) = − Ĵ
λ
− i

E − S
λ(r+ + r−)

The behaviour at the origin leads to

−
∫

dξ
ρ(x)

ξ
= 2π(m̂ + m − ikr−),

−
∫

dξ
ρ(ξ)

ξ2 =
Ĵ
λ

+ i
E + S

λ(r+ − r−)



The jump condition at the branch cuts leads to

2
∫
ξ 6=x

dξ
ρ(ξ)

x − ξ

= −
2π( Ĵ

2πλ + m̂)

x − 1
−

2π( Ĵ
2πλ − m̂)

x + 1
+ 2πnl − 2πik(r+ + r−)



CLASSICAL SOLUTIONS



• To get a better feel for the construction.

To verify the properties of the quasi-momentum obtained using
general considerations

We study explicit solutions.

• It is convenient to write the sigma model as

S = −λ
2

∫
dτdσ

[
−∂au∂au − ∂av∂av + ∂ax∂ax + ∂ay∂ay

−Λ(−u2 − v2 + x2 + y2 + 1) + ∂aZ∂aZ
]
,

where Λ is the Lagrange multiplier.



• The boundary conditions are

r(τ, σ + 2π) = r(τ, σ),

t(τ, σ + 2π) = t(τ, σ),

φ(τ, σ + 2π) = φ(τ, σ) + 2πk

•We will discuss two class of solutions:

Geodesics

Winding strings



• For geodesics we start with the ansatz

u + x = a(τ) exp(f (τ)), u − x = a(τ) exp(−f (τ)),

y + v = b(τ) exp(g(τ)), y − v = b(τ) exp(−g(τ)).

with
a(τ) = cosh γ(τ), b(τ) = sinh γ(τ).

Note the ansatz is independent of the the world sheet σ.

• There are two constants of motion

ḟ cosh2 γ = c1, ġ sinh2 γ = c2.

They are related to E and S by

E − S = −(r+ + r−)2πλ(c1 + c2),

E + S = (r+ − r−)2πλ(c1 − c2).



• The Virasoro constraints imply either Ĵ = 0 or m̂ = 0.

With m̂ = 0 they reduce to

(γ̇)2 +
c2

1

cosh2 γ
−

c2
2

sinh2 γ
+ (

Ĵ
2πλ

)2 = 0.

• In terms of the BTZ coordinates and the conserved charges
the equation is

r2ṙ2 = −Ĵ2(r4 −Mr2 +
j2

4
) + (E2 − S2)r2 + S2M + ESj

This is the geodesic equation with mass Ĵ



• The monodromy matrix and the quasi-momentum can be
solved explicitly.

The monodromy matrix is

Ω = exp
[
− 2πx

1− x2 g−1ġ
]
,

with the quasi-momentum given by

p =
Ĵ
λ

x
x2 − 1

• The quasi-momentum thus has poles at x = ±1 without
branch cuts.

The spectral density ρ(x) vanishes for geodesics.



• For winding strings we start with the anstaz

u + x = a(τ)e(f (τ)+ν1σ), u − x = a(τ)e−(f (τ)+ν1σ),

y + v = b(τ)e(g(τ)+ν2σ), y − v = b(τ)e−(g(τ)+ν2σ).

where again

a(τ) = cosh γ(τ), b(τ) = sinh γ(τ)

From the anstaz the BTZ coordinates are given by

t =
r+(g(τ) + ν2σ) + r−(f (τ) + ν1σ)

r2
+ − r2

−
,

φ =
r−(g(τ) + ν2σ) + r+(f (τ) + ν1σ)

r2
+ − r2

−
.



The periodicity conditions

t(τ, σ + 2π) = t(τ, σ), φ(τ, σ + 2π) = φ+ 2πk

results in
ν1 = r+k , ν2 = −r−k .

We have the constants of motion

ḟ cosh2 γ = c1, ġ sinh2 γ = c2.



• The Virasoro constraints are

(γ̇)2 +
c2

1

cosh2 γ
−

c2
2

sinh2 γ
+

ν2
1 cosh2 γ − ν2

2 sinh2 γ + (Ĵ2 + m̂2) = 0,

c1ν1 + c2ν2 + Ĵm̂ = 0.

• The general solution can be found in terms of Jacobi elliptic
functions.

The mondromy matrix and the quasi-momentum can be
evaluated explicity for this solution.



• The quasi-momentum is given by

cos p(x) = coshπ
√

D̃

with

D̃ =

{
(ν2 − ν1)2 − 4

(1− x2)2

(
Ĵ2

4π2λ2 + m2 + 2x
Ĵm̂
2πλ

)

+
4

1− x2

(
c2

2

sinh2 γ0
−

c2
1

cosh2 γ0

)
+ 4(ν2 − ν1)Ã

}1/2



• From this explicit formula for p(x)

one can determine the behaviour at x → ±1,∞,0 and verify
the behaviour obtained from general considerations.

• For this solution the spectral density ρ(x) has 2-branch cuts.

•We have evaluated the first non-local charge for this solution.



• The behaviour of the spectral density enables a classification
of the solutions.



RELATION WITH THE SL(2,R) SPIN CHAIN



•We start with the following Bethe equations for a twisted
version of the SL(2,R) spin chain.(

x(uk + i
2)

x(uk − i
2)

)L

exp(2iπk(r̃+ + r̃−)) =
M∏

j=1,j 6=k

uk − uj − i
uk − uj + i

,

with

x(u) =
u
2

+
u
2

√
1− 2g2

u2 ,

x(uk + i/2)

x(uk − i/2)
= exp ipk



The cyclicity constraint is given by

M∏
k=1

(
x(uk + i

2)

x(uk − i
2)

)
= exp(2πik r̃−).

The energy of the chain is given by

D = 2g2
M∑

k=1

(
i

x(uk + i
2)
− i

x(uk − i
2)

)
.



• Let us now take the thermodynamic limit :

L→∞, scale uk → Luk .

Introduce a density function for the magnons∫
duρ̃(u) =

M
L
.

We redefine

u = x +
g′2

x
, where g′ =

g
L
.



• Then the
I The normalization of the density
I The Bethe equations
I The cyclicity constraint
I The equation for the energy

are given by∫
dx(1− g′2

x2 )ρ̃(u(x)) =
M
L
.

2
∫

y 6=x
dy
ρ̃(u(x))

(x − y)
= −1

x
− 2πk(r̃+ + r̃−) + 2πn∫

ρ̃(x)

x
= −2π(m̂ − k r̃+),

D
L

= 2g′2
∫

dx
ρ̃(x)

x2 .



• At the leading order in g′
L , these equations are same as the

four equations which constrain the spectral density ρ(x) of the
BTZ sigma model upon the identification.

g′ =
g
L

=
λ

2Ĵ
, ρ̃(u(x)) = ρ(x),

ir+ → r̃+, ir− → r̃−, m̂ + m→ m̃
1

4Ĵ

(
E − S

(r̃+ + r̃−)
− E + S

(r̃+ − r̃−)

)
=

M
L
,

D
L

= −1 +
E + S

Ĵ(r̃+ − r̃−)
.



BMN AND MAGNON LIKE STATES



•We can use the equations constraining the equations for the
spectral density to obtain dispersion relations of states
analogous to the ones studied in the case of the sigma model
on R × S3



• For a delta function distribution of the spectral density

ρ(x) =
∑

s

Ssδ(x − xs)

One can solve the integral equations and obtain a dispersion
relation similar to the plane wave.

−i
Ĵ
λ

+
E + S

λ(r+ − r−)
=
∑

s

S̃sĴ
2πλ

√1 +
4π2λ2

Ĵ2
(ns + ik(r+ − r−))2 − 1


with ∑

s

(ns + ik(r+ − r−))S̃s = 2πkr−

Ĵ
∑

s

S̃s =
E − S
r+ + r−

+
E + S
r+ − r−



• For a distribution of spectral density which is constant
between two points in the complex plane we obtain the
dispersion relation

Q+ − 2Ĵ i =

√
Q2
− − 16λ2 sin2 p

2
,

with

Q+ =
E + S
r+ − r−

+
E − S
r+ + r−

, Q− =
E + S
r+ − r−

− E − S
r+ + r−

.

This resembles the magnon dispersion relation but with
complex momentum.



CONCLUSIONS



•We have seen that the classical sigma sigma model on the
BTZ black hole background is integrable.

•We have seen that the integrability can be used to study and
organize the classical solutions of the sigma model.

• It will be interesting if one can use integrability to find the
complete allowed spectrum of strings around the BTZ black
hole.

A step in this direction is to investigate more classical solutions.

• Finding this spectrum will have implications for the dual
conformal field theory corresponding to the BTZ background.


