CLASSICAL INTEGRABILITY IN THE BTZ BLACK HOLE

based on 1105.0480 with Abhishake Sadhukhan

Justin R. David

CHEP, Indian Institute of Science, Bangalore

MOTIVATION

- The spectrum of excitations in black hole backgrounds provide useful information about the black hole.

Geodesics: classical geometry of the black hole Quasi-normal modes: information of the relaxation times Absorption cross-section

- In some rare examples, one has the situation where the motion of strings in the black hole background can be solved and quantized

The black hole in 2d string theory: exact CFT
The BTZ black hole with WZW term
Maldacena \& Ooguri: Euclidean case
J. Troost: Minkowski case

- We will be interested in studying string propagation in the Lorentzian BTZ black hole without the WZW term
- The string world sheet in the BTZ background is integrable might be expected.

3d gravity is a Chern-Simons theory and is topological. quasi-normal modes of scalars, spinor, vectors are exactly solvable.

- This is not the situation for strings in black holes of higher dimensional Anti-de Sitter space.

Basu, et. al, Zayas, et. al

- The BTZ black hole is locally $A d S_{3}$. Strings on $A d S_{3}$ is integrable.

Integrability and the existence of infinite set of charges relies on the construction of a flat connection, a local concept.

This goes through for the BTZ case.
The construction of the charges need to be done with some care due to the quotienting.

- Our analysis follows the methods of

Kazakov, Marshakov, Minahan, Zarembo sigma model on $R \times S^{3}$.
Kazakov, Zarembo sigma model on $A d S_{3} \times S^{1}$

FLAT CONNECTION AND INTEGRABILITY

- Recall the construction of the flat connection for a sigma-model propagating on a group manifold.

$$
S=-\frac{\sqrt{\lambda}}{4 \pi} \int d \sigma d \tau\left(\operatorname{Tr} \frac{1}{2}\left(g^{-1} \partial_{a} g g^{-1} \partial^{a} g\right)\right)
$$

We can construct

$$
j_{ \pm}=g^{-1} \partial_{ \pm} g, \quad \sigma_{ \pm}=\frac{1}{2}(\tau \pm \sigma)
$$

The equations of motion is given by

$$
\partial_{+} j_{-}+\partial_{-} j_{+}=0
$$

From the definition of $j_{ \pm}$we can show

$$
\partial_{+} j_{-}-\partial_{-} j_{+}+\left[j_{+}, j_{-}\right]=0
$$

- Now we can construct the flat connection

$$
J_{ \pm}(x)=\frac{j_{ \pm}}{1 \mp x}
$$

which satisfies

$$
\partial_{+} J_{-}-\partial_{-} J_{+}+\left[J_{+}, J_{-}\right]=0
$$

- The construction of the charges is through the monodromy matrix

$$
\Omega(x)=P \exp \left(-\int_{0}^{2 \pi} d \sigma J_{\sigma}\right)
$$

Using the flatness of J can show

$$
\partial_{\tau} \Omega(x)=-\left(J_{\tau}(2 \pi) \Omega(x)-\Omega(x) J_{\tau}(0)\right)
$$

Thus if

$$
J_{\tau}(2 \pi)=J_{\tau}(0)
$$

we have

$$
\operatorname{Tr}(\Omega(x))
$$

is a world sheet time independent quantity.
This forms the generating function for the infinite set of non-local charges.
-Group manifold with identification
Consider the identification

$$
g \sim \tilde{A} g A
$$

Then the string in general has the following boundary conditions

$$
g(\tau, \sigma+2 \pi)=\tilde{A}^{k} g(\tau, \sigma) A^{k}
$$

Tracing this to the current J we obtain the condition

$$
J(\tau, \sigma+2 \pi)=\left(A^{-1}\right)^{k} J(\tau, \sigma) A^{k}
$$

- Because of this boundary condition, we need to consider the modified monodromy matrix

$$
\begin{aligned}
\tilde{\Omega} & =A^{k} \Omega, \\
\partial_{\tau} \tilde{\Omega} & =-\left(A^{k} J_{\tau}(2 \pi) \Omega(x)-A^{k} \Omega(x) J_{\tau}(0)\right)
\end{aligned}
$$

Thus

$$
\operatorname{Tr} \tilde{\Omega}(x)
$$

is world sheet time independent and generates the infinite set of non-local charges.

- The BTZ black hole is a quotient of $A d S_{3}$ which is a $S L(2, R)$ group manifold.

Therefore we can construct infinite set of non-local charges for the world sheet theory.

- Recall: BTZ is a quotient of the $A d S_{3}$ hyperboloid.
(Discuss the non-extremal case.)
The $A d S_{3}$ hyperboloid is a $S L(2, R)$

$$
\begin{gathered}
-u^{2}-v^{2}+x^{2}+y^{2}=-1 \\
g=\left(\begin{array}{ll}
u+x & y+v \\
y-v & u-x
\end{array}\right)
\end{gathered}
$$

The BTZ black hole is obtained by the identification

$$
\begin{aligned}
& g \sim \tilde{A} g A \\
& \tilde{A}=\left(\begin{array}{cc}
e^{\left(r_{+}-r_{-}\right) \pi k} & 0 \\
0 & e^{-\left(r_{+}-r_{-}\right) \pi k}
\end{array}\right) \\
& A=\left(\begin{array}{cc}
e^{\left(r_{-}+r_{+}\right) \pi k} & 0 \\
0 & e^{-\left(r_{-}+r_{+}\right) \pi k}
\end{array}\right) .
\end{aligned}
$$

Note that the identifications are the exponential of the σ^{3} matrix.

- Recall: the parametrization for region $r>r_{+}$

$$
\begin{aligned}
u & =\sqrt{A(r)} \cosh \tilde{\phi}(t, \phi), & & x=\sqrt{A(r)} \sinh \tilde{\phi}(t, \phi), \\
y & =\sqrt{B(r)} \cosh \tilde{t}(t, \phi), & & v=\sqrt{B(r)} \sin \tilde{t}(t, \phi)
\end{aligned}
$$

Where

$$
\begin{aligned}
A(r)=\frac{r^{2}-r_{-}^{2}}{r_{+}^{2}-r_{-}^{2}}, & B(r)=\frac{r^{2}-r_{+}^{2}}{r_{+}^{2}-r_{-}^{2}} \\
\tilde{t}=r_{+} t-r_{-} \phi, & \tilde{\phi}=-r_{-} t+r_{+} \phi
\end{aligned}
$$

Note

$$
A(r)-B(r)=1
$$

The $S L(2, R)$ generators are

$$
t^{1}=\sigma^{1}, \quad t^{2}=i \sigma^{2}, \quad t^{3}=\sigma^{3}
$$

USING INTEGRABILITY TO CHARACTERIZE CLASSICAL SOLUTIONS

- We will consider the sigma model $B T Z \times S^{1}$

$$
S=-\frac{\lambda}{2} \int d^{2} \sigma\left(\frac{1}{2} \operatorname{Tr}\left(g^{-1} \partial_{a} g g^{-1} \partial^{a} g^{-1}\right)+\partial_{a} Z \partial^{a} Z\right)
$$

Z parametrizes the S^{1}.
We fix the gauge

$$
Z=\frac{\hat{\jmath}}{2 \pi} \tau+\hat{m} \sigma
$$

- The following global charges play an important role:

Translations along BTZ time \rightarrow Energy E.
Translations along ϕ of the BTZ \rightarrow Spin S
A convenient combination is

$$
\begin{aligned}
E+S & =\frac{\lambda}{2}\left(r_{+}-r_{-}\right) \int_{0}^{2 \pi} d \sigma \operatorname{Tr}\left(\partial_{\tau} g g^{-1} \sigma^{3}\right), \\
E-S & =-\frac{\lambda}{2}\left(r_{+}+r_{-}\right) \int_{0}^{2 \pi} d \sigma \operatorname{Tr}\left(g^{-1} \partial_{\tau} g \sigma^{3}\right) .
\end{aligned}
$$

Note that these charges are conserved for all the winding sectors k.

- The Virasoro constraints

$$
\operatorname{Tr}\left(j_{ \pm}^{2}\right)=2\left(\frac{\hat{\jmath}}{2 \pi \lambda} \pm \hat{m}\right)
$$

- The monodromy matrix $\hat{\Omega}(x)$ plays an important role. Since it belongs to $S L(2, R)$ we can write its eigen values in the form

$$
\{\exp (i p(x)), \exp (-i p(x))\}
$$

$p(x)$ is called the quasi-momentum.
Thus

$$
\operatorname{Tr} \hat{\Omega}(x)=2 \cos p(x)
$$

- The strategy to determine the form of $p(x)$ is to study its analytical properties in the complex x plane
- We then use complex analysis to determine equations that constrain $p(x)$ given the charges E, S, \hat{J}, \hat{m}.
- We list the properties of the quasi-momemtum $p(x)$.
- $p(x)$ has simple poles at $x= \pm 1$

$$
p(x) \sim \pi \frac{\frac{\hat{\jmath}}{2 \pi \lambda} \pm \hat{m}}{x \mp 1}
$$

- $x \rightarrow \infty$
for $k=0$

$$
p(x) \sim \frac{i}{2 x} \sqrt{Q_{R}^{2}}
$$

with

$$
\begin{aligned}
& Q_{R}^{2}=\left(Q_{R}^{1}\right)^{2}-\left(Q_{R}^{2}\right)^{2}+\left(Q_{R}^{3}\right)^{2} \\
& Q_{R}^{i}=\int_{0}^{2 \pi} d \sigma \operatorname{Tr}\left(g^{-1} \partial_{\tau} g t^{i}\right)
\end{aligned}
$$

for $k \neq 0$

$$
p(x) \sim i \pi k\left(r_{+}+r_{-}\right)-i \frac{1}{x} \frac{E-S}{\lambda\left(r_{+}+r_{-}\right)}
$$

- $x \rightarrow 0$
for $k=0$

$$
p(x) \rightarrow 2 \pi m+i \frac{x}{2} \sqrt{Q_{L}^{2}}
$$

where

$$
\begin{aligned}
Q_{L}^{2} & =\left(Q_{L}^{1}\right)^{2}-\left(Q_{L}^{2}\right)^{2}+\left(Q_{L}^{3}\right)^{2} \\
Q_{L}^{i} & =\int_{0}^{2 \pi} d \sigma \operatorname{Tr}\left(t^{i} \partial_{\tau} g g^{-1}\right)
\end{aligned}
$$

for $k \neq 0$

$$
p(x) \sim 2 \pi m+i \pi k\left(r_{+}-r_{-}\right)+i x \frac{E+S}{\lambda\left(r_{+}-r_{-}\right)}
$$

- Across the branch cuts we have the condition

$$
p(x+i \epsilon)+p(x-i \epsilon)=2 \pi n
$$

where n is an integer.
This condition arises due to the uni-modular property of the monodromy matrix $\Omega(x)$.

- Note that the analytic behaviour is determined by the global charges.

These conditions are sufficient to constrain a K branch cut solutions such that the only undetermined parameters in $p(x)$ are $K-1$ numbers called filling fractions.

- It is useful to rewrite these constraints in terms of of a spectral density $\rho(x)$.

Introduce the resolvent
$G(x)=p(x)-\pi \frac{\frac{\hat{\jmath}}{2 \pi \lambda}+\hat{m}}{x-1}-\pi \frac{\frac{\hat{\jmath}}{2 \pi \lambda}-\hat{m}}{x+1}, \quad k=0$
$G(x)=p(x)-\pi \frac{\frac{\hat{\jmath}}{2 \pi \lambda}+\hat{m}}{x-1}-\pi \frac{\frac{\hat{\jmath}}{2 \pi \lambda}-\hat{m}}{x+1}-i \pi k\left(r_{+}+r_{-}\right), \quad k \neq 0$

- Since $G(x)$ is analytic except for possible branch cuts using complex analysis it can be written as

$$
G(x)=\int d \xi \frac{\rho(x)}{x-\xi}
$$

where the integral is along the cuts.
In fact ρ is given by

$$
\rho(x)=\frac{1}{2 \pi i}(G(x+i \epsilon)-G(x-i \epsilon))
$$

- For the case $k=0$, the behaviour of the quasi-momentum at ∞ leads to

$$
\int d \xi \rho(\xi)=-\frac{\hat{\jmath}}{\lambda}+\frac{i}{2} \sqrt{Q_{R}^{2}}
$$

The behaviour at the origin leads to

$$
\begin{aligned}
-\int d \xi \frac{\rho(\xi)}{\xi} & =2 \pi(m+\hat{m}) \\
-\int d \xi \frac{\rho(\xi)}{\xi^{2}} & =\frac{J}{\lambda}+\frac{i}{2} \sqrt{Q_{L}^{2}}
\end{aligned}
$$

The jump condition at the branch cuts leads to

$$
2 \int_{\xi \neq x} d \xi \frac{\rho(\xi)}{x-\xi}=-\frac{2 \pi\left(\frac{\hat{\jmath}}{2 \pi \lambda}+\hat{m}\right)}{x-1}-\frac{2 \pi\left(\frac{\hat{\jmath}}{2 \pi \lambda}-\hat{m}\right)}{x+1}+2 \pi n_{l}
$$

- For the case $k \neq 0$, the behaviour of the quasi-momentum at ∞ leads to

$$
\int d \xi \rho(\xi)=-\frac{\hat{J}}{\lambda}-i \frac{E-S}{\lambda\left(r_{+}+r_{-}\right)}
$$

The behaviour at the origin leads to

$$
\begin{aligned}
& -\int d \xi \frac{\rho(x)}{\xi}=2 \pi\left(\hat{m}+m-i k r_{-}\right), \\
& -\int d \xi \frac{\rho(\xi)}{\xi^{2}}=\frac{\hat{\jmath}}{\lambda}+i \frac{E+S}{\lambda\left(r_{+}-r_{-}\right)}
\end{aligned}
$$

The jump condition at the branch cuts leads to

$$
\begin{aligned}
& 2 \int_{\xi \neq x} d \xi \frac{\rho(\xi)}{x-\xi} \\
& =-\frac{2 \pi\left(\frac{\hat{\jmath}}{2 \pi \lambda}+\hat{m}\right)}{x-1}-\frac{2 \pi\left(\frac{\hat{\jmath}}{2 \pi \lambda}-\hat{m}\right)}{x+1}+2 \pi n_{l}-2 \pi i k\left(r_{+}+r_{-}\right)
\end{aligned}
$$

CLASSICAL SOLUTIONS

- To get a better feel for the construction.

To verify the properties of the quasi-momentum obtained using general considerations

We study explicit solutions.

- It is convenient to write the sigma model as

$$
\begin{aligned}
S= & -\frac{\lambda}{2} \int d \tau d \sigma\left[-\partial_{a} u \partial^{a} u-\partial_{a} v \partial^{a} v+\partial_{a} x \partial^{a} x+\partial_{a} y \partial^{a} y\right. \\
& \left.-\Lambda\left(-u^{2}-v^{2}+x^{2}+y^{2}+1\right)+\partial_{a} Z \partial^{a} Z\right]
\end{aligned}
$$

where Λ is the Lagrange multiplier.

- The boundary conditions are

$$
\begin{aligned}
r(\tau, \sigma+2 \pi) & =r(\tau, \sigma) \\
t(\tau, \sigma+2 \pi) & =t(\tau, \sigma) \\
\phi(\tau, \sigma+2 \pi) & =\phi(\tau, \sigma)+2 \pi k
\end{aligned}
$$

- We will discuss two class of solutions:

Geodesics
Winding strings

- For geodesics we start with the ansatz

$$
\begin{aligned}
u+x=a(\tau) \exp (f(\tau)), & u-x=a(\tau) \exp (-f(\tau)) \\
y+v=b(\tau) \exp (g(\tau)), & y-v=b(\tau) \exp (-g(\tau))
\end{aligned}
$$

with

$$
a(\tau)=\cosh \gamma(\tau), \quad b(\tau)=\sinh \gamma(\tau)
$$

Note the ansatz is independent of the the world sheet σ.

- There are two constants of motion

$$
\dot{f} \cosh ^{2} \gamma=c_{1}, \quad \dot{g} \sinh ^{2} \gamma=c_{2}
$$

They are related to E and S by

$$
\begin{array}{r}
E-S=-\left(r_{+}+r_{-}\right) 2 \pi \lambda\left(c_{1}+c_{2}\right) \\
E+S=\left(r_{+}-r_{-}\right) 2 \pi \lambda\left(c_{1}-c_{2}\right)
\end{array}
$$

- The Virasoro constraints imply either $\hat{\jmath}=0$ or $\hat{m}=0$. With $\hat{m}=0$ they reduce to

$$
(\dot{\gamma})^{2}+\frac{c_{1}^{2}}{\cosh ^{2} \gamma}-\frac{c_{2}^{2}}{\sinh ^{2} \gamma}+\left(\frac{\hat{\jmath}}{2 \pi \lambda}\right)^{2}=0
$$

- In terms of the BTZ coordinates and the conserved charges the equation is

$$
r^{2} \dot{r}^{2}=-\hat{\jmath}^{2}\left(r^{4}-M r^{2}+\frac{j^{2}}{4}\right)+\left(E^{2}-S^{2}\right) r^{2}+S^{2} M+E S j
$$

This is the geodesic equation with mass $\hat{\jmath}$

- The monodromy matrix and the quasi-momentum can be solved explicitly.
The monodromy matrix is

$$
\Omega=\exp \left[-\frac{2 \pi x}{1-x^{2}} g^{-1} \dot{g}\right]
$$

with the quasi-momentum given by

$$
p=\frac{\hat{\jmath}}{\lambda} \frac{x}{x^{2}-1}
$$

- The quasi-momentum thus has poles at $x= \pm 1$ without branch cuts.

The spectral density $\rho(x)$ vanishes for geodesics.

- For winding strings we start with the anstaz

$$
\begin{aligned}
u+x & =a(\tau) e^{\left(f(\tau)+\nu_{1} \sigma\right)}, & & u-x
\end{aligned}=a(\tau) e^{-\left(f(\tau)+\nu_{1} \sigma\right)}, ~(\tau) e^{\left(g(\tau)+\nu_{2} \sigma\right)}, ~ r r e v=b(\tau) e^{-\left(g(\tau)+\nu_{2} \sigma\right)} .
$$

where again

$$
a(\tau)=\cosh \gamma(\tau), \quad b(\tau)=\sinh \gamma(\tau)
$$

From the anstaz the BTZ coordinates are given by

$$
\begin{aligned}
t & =\frac{r_{+}\left(g(\tau)+\nu_{2} \sigma\right)+r_{-}\left(f(\tau)+\nu_{1} \sigma\right)}{r_{+}^{2}-r_{-}^{2}} \\
\phi & =\frac{r_{-}\left(g(\tau)+\nu_{2} \sigma\right)+r_{+}\left(f(\tau)+\nu_{1} \sigma\right)}{r_{+}^{2}-r_{-}^{2}}
\end{aligned}
$$

The periodicity conditions

$$
t(\tau, \sigma+2 \pi)=t(\tau, \sigma), \quad \phi(\tau, \sigma+2 \pi)=\phi+2 \pi k
$$

results in

$$
\nu_{1}=r_{+} k, \quad \nu_{2}=-r_{-} k
$$

We have the constants of motion

$$
\dot{f} \cosh ^{2} \gamma=c_{1}, \quad \dot{g} \sinh ^{2} \gamma=c_{2}
$$

- The Virasoro constraints are

$$
\begin{gathered}
(\dot{\gamma})^{2}+\frac{c_{1}^{2}}{\cosh ^{2} \gamma}-\frac{c_{2}^{2}}{\sinh ^{2} \gamma}+ \\
\nu_{1}^{2} \cosh ^{2} \gamma-\nu_{2}^{2} \sinh ^{2} \gamma+\left(\hat{J}^{2}+\hat{m}^{2}\right)=0 \\
c_{1} \nu_{1}+c_{2} \nu_{2}+\hat{\jmath} \hat{m}=0
\end{gathered}
$$

- The general solution can be found in terms of Jacobi elliptic functions.

The mondromy matrix and the quasi-momentum can be evaluated explicity for this solution.

- The quasi-momentum is given by

$$
\cos p(x)=\cosh \pi \sqrt{\tilde{D}}
$$

with

$$
\begin{aligned}
\tilde{D}= & \left\{\left(\nu_{2}-\nu_{1}\right)^{2}-\frac{4}{\left(1-x^{2}\right)^{2}}\left(\frac{\hat{\jmath}^{2}}{4 \pi^{2} \lambda^{2}}+m^{2}+2 x \frac{\hat{\jmath} \hat{m}}{2 \pi \lambda}\right)\right. \\
& \left.+\frac{4}{1-x^{2}}\left(\frac{c_{2}^{2}}{\sinh ^{2} \gamma_{0}}-\frac{c_{1}^{2}}{\cosh ^{2} \gamma_{0}}\right)+4\left(\nu_{2}-\nu_{1}\right) \tilde{A}\right\}^{1 / 2}
\end{aligned}
$$

- From this explicit formula for $p(x)$
one can determine the behaviour at $x \rightarrow \pm 1, \infty, 0$ and verify the behaviour obtained from general considerations.
- For this solution the spectral density $\rho(x)$ has 2 -branch cuts.
- We have evaluated the first non-local charge for this solution.
- The behaviour of the spectral density enables a classification of the solutions.

RELATION WITH THE SL(2, R) SPIN CHAIN

- We start with the following Bethe equations for a twisted version of the $S L(2, R)$ spin chain.

$$
\left(\frac{x\left(u_{k}+\frac{i}{2}\right)}{x\left(u_{k}-\frac{i}{2}\right)}\right)^{L} \exp \left(2 i \pi k\left(\tilde{r}_{+}+\tilde{r}_{-}\right)\right)=\prod_{j=1, j \neq k}^{M} \frac{u_{k}-u_{j}-i}{u_{k}-u_{j}+i},
$$

with

$$
\begin{aligned}
x(u) & =\frac{u}{2}+\frac{u}{2} \sqrt{1-\frac{2 g^{2}}{u^{2}}} \\
\frac{x\left(u_{k}+i / 2\right)}{x\left(u_{k}-i / 2\right)} & =\exp i_{k}
\end{aligned}
$$

The cyclicity constraint is given by

$$
\prod_{k=1}^{M}\left(\frac{x\left(u_{k}+\frac{i}{2}\right)}{x\left(u_{k}-\frac{i}{2}\right)}\right)=\exp \left(2 \pi i k \tilde{r}_{-}\right)
$$

The energy of the chain is given by

$$
D=2 g^{2} \sum_{k=1}^{M}\left(\frac{i}{x\left(u_{k}+\frac{i}{2}\right)}-\frac{i}{x\left(u_{k}-\frac{i}{2}\right)}\right) .
$$

- Let us now take the thermodynamic limit :
$L \rightarrow \infty$, scale $u_{k} \rightarrow L u_{k}$.
Introduce a density function for the magnons

$$
\int d u \tilde{\rho}(u)=\frac{M}{L}
$$

We redefine

$$
u=x+\frac{g^{\prime 2}}{x}, \quad \text { where } \quad g^{\prime}=\frac{g}{L}
$$

- Then the
- The normalization of the density
- The Bethe equations
- The cyclicity constraint
- The equation for the energy are given by

$$
\begin{aligned}
\int d x\left(1-\frac{g^{\prime 2}}{x^{2}}\right) \tilde{\rho}(u(x)) & =\frac{M}{L} \\
2 \int_{y \neq x} d y \frac{\tilde{\rho}(u(x))}{(x-y)} & =-\frac{1}{x}-2 \pi k\left(\tilde{r}_{+}+\tilde{r}_{-}\right)+2 \pi n \\
\int \frac{\tilde{\rho}(x)}{x} & =-2 \pi\left(\hat{m}-k \tilde{r}_{+}\right) \\
\frac{D}{L} & =2 g^{\prime 2} \int d x \frac{\tilde{\rho}(x)}{x^{2}}
\end{aligned}
$$

- At the leading order in $\frac{g^{\prime}}{L}$, these equations are same as the four equations which constrain the spectral density $\rho(x)$ of the BTZ sigma model upon the identification.

$$
\begin{aligned}
& g^{\prime}=\frac{g}{L}=\frac{\lambda}{2 \hat{\jmath}}, \quad \tilde{\rho}(u(x))=\rho(x), \\
& i r_{+} \rightarrow \tilde{r}_{+}, \quad i r_{-} \rightarrow \tilde{r}_{-}, \quad \hat{m}+m \rightarrow \tilde{m} \\
& \frac{1}{4 \hat{\jmath}}\left(\frac{E-S}{\left(\tilde{r}_{+}+\tilde{r}_{-}\right)}-\frac{E+S}{\left(\tilde{r}_{+}-\tilde{r}_{-}\right)}\right)=\frac{M}{L}, \\
& \frac{D}{L}=-1+\frac{E+S}{\hat{J}\left(\tilde{r}_{+}-\tilde{r}_{-}\right)} .
\end{aligned}
$$

BMN AND MAGNON LIKE STATES

- We can use the equations constraining the equations for the spectral density to obtain dispersion relations of states analogous to the ones studied in the case of the sigma model on $R \times S^{3}$
- For a delta function distribution of the spectral density

$$
\rho(x)=\sum_{s} S_{s} \delta\left(x-x_{s}\right)
$$

One can solve the integral equations and obtain a dispersion relation similar to the plane wave.
$-i \frac{\hat{\jmath}}{\lambda}+\frac{E+S}{\lambda\left(r_{+}-r_{-}\right)}=\sum_{s} \frac{\tilde{S}_{s} \hat{\jmath}}{2 \pi \lambda}\left(\sqrt{1+\frac{4 \pi^{2} \lambda^{2}}{\hat{\jmath}^{2}}\left(n_{s}+i k\left(r_{+}-r_{-}\right)\right)^{2}}-1\right)$
with

$$
\begin{array}{r}
\sum_{s}\left(n_{s}+i k\left(r_{+}-r_{-}\right)\right) \tilde{S}_{s}=2 \pi k r_{-} \\
\hat{J} \sum_{s} \tilde{S}_{s}=\frac{E-S}{r_{+}+r_{-}}+\frac{E+S}{r_{+}-r_{-}}
\end{array}
$$

- For a distribution of spectral density which is constant between two points in the complex plane we obtain the dispersion relation

$$
Q_{+}-2 \hat{\jmath} i=\sqrt{Q_{-}^{2}-16 \lambda^{2} \sin ^{2} \frac{p}{2}}
$$

with

$$
Q_{+}=\frac{E+S}{r_{+}-r_{-}}+\frac{E-S}{r_{+}+r_{-}}, \quad Q_{-}=\frac{E+S}{r_{+}-r_{-}}-\frac{E-S}{r_{+}+r_{-}} .
$$

This resembles the magnon dispersion relation but with complex momentum.

CONCLUSIONS

$$
4 \square>4 \text { 岛 } \downarrow \text { 引 }
$$

- We have seen that the classical sigma sigma model on the BTZ black hole background is integrable.
- We have seen that the integrability can be used to study and organize the classical solutions of the sigma model.
- It will be interesting if one can use integrability to find the complete allowed spectrum of strings around the BTZ black hole.

A step in this direction is to investigate more classical solutions.

- Finding this spectrum will have implications for the dual conformal field theory corresponding to the BTZ background.

