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Penrose limit: the o-model point of view

The background fields of the o-model are

k
ds® = k[dr® + sin®rdp? + cos?rda® — dt?] , Bya = 5 cos (2r) .

We make the following change of variables

t+ «
A2

and take the limit A — 0, k — oo keeping kA2 = 1.

The resulting background is the Nappi-Witten gravitational wave

u=t-a , v= r=Ap,

2 2 2
ds? = —2dudy — ""Tdu +dp? + p?dg?, Bou=EL .

This form of the metric corresponds to the following parameter-
ization of the H4 group manifold

g= e: etf-P +:§-P"' sI-20K

Semiclassical vertex operators are given by matrix elements of
group operators between states forming an irreducible represen-
tation. The generating functions is

&t = eq:ipo+z'ju—fgﬂcf+mpcze*”?+iup65e*“5'-'+gpz§eﬂw
p,J '
Expanding this functions in z and z we obtain semiclassical ex-
pressions for the various states in a V representation.

Ry ini = Rk b d it e —(“:,) ¢ LM up ¢ O)



Penrose limit: the algebraic point of view

Consider the U(1) x SU(2) current algebra

3 +
JH(2)J-(0) = % + % . J3(2)J%(0) = i‘% |
k
JO(Z)JO(O) — —g .

Define the new currents as follows

K() = 20°G) , J() =i(0%G) - 7))

2
Pt = \/:J* .
k

In the limit k = oo we obtain the H4 current algebra

) 2 2i K (w)
Pr@P(w) ~ —om— S
+
J@PEw) ~ Fi—)
&=
- 1

The original stress-energy tensor
1

+7- 4 -+ 3)2
2(k+2)('] I~ 4T +2€I7Y) ,

_ 1. .02
T =-2(J%+

becomes

T = % -;- (P*P~ + P P%) +2JK + K*?



Representation theory

The Hs algebra has three types of unitary representations

K 7 #
v p {i+nlen —2p7+0p
V,; —p  {i—n}nen 2p7+p
v;?j' 0 {7+ n}tnez 82

(1)
In terms of the representations of the original U(1) x SU(2)
model, the V. representations result from states characterized
by

1 1 k
| = =(kp — 27) , = Z(kp— 20 , =—p .
2( p — 23) m 2( p—2(7+n)) q=3P

The v;,} representations result from states characterized by

1 ~ 1 R _k
l—E(kp+2J), m——E(kp+2(J—n)), g=—cp.
: - Prad
® ¢ 0 o o0 O
=8 0

Finally the states that form a V% representation correspond to

states in the middle of an SU(2) representation with ¢,m ~ O(1)

- o R
as | = 58.



States in V;}—> states trapped by the wave.

h: —Pj +E(l-p3

AU

States in V; — free motion.

us» cos}

Highest-weight representations of the current algebra are built
by acting with the negative modes of the currents J¢, on states
|R;) which form an unitary representations of the global H4 and

satisfy

JNR)=0, n>O0.

o}

Lo

© 0 0

9 6 0 ©
000 0 o o

Unitarity constraint:

p| < 1.



Since we are dealing with infinite dimensional representations it is
useful to realize the H4 algebra in terms of dafferentlal operators
acting on auxiliary variables z and z. For V representations we

have for instance

i
PO

V2p z | P5=\/—2_33,
Jo '

i(7+ z0z) , Ko =

We then collect all the component fields in a single field

_ (z/P)"
(Z-’L‘) HZ-% pjn( )_\/_‘r‘z_!—,p>0.

The OPE with the currents take the simple form

+
PT(2)®F(w,2) = \2pa ¢z"(_wwx)
+
P-(2)®t (w,a) = V20, Ppslwn2)
Z -
J(z)fb Hw,z) = i(j+ 20,) I.sz—(—w z) :
&
K(z)dD H(w,z) = ip<b;;5(_w1:)x)

These OPE are the central elements fo deriving the Ward iden-
tities and the KZ equations.



Spectral Flow

Consider representations that are highest-weight with respect to
the algebra Ha, related to the original one by

pi=Prih:Fw J Rn=Kn"?:w‘5n,01 jﬂ:']n’ Ln = Ln —iwJy .

n

These representations are called spectral-flowed representations
and we will denote them with Qw(¢:5). (Maldacena and Ooguri,
Gaberdiel)

In terms of the original modes

Pflp >=0, n2-w P l$>=0, n>w.

The spectrum of Lg is generically unbounded from below. Two
exceptions

. ik el
Q_1(®];) = (P53 = Piypj -

l-pij »

&
© o
Q °
‘é‘: Q9 0 o o
©6—06—6—0o——
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Fusion rules between spectral-flowed representations can be de-

riviard 11cinn

> NEew

on

called

Qu, (P1) ® Qu, (P2) = Quy 4w, (P1 @ P2) .

From a geometric point of view, spectral flow generate
solutions of the o-model, (Maldacena and Ooguri)

g('r,cr) = ew(r-l-a)Jg(T,o.)ew(T—-a)J '

This corresponds to the following coordinate transformati
u—au+22wr, v—ov, pe¥ — pellPtrr)

(Kiritsis and Pioline)

States in the spectral flowed continuous representations are
long strings.

The spectrum of our model is then given by

Qi (®;;) with p< 1 and w € N,

and by

Qu(PF ;) with j€ [-1/2,1/2) and w € Z.



Free field resolution

The H4 current algebra can be represented in terms of free fields
(Kiritsis and Kounnas)

J
P+

Ov , K =0u,
ie ™9y, P =10y .

In this formalism, primary fields for the V* representations cor-
respond to twist fields H,f(z) characterized by the OPEs

By(2)H, (w) ~ (z=w)™, 8§(2)H, (w) ~ (z —w)™**7,

dy(2)Hy (w) ~ (z = w)7' %, 9§(2)H, (w) ~ (z —w)7? .

The ground state of a V* representation is then given by

Rg]j;o( 2) = e Iu(z)Eipv(z) H;F( z) ,

and the other states are obtained through the action of Fj.
Simple description of spectral flow by w units:
multiplication by e

QW(R:‘_E;O) = il u+i(p+w)va— ’ Q-W(R;,j‘;o) — ] u—i(P-I-w)vH;- .



OPE

We now discuss the OPE between the local conformal primary
fields of the Hys algebra. The two-point function is

e—Pz ($1$2+5152)

<of o >=6(p1—p2)d(1 +72)

|212|4h ?

The z and z dependence of the three-point functions is fixed by
the conformal and Hs Ward identities,

Cuhc (Ql y 42, 93)Duh¢-($1a 2,23, 51, 523 53)

a b #HC —
< Py Py, Py, >= (21|20 Fha—hs) | 53 [2Chs-+hs—ha) | gy | 2(haths—hs)

up to the structure constants . .

Consider as an example the following OPE

[¢;: 31] ® [ ] - Z[¢P1+P2,31+Jz+ﬂ] g

n-—-o

The D function in this case is given by

D4 4-(z1, 22, 23, %1, %2, 73) |
) L|?
— e-x3(p‘$‘+pﬁ° (22 — 1)~ §(p3 —p1 — W)SN('L) )

where L = 51 =+ 32 —+ 33 and 5N(a) = Zn—o 5(& — n)



Three-point couplings

e Couplings between states with p # 0. Let us start with a
coupling of the form < 4+ 4+ — >

bbe-5-5
1 3 ;
Cis+t(q1,92,3) = [ 7(p3) ]

F(1+3-5n1—73) [v(p1)v(p2)
Here
()
M1-=z)
and moreover pg =pi1+p2and 3=n+72+n, n€N.

The others are given by similar expression, for instance when
we have one ©T and one &~ operator with p; > p» the
coupling is

Wz) =

. ) 1i-iHat
C+-F(q1,92,03) = [ (1) ]

F(1 =733+ 71+ 72) [v(p2)v(p3)

where ps=p1 —p2 and j3=n+32 —n, n€N.

e Couplings between two states with p # 0 and a state with
p=0

Co—o(p, 51: P, T2; 8, Ja) = eTW@+v(1-p)-2¢(1)]

where 9(z) = 42 is the digamma function.

e Couplings between states with p = 0 are the same as in
flat-space.



KZ equation




Using the operator algebra, we decompose each four-point func-
tion as a sum over intermediate representations of the affine
algebra.

- Z C;Jn C![,n I‘Fn'(z)]z
n

The functions that appear in this decomposition are called con-
formal blocks.

We can choose to decompose the four-point functions in differ-

ent ways and all of them must agree due to the associativity of
the operator algebra.

: )
} ./
- RNAR

Four-point function — monodromy invariant combination of the
conformal blocks



ot oot oot o .
< P1,J1 P2,J2 P3,J3 P4,)4

Momentum conservation requires

p1+ p2 +p3 =ps .

From the global Hs symmetry constraints we obtain

2
K(zi, %) = e—m;(p;w1+pz:r:+psz3)(m3 — ml)-L ,

where L = 51 + J2 + j3 + ja and

T2 — X1
e —

T3 — T1

The decomposition in conformal blocks in this case is

|L|

A(z,Z,2,%) ~ an(z,m)fn(i,ﬁ) :

=0

We have a finite number of conformal blocks. Moreover states
with p = 0 can not flow in the intermediate channels.

The KZ equation reads

8:Fn = %[—(le + poz(1 — )8 + Lp2z] Fu

_ Tézuyﬂﬂ@ﬁ+mgm+dmﬂl—@na«



The conformal blocks are

Fa(z,2) = f*(2,2)(g9(z,2))"™" ,  n=0,..,|L|,

and the four-point function

A(z, %, 2,%) ~ (Ci2|f(z,2)|? + Caalg(z,z)2)!" |
where

Cyp = (P + P2) e v(p4) |
v(p1)v(p2) v(p3)v(pa — p3)

The functions f and g are linear combinations of hypergeometric
functions

zl_pl—fbp e T 2
I(z,2) = 0o —z2 PPy g(2,T) =0 — —22 ;|
l1—-p1—p2 1+ p2
for instance
vo = F(1-p1,14+p3,2—-p1—p2,2),
L1 = F(l_p13p331_p1—p2az) .

The four-point function can be expressed as a sum over all con-
formal blocks with the corresponding three-point couplings

|L]
A2, %,2,%8) = Y C44-(q1,92,n)C+_+(g3, 94, |L| = n)| Fu(z, )] .

n=0



<ot o T o .
P1,J1 P2,J2 P3,J3 P4,)4

Momentum conservation requires
p1+p3=p2tps .
The function K is
K(zi, %) = e—p::rxxz—paman—(m-pe)wm(a,l = ms)-be—f(pz—%z—pa) . ,

and z = (z1 — z3)(z2 — a).

The KZ equation is

(1 —2)8,F, = [mag 4 (az+1-L1)8: + -Z(az — ) + p12] F
+ =z [—2(13:6; + ;(b2 - cz) - p12 — p14] Fa,

where
2a=p1+p3, b=p1—p2, c=p2—p3.

In this case the correlator factorizes on an infinite number of
conformal blocks. When p; # p2 it is an infinite sum

A2, 7 0,8) = Y Co—(a1,02,0)C—+(a3, 44, = L)| Fu(2,2) [ -

n=0

When p1 = p2 we have a continuum of intermediate states

A7 28) = [ dssCho, )IF( D
0



Moreover when p1 + p3 > 1 we can see explicitely that the cor-
relator factorizes on spectral flowed representations — they are
necessary for the consistency of the model.

When p1 # p2 the conformal blocks are

e$91(2)

(fl(z))l—LLLLl(fB’J’w(z))tb(z)" , mneN,

where Llf" is the n-th generalized Laguerre polynomial and all
the other functions involved can be expressed in terms of hyper-
geometric functions.

Falz, 2) = vy

For instance

_ f2(2)
fi(z) ’

and f]_(Z) - F(p3a 1 - P1, 1 - +p2-rz)'
The full correlator is given by

P(2) Yw(2z) = -2(1 - 2)8Invy ,

- - 1 2q¢(2)—22(1-2)8In 8§
A(z2,2,2,%) ~ SIHL e

()

where

. 2\/r|lzz(1 — 2)W(f1, f2)|
2 .

When p; = p2 the conformal blocks have a similar structure

S= P -rlf2l?, wu

e'rgl(z)

(c1(2))-*

Fz,2) = e"’za"(")(:cz(l - z)8p)§J|L|(*u) :



Fusion and braiding

We can factorize the four-point functions around z = 0, 1 and
oo — three sets of conformal blocks.

Linear transformations between the different basis: braiding and
fusion matrices.

Previous discussions for non-compact models (Liouville, SL2(R))
Teschner, Ponsot

The change of basis between blocks corresponding to V* states
can be written as (u =1 — 2)

o0
Fn(z) m) — Z Cﬁme(us x) ’

m=0
where
e m!l(m + L] + 1) prtmtiti+
r n
( 2 ) [(p3_p2)81]mF(—ma —-n,—m-—n-— |LI' 9) .
P1—p2
and
e SIN(mpa) SIN(TD2) .
sin (mwp1) Sin (7p3)
cks corresponding to Similarly we can change basis from the blo
= 0 states p = 0 states to blocks corresponding to p 3
o0
) . Fy(u,z) = Z ck (8) Fm(z,.
m=0

up. Relations with the quantum Heisenberg gr




Null vectors

The representations d>1ij. contain a null vector at level one

¥-1(2,2) = P5(2)® (z,2) , ¢1(2,2) = PH(2)®](2,2) .

Correlators involving dﬁj satisfy additional differential equations.

We can use these correlators to compute three-point couplings
involving spectral flowed states.

We define the operator generating spectral flow by one unit as
follows

Y*(z,%2) = lim ®*,(z,%,0,0) .
p__>1 ps

1
vV v(p)

Consider (@ oot d7). From this correlator we can extract

+ &t ¢ .
<¢P1151 ¢p?$jQQ—1 (¢P3,53))

_— ('Y(Pl +pz))%+”"
|L[! \v(p1)v(p2)

|::12::32;-’:13l — 3)|2'|Ll|3,‘3 — $1|2|L|
215|2(Ritha—=hs)| 54 2| 2(haths—hs) | 504 |2(hoths—hy)
|212] |213] | 223]

Here hs = j3(1 — p3) + 5(1 — p3), the conformal dimension of

the ground states in ¢’pr3,§3 and the constant appearing in the

second line is C44_(p1,p2,p1 + p2) as expected.



From (& oFd7) we obtain

o ¢ 1 v(p1) L+L

S -Q (P )P )=

N i AL ” ('7(102)7(101—192))
|m%e—“p2$132+p?$2(2‘:1-—;53):!x:Lb:l: 12

where

h2=52(1+p2)+%(1—p2)—L,

is the dimension of a state in the representation Q_1(¢;2‘52) ob-
tained by acting L times with P;" on the ground state.

This three-point coupling coincides with C4__(p1, 1 —p3,p2) since
it can be written as

(®F - (21,21)-1(®, ;) (22, 22)Q2(P]_, 5)(23,23)) ,

and then related to a three-point function between highest-
weight states of the form < + — — >.



String amplitudes

We can combine the Nappi-Witten gravitational wave with some
internal CFT in order to get a critical string theory background
L= CH4 X Cmt X Cgh.

Simplest choice Cin = R?2.
Internal part of a vertex operator: e*’ﬁf, = %

The four-point string amplitudes are given by the CFT four-point
correlators integrated on the world-sheet.

The string amplitude can then be written in general as

Asiring = / d?z|z|*773|1 — 2275 K (24, 8i) A(2, 2 2, F)

In flat space

Astring s /d22|z

%(p1+pz)"’—4|1 = z|§-(p:+ps)"’—4 .

The amplitude has a pole whenever

o(p1+p2)°=4(1-N), NEeN,

and therefore the poles in the amplitude, due to the propagation
of on-shell states in the intermediate channel, precisely match
the spectrum of the bosonic string.



A similar discussion applies in our case: the amplitude has a
pole when the intermediate state is on shell, with the dispersion
relation implied by the wave background

hi2 —n(p1 +p2) =1-N, w0yl ; NeN,
where

b1z = —(p1+p2) (1 +32) + 51 +p2) (1= (1 +92) +

(P1 + P2)?
> :

When p1 = p> = p and p3 = ps = [, the amplitude factorize on
the continuum and can be written as

Astring ~ /dzzlzlz(hn_z)f@das C_|.._0(p, 8)C+_-Q(l, s)lzlszlmlk )
0

where now hyp = BERS
The integrals can be expressed in terms of the Exponential In-
tegral function. When L = n = 0 for instance we have

F 1
MWN,[D dfr‘lnr '

with § = 3 — 2h;2.

The integral is convergent for § < 1 and in the limit § — 1~ the
amplitude behaves as

Agtring ~ 0 (h12 — 1) .

There is a logarithmic branch cut starting from hj2 = 1.




Flat space limit

Reintroduce the parameter p in the metric performing a boost
U — pu, v — E

Ll
ds® = —2dudv — “—:—duz + dz? .

There are two interesting limits to consider, u — 0 and p — oo.

In both cases one recovers string theory in flat space, even
though the states that survive in the two limits are very dif-
ferent.

Our model contains the following states:

e Short strings Q. (®; ;) have

w .
h=% (o) i+ B )
n 2
with pe(O,i) and w €N .

e Long strings have £,(®};)

~ 2
w) 8
A 2

with 7€ [-p/2,u1/2) and w € Z.



The limit © — 0 can be thought as a contraction of the Hjy
algebra.

The highest weight representations reconstruct the flat space
spectrum: the potential flattens and the confined states describe
larger and larger orbits until they become free.

We scale the quantum numbers as follows

82 8°

5=p_q:_a n=m+—,
2p 2pp

respectively for V;f} representations.
Consider now the case p — oo,

States in spectral flowed continuous representations have p =
w/p, which becomes a continuous variable in the limit, and 7 € R.

All operators with p ¢ Z behave as if up — 1 and decouple: they
are so strongly trapped by the potential that disappear from the
spectrum.

Long string states which did not feel the potential remain free.

Compare with the small and large radius limit of a compactified
boson. |



