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Fundamental quarks from D brane supergravity probes

® In the search for a supergravity model dual to a “realistic” Strong,
conpling gange dynamics one should be able to mcorporate quarks
i the fundamental representation of an SU (N.) gauge theoryv,

o Most of the known supergravity backeronnds dnals of confinine
lowr dimensional gange theoties either do not Incorporare «iark-
at_all or admit quarks in the adjoint rather than the fundanental
representation (the same applies for bifundamentals).

o Since the carly days of strings it has been understood that funda-
ey
mental quarks should correspond to open strines.

® huthe modern era of closed string theory this obviously calls for D

hranes.
—

o Certain basic objects of gange theories like barvons. instantons.

wonopoles. domain walls and others were shown to correspond to

wrapped D hrane probes,

e It is thus natural to wonder. whether one can consistently add D
brauc probes to supergravity backgrounds duals of confining gauge
theories. which will plav the role of fundamental quarks.

T —




e [ case that N the number of D brane probes is much smaller
than NV.. one can convincingly argue that the backreaction of the
probe on the bulk geometry is negligible.

e ™

e It is well known that open strings between parallel N; D7 and N,

= e )

_D3 play the role of flavored quarks in the SU(N,) gauge theory on
the D3 4d world volume gauge theory.

e Narch and Katz proposed to elevate this brane configuration into
a supergravity background by introducing a DT brane probe into
the AdS; x S background.

e The main idea behind our worl is to introduce DT hrane probes
mto the Klebanov Strassler background and to extract from ihe
spectrum of scalar and vector fluctuations of the Ny DT hranes the
spectrum of the pseudo scalarand vector mesons of SU (N, ) caitee

- e —
dynamics with N flavors.
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Awarmup exercise D(P+4) probes in DP brane background

e The idea to add flavored fundamental quarks by introdUgir:‘g Mgens s
brane was suggested by Karch and Katz. In 7 Mgéﬁﬁ‘éﬁii‘um of 3t
N = 2 SYM with fundamental hypermultiplets was extracted
from the supergravity of AdSs; x S° with D7 brane probes. It

was found that for massive quarks the spectrum was discrete with

a mass gap.

e Before introducing D7 branes to a confining background let us
first as a warmup exercise discuss adding D(P+4) probes to DP
background.

e Start with the configuration
01! .- pp+l1l---p+4p+5---9
Dp x x .-+ X (0.1)

Dlp+4) X X +++ X X =+ X

e The Dp-branes are sitting at .5, - - -, 29 = 0 while the D(p + 4)-
branes are at 22,5 + - -+ + 2§ = >,

—— Dy
A ‘
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e The Dp-brane background in the decoupling limit reads Rs‘sﬁ«

U(?-—p)/z DL "
’ ) 2 2 1/277(0-3)/2 7002 oLda(gva.
ds* =« (—————————-/\1 7 da:"—l— 77 /gdU + XU dSg ) iy

. A A (3—p)/4 C.‘fhﬁc'de&-c‘-t;
e” = (2m)P g%\ 7_p)

)

(0.2)
where A = g3\(Nd,.

e S%? metric as
4 = dy? + sinpdS2 + cos’pdQ3_, (03)

That is, we parameterize the transverse directions of Dp as

e We decompose

s%. x§+1+- - -+x§+4 = U?sin’y, S*7: xf,+5+- c otz = U? cos’p.= P
(0.4)

The D(p + 4) probe wraps the S* and its transverse directions are

given by 1 and S*?. By construction, the probe brane is living

at ™ ——
— .. ; it in G4-P
li/) = cos (U) , a single point in S*77. | (0.5)

e Now we will check that this is a solution of the D(p + 4) probe
action in the Dp-brane background. We use the static gauge

oM = g, OIS oMU, (06)

e The DBI action of the D(p + 4) probe is given by
[TS'D(IH.A;) = Up+4 / d" g e"p\/ — det hgp
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———— .,

E-iupH o/ P92 0] (S3)vol(RYP) (27)P~2g3%, [ dU U sin®yy/1 + U2"
PB|

(0.2)

where p, = 1/(2m)Pa/P+1)/2,

e The equation of motion is

—

. 3
} 0w (%) - 3u33in2'¢1)cos¢\/ 1+ uy)2 = o

"—

One can easily check that indeed ¢ = cos‘l(g) is a solution of
this equation of motion.
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The L”'L Confinement from supergravity
The Klebanov Strassler model (KS)-Deformed Conifold backgrounc

e The conifold is defined b P
4 , ' 247 3“"’"}
El zi=0,0r detW=0 W=23’57 Ry 22
'JW @ 2
S‘l
e The base of the cone is
T! = T x SU(2), topology of S* x S°
U(1)
e Place N D3 branes at the singularity K &M'V-{ﬁh
PM "D
N =1 SU(N) x SU(N) superconformal theory.
Wle hm" TS"J{‘E":—\

e Add N Ds branes wrapping the S? namely, N fractional D3 branes.
Dual to A = 1SU(N+N)x SU(N) theory with 2 chiral multiplets

m
P~ - ——————

(N+ N,N)+ (N + N, N)

e Deform the conifold by blowing up the S? AS

=1
Sz

° SL




Reminder: The deformed conifold and the KS model

e The KS background is based on adding fractional D3 branes into
the deform conifold. The original KS metric

ds, = h™Y/ 2d:cf, + hl/ 2da?, (0.8)
made use of the metric of a deformed ch Candelas and de

la Ossa.

‘\
‘\
\

e [t turns out that for our purposes it is more convenient to use &camosm,
the formulation of GPSS since it admits a separation between the Fedo Z9s 8
three cycle and two cycle of the deformed conifold. It is given by J-S sbaag bon

f_m/dis?iij("') cosh(T) (d‘r2 -+ (w“)z)

“YK(7) sinhz(%) [ (@6? + sin? 0 dg?) — (sin ¢ w" + cos ¢ w?)(df)

— (cos @ cos pw' — cos@sin pw? — si/n'0w3)(sin9d¢)]

L +ZK(T) sinh(7)[ d7° + (sm900?g§w + sin fsin p w +cos€um

%re ~
sinh(27) — 27)13 g -
K(r)= SO0 i) = (g Ml 2 ()
(0.10)
0= ["&® C‘;E‘h”‘“;x' ! sinh(2z) —220)3.  (0.11)

e For instance it is easy to verify in this formulation that for 7 = 0,
the §d metric reduceg to ©(w*)?, giving the S while the S? shrinks

—————
to zero.
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The additional fields of the background

e The dilaton is constant

- e"' = constant

e Fj; associates with the regular D3 branes

FS‘ = B, A d¢, ﬁﬂ'l Fs = N + log correction 7

e and G3 (G3 = HY'SNS 4 iFf®) with the fractional D3 branes
/ jss h=N 7

e The two gauge couplings of the SU(N + N) and of the SU(N) are given

by
= o3~ el B) - 3l ~ Nn(w/u), 4 ~ e = comat

This reproduces the logarithmic running of the gauge couplings
in N = 1 gauge theories.



Fundamental quarks from D7 probe branes

: H.ﬁ.;,Gmn Kotasov
e Recall the brane configuration that describes N = 1 SU(N)

SQCD with Ny flavors. ’Jf 06

(

T N4
NSE

e Let us now review briefly some geometrical aspects of the deformed
conifold.

Ass

e The conifold is in fact two separate cones that intersect with each

other at the tips of the cones. &

e The T-dual of the conifold gives us the IIA brane configuration o‘j"": u"‘](‘

that consists of two perpendicular NS5 branes, one at w; = 0 and
the other at wy = 0.
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e The deformed conifold is defined by
2
| WiWy — W3Wy4 = —% j (0.23)

e The deformed conifold can be regarded as a C* fibration over a
two-dimensional complex plane spanned by ws, w4. The fibers get
degenerate when w;wy = 0, giving a smooth singular locus in the
base which is T-dual to an NS5-brane .

e It turns out that the condition wywy; = 0 can be solved as (1)
=0, 0=m (2) 0 =m ¢ =m. Each corresponds to a cylinder
that intersect with one another at a circle. To see this, note that
for the two cases one finds

'w1=w2=0,

w3 = %ei(‘*’"’m (i sinh% — cosh %) :

- %e—%(¢'~w') ( sinh% + cosh %) . (0.24)

e These denote two cylinders spanned by 7,9’ — 1’ that intersect
with each other at a circle at 7 = 0. Recall that the circle is
embedded in the S* and has a radius

24




=
Figure 1: (a) the singular locus of a deformed conifold. (b) the singular locus of a conifold conifold.

. “‘1‘"1“ “Msk
proportional to €. This circle corresponds to a “dla.mond” in the
T-dual picture. Mum i

dss 5
/,/__/740@“0\ 56‘)&"‘/ Bz
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D7 brane probes in the KS background- classical solution
—

e Upon T-dualizing DG6-branes are mapped to different D7-branes

D7) intersects the locus wy = 0; D7(y) intersects the locus wy = 0

In the deformed conifold geometry the two D7 branerare

D7) at 6 = 0 north pole D7) at 6 = m south pole

S

7 D2
=
C:o( e S b
™z D7,
e The world volumes of the D7(;) and D7(y) are characterized by

9’ &ty oo
'w{’z = % cos—2~6i2(¢+'/’) (sinh%:l:cosh -12:) ;

. 9’ i
wgﬂ = — sin — e*4(¢~V) (sinh - F cosh —g) , (0.25)

2 2 2
and
@) € oos? #4649 (_ ginh T + cosh |
wyy = \/écosze ( 31nh2:|:cosh2),
@) _ e ¥ b T T
w3y = 2.sm2e 2 ( s1nh2¥cosh2) . (0.26)

It is easy to see that

‘w,(l)('r = () = w,gz)('r =0) , Bfw,-(l)(‘r =)= —afw,@)('r = 0)1.
(27
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o The linear term in # vanishgprovided that the U(1) gauge potential
on the probe has the form Al

A= As(T)w? .

o It is then not difficult to show that the action becomes

ji; R
SHiI=— -

x[(l+

=R
2y,

/. llb‘_X\/-— (_let(g(s) ik R_zB_fEU))

(K simmhr)”

/ d'a @

K:

1/2
¥ - g1 ax'ax’ :

with

PP . _ .
grd X X! = fm.‘I_l/“(Z:z:;l + = (K sinh7)'dr® . (0.34)
Also
2 f+k -
J = (K COSIIT)“ — H,‘z - 9 = W . (030)

Cld

+ T(K cosh 7 ((wl P4 (wz)z) + (K sinh7)"



These relations guarantee the smoothness at 7 = 0.

e Are thesé brane configurations solutions of the equations of mo-
tion?

e Let us now analyze the D7-probe action in the KS background.

The action consists of two parts
S = Spe1 + Swz , (0.28)

where

Spel =

*g + ¢* By + 21’'F) (0.2

Swz AL Chuy= [ (%(ZWQIF + B)}Cy + (2md'F + B)Cs
p —
(0.3C

¢* B, are the pull-backs of g, Bs. F is the field strength.
® is the dilaton and p7 = 1/(27)7a’. O3 ¢
The two transverse coordinates of a probe D7 are taken to be 6, ¢ [

while upon taking the static gauge the world volume coordinates
are given by X = (X1, ¢, ¢',¢'), with X = (z#, 7). Z 2 )

e What we should show is that the D7) given by # = 0, any ¢, and
the D7(y) given by @ = m, any ¢ solve the equation of motion.

e In order to check first the D7(;), brane we assume 6 = const, ¢ =
#(X*), F #0 and expand the action around 0 = 0. Bauens out
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e The solutions satisfies the consistency condition of the RR-flux
cancellation. In the 10d formulation

1) has RR charge =1 D7) has RR charge = —1
n th€ 5d formulation\ oné can ch that the tens/h\va.mshes a,t)
th bou ies @' = f the p? br /N

e To summarize, the probe D7-brane configuration looks like the
following fig..

ZN ? D3,

2

S

Figure 2: D7-probe configuration in a deformed conifold.The vectors denote the singular locus
where the elliptic fibers get degenerate. The two shadowed surfaces that intersect with each
vector are the 7-brane probes.

e What about the masses of the fundamental quarks?

Since we have not mtroduced an additional mass parameter they
must be of the mass scale, In the language of the T dual picture

the deformation of the conifold prevents the 4-6 strings in the
“diamond” construction to get masses ligher than ~ %E

-
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Quadratic fluctuations around the probe configuration

e Consider now the ﬂuctua.tmm‘ around the D7(1) -branes. Assume a
configuration

0=0(X"), ¢=0op(X"). (0.33)

e The 8d scalars @ and qb\;educe to the 5d scalars via a constant
mode on M3,

The constant mode is the normalizable zero mode of the scalar
harmonics as M3 is compact.

- ® The 8d vector A is assumed to be general for the moment.

e Up to quadratic terms in the fluctuations, the DBI action is

[d5X w'w?w? (K sinh ) JY?

A2
%—a) (9" 9"  FrFip + u”uFocFya)

R2
ora’\? 2622
= ) -3 F| (0.34) ’z

g"7 9,00,0 + : (

" 2
———-—-) g”u"b 31/-1 a,]Ab (

K cosh 9 . 19 1
L=ty 1K sinkr + s(

a,b=1,2,3 are the indices of the orthonormal frame of S?,

T coth — 1)2] . (0.35)
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Ugp is defined by the 3d part of the tensor gig)+ R~2BY" and given

by

| I1/2 KCOShT war 0
Uab =~ +z  Kcosht 0 ,  (0.36)
0 0 (Ksinhr)
with
f+k

e The fluctuations from the WZ term up to quadratic order are
proportional to

L/ dizdr w'w?e® (f + ¢)h~' (Fa+0Fys) . | (038)

Here we omit the zero-th order term, namely, the contribution to
the tension.

-® Note that both terms are total derivatives since #(X”) and hence,
the WZ term yields no quadratic fluctuations.

o Note that 6(X') is massless and has no mixing terms with any
other fields. Hence 6(X 1) couples to the lowest-lying pseudo-scalar
mesons and A; to vector mesons. i

e It is interesting to notice that the kinetic term of 6 is always posi-
tive. This implies the stability of the probe configuration at hand.
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Vector fluctuations

e Let us first study the 5d ‘vector fluctuations.

The action of the 5d gauge potential is
st ~m! [@X (Ksinh7) VT g "L FixFyp. | (0.39)

e The equation of motion reads
8;((K sinh 7)' VJ g" g¥L Frc) = 0. (0.40)
For the L = 7 component, this becomes
0= n"0,(0,Ar — 0:A,). (0.41)

It is useful to work in the gauge A, =

e We next decompose the rest components of the gauge potential in
terms of the complete set of functions x,(7):

ry(m, T) = ;Aﬂ’)(x)xn(f). | (0.42)
Substituting the decomposition into the Gauss law constraint, we
obtain

0=Xn"9, A™(2) 8, xa(T). (0.43)

As we will see later, the constant mode is not normalizable so that
we find

n"8,A™ = 0. (0.44)
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e Substituting the mode expansion into the action, we obtain

['S,= [d*z dr (K sinh 1) V]

8m?

at Aﬂ') A,(,m) OrXn(T) 0rXm(7)

> 017 D Fi xa(T)Xm(T)

T (Kem Yy u

e Now we define x,, as the solution of the differential equation

1 \/r}, i,
Yz % ((K sinh 1) I(T) 3fxn) = A Xa(T), (0.46)
with the normalization condition given by
5 a7 /3 Xn(T)Xom(T) = O - (0.47)
Here
V7 = (K sinh7)' 1(r) (1) (0.48)

e [t then follows that the action becomes -
!
Ev =x/ d' s FVFD + 8m* A AMAM). | (0.49)

e Thus the fields A satisfy the on-shell condition with the mass
square given by

(0.50)

2 2
an-4/\nm._J

e We regard this as the mass square of the vector mesons of QCD.

33
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e The differential equation allows two independent solutions:
one is normalizable and the other non-normalizable.

We are interested in the normalizable solution #esa.

—,

e [t turns out that the normalizable solution should behave as

_ar
x(1) = e” 3 f(r), (0.51)
with the boundary behavior of f
f(T — o0) = const. (0.52)

e [t is easy to verify that f obeys the differential equation
f(r) + A(r) f'(r) + (B() + AC(7)) f(1) = 0, (0.53)

with
1 4
| B = -é—aflogJ+§ "
LC’ = (Ksinh7) I(r) . (0.54)

Csa ‘.' ¢ e, ( Oz
e We will solve this differential equation numerically following the = Feanir9
procedure used to find the glueball spectrum of QCD.

e We first find out the asymptotic behavior of the solution at 7 > 1
for a generic A\. Using the data as an input, the solution can be
found numerically.
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0.1r

=-0.2¢

Figure 1: 8,x(r = 1077) as a function of A



e By imposing a regularity condition at 7 = 0 to be discussed in a

moment, only solutions with appropriate values of A are allowed.
— e

e In order to obtain the asymptotic solution, we notice that for large

T e‘lu‘l.’
AT)= ¥ an(r)e™, B(t)= X% bn('r)e'z'", C(r) = e ¥ 3 cn®
n=0,1,- n=0,1,- n=0,1,---
where
L2 W e
e 3’ 1 "’1801 2= 31'16
"
bO_Oa bl——?) bZ_—Fa
4T 32T
C=T, Cl—?, Cz—-T, (056)
e Expanding f(7) as follows
2nt
)= £ fune ¥, (057)
it follows from (0.53) that the coefficients f,, obey the recursion
relation |
" T 4—7‘ —Tﬂ D)
fi= ot T fa+ E Jam (focam = 5 (0 = 3m) fa-sn) + b fa-sn]
[*5]
+A T cufi-an-1=0. (0.58)
m=0

By setting fo = 1, the solution is given by

h—1 fio o f_m!fz P 8IN TS
0o=4 e 8 » J2™ 64 ) 3-'12 1024$




0.3}

0.2

0.1

Figure 2: x(r = 10"7) as a function of A



e Now let us discuss what is the regulatory condition to be imposed
at T =0.

We denotekgg(l)('r), @)(r) g the solutions on D7(;) and D7y,

n

respectively. Since both the solutions obey the same differential
equation with the same asymptotic behavior, the two solutions are

related as -
O(r) = £x2(r). (0.60)
This shows that the regularity condition is given by
Orxn(T=0)=0 or xu(r=0)=0. (0.61)

e The plots of x,(7 = 0) and of @, x,(T = 0) = 0 are

e Thus the allowed values of the eigenvalue \ are
A =0.50, 0.86, 1.64, 2.50, 3.66, 4.98, --- (0.62)

which give us the mass spectrum of vector mesons

—
l_2=2.00 3.44, 6.56, 10.0, 14.6, 19.9, ; (0.63)
m

Thus we see that the spectrum of vector mesons is dmcrete with a
mass gap which%of the order of

—!F__Ae -
\1” — e = 13(g, M)
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Pseudo scalar fluctuations

o Let us now compute the scalar meson spectrum by analyzing the
fluctuation of §. We first analyze the 5d scalars that emerge from
the 8d scalars

e As shown in the DBI action , the fluctuation of @ on both of the
probe D7-branes is governed by

Ssc ~ m? f d*zdr(K sinh 7)'v/J ggl 10,0 8,1:‘ (0.64)

e We decompose #(X7) in terms of the complete set of appropriate
functions &,(7).

0(z", 1) = £0"(z) &u(7), (0.65)

that are solution of

-_a& VP ﬂ=%& (0.66)

VP K sinh 7)1
with the normalization condition given by
b dr/pén(r) €m(T) = bum, (0.67)
where
VP = (Ksinh7)VIJL, (0.68)

e Now the action becomes

WP o :
ILSSC =3 / d‘x; n"8,0™M8,0™ + 4a,,m29(")0(")].w (0.69)

-
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Thus we obtain the scalar mesons with the mass square

M? = 4a,m?. (0.70)

e In a similar manner to the vector case we impose an asymptotic
behavior &

£(r) = e ¥g(r) (0.71)
with
g(T — 00) = const. (0.72)

so that the solutions are normalizable

e We find that g obeys the differential equation

|¢(7) + D(r)g'(r) + (E(r) + aC(r))g(r) =0, [ (0.73)
with
ks 1 N/ 8
» - éa’l°g((1{sinhf)'f) ~3
B - —g (D+ g) | (0.74)

e As before, we first solve the asymptotic behavior of g for a generic
a. For that, we need the asymptotic behavior of the coefficients
D, E:

D= Y ed,, E= ¥ e, (0.75)
n=0,1,- n=0,1,



where

4 87 3272
- =— ., dy=——
d(] 3 ) dl 3 3 2 3 ;
32T 12871
= - —— = — R
€n 0 €1 9 y €2 9 y (0 6)
e Expanding g(7) as
_2n1
gr)=_ % g(r)e” ¥, (0.77)

it follows from the differential equations that the coefficients g,
obey the recursion relation

an , 4 [ 2
g:’r: . ?g:; + Tgn + Z—O [dm (g:;—am ra 5 (n - Sm) gn—3m) +enf n—3m‘
5]
+ @ Z_:O Coulin-3m-1 =0 . (0.78)
By setting go = 1, the solution is given by
- _ 3ar . 270272 _ 87 8la’r’
Ggo=1i = 4: = 128 ’93—15 2560 y

(0.79)
Using this, we solve the differential equations numerically. As be-

fore, we have to impose the regularity condition at 7 = 0:

E(: =0) =0, or 8&(r=0)= 0] (0.80)

It turns out that now the values of a that follow from both condi-
tions are identical since @ has to vanish at 7 = 0.

—
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Figure 3: ,&(r = 0.0001) as a function of a
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Figure 4: &(r = 0.0001) as a function of &



e We obtain from this the following eigenvalues
a=1.7T7, 3.91, 6.90, -~ (0.81)

which give us the m of scalar mesons

2
M _ 708, 156, 2756, / (0.82)
m

e Again we found a discrete spectrum we a mass gap.

e Notice that these pseudo scalar mesons are heavier than the vector

INesons.

However, it should emphasize here that this analysis does not ex-
haust all the spectrum of scalar mesons that carries no SU(2) x
U(1) quantum numbers. So far we did not compute the spectrum
of the 5d scalars that result from KK reduction of the 8d vector

by a vector harmonics.

We first recall that the lowest-lying vector harmonics on S* trans-
form under the isometry SU(2) x SU(2) as (3,1) & (1,3). M; at
hand is topologically 8* and admits as the isometry the subgroup
SU(2) x U(1).

The lowest-lying vector harmonics then splits into some irreducible
representation of SU(2) x U(1). In particular, one of them is the

singlet. z
== _‘3.:‘1; s.6f G.52, .0, S2....

)

o It is easy to check thatyhese scalar fields are massive (M? > 0)
because of the F? terms as well as a non-vanishing eigenvalue of
the vector harmonics.
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Summary of the vector and pseudo scalar mesons

L

e Since the fluctuations belong to the adjoint representation (if U(Ny),
so do the dual meson states.

e Recall also that no state in the adjoint of U (Ny) is charged under
the baryon number Up(1), where U(Ny) = SU(Ny) x Up(1).

e There exist two kinds of mesons

pseudo-scalar and vector mesons.

e We analyzed the vector mesons that follow from the fluctuations
of the 8d gauge fields and the pseudo scalars that follow from the
fluctuations of the 8d scalars.

e In addition there are pseudo scalar mesons from the 8d vectors.
Most of them carry non-trivial SU(2) x U(1) charges.There is no
counterpart of these quantum numbers in the dual QCD. but the
8d vectors yield also singlets.

e As far as our concern is in quadratic fluctuations, we can con-
centrate on the case Ny = 1, since to this order any non-
(interaction is irrelevant and consequently a field in the adjoint rep-
resentation of U(Ny) reduces to N7 free fields.
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e The non-vector modes are in fact pseudo scalars rather than scalars.

Recall that the 8d super Yang-Mills(SYM) theory on a D7 comes
from dimensional reduction of 10d SYM. In ten dimensions, the
parity transformation for the 10d vector field is defined as

PA(t, Zg)P~! = ~A(t, —Ts) . (0.83)

Upon dimensional reduction to 8d, we find that the scalar fields
transform as a pseudo-scalar

pé(tﬁf'f)‘p—l - -¢(tv _5“.7) . (084)

e The mass scale of the mesons is the same scale as that of the
gluballs

e , k €4/3
M, ~ Mgb ~ 22/3(g,,Ma’)2

e2/3

e Recall that the mass of the fundamental quarks ~ “-.
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Summary and open questions

e We have added D7 brane probes to the KS model to describe
massive flavored fundamental quarks

e For N >> N; backreaction can be neglected.

e We made use of the geometry of defored conifold to determine the
probes that are solutions of the equations of motion.

e From the renormalizable quadratic fluctuations we determined the
spectrum of the vector and pseudo scalar mesons.

Open questions:
e Introducing light quarks with chiral symmetry breaking.

e The brane configuration with which we started our journey has
N = 1 supersymmetry. It is not clear whether #he after the intro-
duction of the D7 branes supersymmetry is still preserved.

e It will be interesting to determine the _Wilson loop in this con-
text and to realize the proces of breaking of the string due to the
dynamical quarks. o

¢ Constructing baryons using wrapped D3 brane connected with N
strings to the D7 brane probes.
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