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I) Introduction

Goal of superstring theory:
Embedding of the Standard Model into a unified de-
scription of gravitational and gauge forces.

Obstacles on the way:
e How to derive the precise SM spectrum?
e How to determine the precise SM couplings?
e How to break space-time supersymmetry?
e How to fix the values of the moduli?

e How to select the groundstate from an (apparent)
huge vacuum degeneracy?

e How to describe the cosmological evolution of the
universe?

e \What is the structure of space and time at short
distances?
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II) Intersecting Brane World Models

The progress in type II string physics was made possible

due the discovery of D-branes.
(Polchinski)

D(p)-branes are higher(p)-dimensional topological de-
fects, i.e. hypersurfaces, on which open strings are free
to move.

They have led to several new insights:

e Non-Abelian gauge bosons as open strings on the
world volumes = of the D-branes — Brane world
models

e Chiral fermions are open strings living on the inter-
sections of two D-branes
Np = I = #(ma Np) = T 0 M

e Correspond to non-trivial gravitational backgrounds
— AdS/CFT correspondence



II) Intersecting Brane World Models

Simplest D-brane configuration: 1 single Dp-brane:

D)
!

Dp-brane

Massless open string spectrum: U(1) gauge boson —
supersymmetric U(1) gauge theory in p + 1 dimensions

Sefr = /dpo (Lo.i(y, F, ¢) + Lcs(F,Cpya) )

Tension Ch%rrge

Effective gauge interactions due to the exchange of
open strings:

Sppr = Tp/dp—i_lx\/det(gu,,—l—T_lFW)

p—3
_ (M)/dww? T
Gstring v



II) Intersecting Brane World Models

Other D-brane configurations (in flat space-time):

e N parallel Dp-branes

N = 4 supersymmetric U(N) gauge theory in p+ 1
dimensions

e Intersecting D-branes

(Berkooz, Douglas, Leigh)
D/Gauge bosons in adj.

=

Chiral matter in (N, M)

Open string spectrum:
(i) N =4 gauge bos. in adj. repr. of U(N) x U(M)
(ii) Massless fermions in chiral (N, M) repres.

(iii) Massive scalars in (N, M) repes.



II) Intersecting Brane World Models

Intersecting D-branes break space-time supersymmetry!
This supersymmetry breaking manifests itself as the a
massive/tachyonic scalar groundstate:

1
2 I I
I
Massless scalars < open string sector is supersymmetric.
Two flat supersymmetric D6-brane configurations:

e 2 intersecting D6-branes, intersect in 4-5 and 6-7
planes, parallel in 8-9 plane:

1/4 BPS (N =2 8SUSY): ®'4+o2=0

e 2 intersecting D6-branes, intersect in 4-5, 6-7 and
8-9 planes:

1/8 BPS (N =18USY): ®'4+?24+d3=nx

In case the open string scalar is tachyonic (M2 < 0) —
the 2 different branes will recombine into a single brane.

Brane recombination +— Tachyonic Higgs effect (Sen)



II) Intersecting Brane World Models

Intersectlng type IIA brane-world-models
nhagen, Gorlich, Koérs, D.L., hep- th/0007024)

(Blumenhagen, Braun, Koérs, D.L., hep-th/0206038)
(i) Choose compact orientifold background
M0 = (R3! x M®)/(QF), < :world sheet parity

o. z; — z; anti-holomorphic involution. The orientifold
6-plane mpg is the fixed locus, Fix(a), which is a sLag
3-cycle, implying
Vol(Fix (7)) :/ R(Q3) .
Fix(o)
(ii) Introduce D6-branes wrapped around the supersym-

metric (sLag) 3-cycles m, and their Q& images =/, of the
internal Calabi-Yau space M, which intersect in M.

Massless spectrum:
e N = 1 supergravity in the 10D bulk

e 7-dim. N =1 U(N,) gauge bosons localized on the
D6-branes wrapped around 3-cycles w, (codim = 3).

e 4-dim. chiral fermions localized on the intersections
of the D6-branes (codim = 6).



IT Intersecting Brane World Models

Since the chiral spectrum has to satisfy some anomaly
constraints, we expect that it is given by purely topo-
logical data (Atiyah-Singer index theorem).

The chiral massless spectrum indeed is completely fixed
by the topological intersection numbers of the 3-cycles
of the configuration.

Sector Rep. Number

a a A, % (7! o w4+ mo6 © T4)
a a Sa % (7! o g — o6 © TG
ab (No,Ny)  mqom

a'b (Ng, Ny)  wlom

The non-abelian gauge anomalies will cancel after satis-
fying the tadpole conditions and mixed U(1), — SU(N)?
anomalies are canceled by a generalized Green-Schwarz
mechanism involving dimensionally reduced RR-forms.



IT Intersecting Brane World Models

View on the internal Calabi-Yau space:

A
O
- R
=7
SM HS

Many non-supersymmetric as well as N/ = 1 supersym-
metric intersecting brane world models on tori, orbifolds,
or the quintic Calabi-Yau manifold with gauge group

G = SU(3)C X SU(Q)L X U(l)y

and 3 families of quark and leptons can be explicitly
constructed.

(Blumenhagen, Braun, Gorlich, Ott, Koérs, D.L. (2000/01/02);
Aldazabal, Cremades, Franco, Ibanez, Marchesano, Rabadan,
Uranga; Cvetic, Shiu, Uranga,; Bailin, Kraniotis, Love; Kokorelis;
Forste, Honecker, Schreyer,; Ellis, Kanti, Nanopoulos)
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II) Intersecting Brane World Models

3 possibilities for supersymmetry breaking:

e SM-branes are non-supersymmetric:
Msusy ~ Mstring ~ 0(1 TeV)

Need for large transversal dimensions R, on the CY!

e SM-branes are supersymmetric (“local” supersym-
metry), but are non-supersymmetric with respect
to hidden sector branes —

Gravity mediated supersymmetry breaking:

2

M 9.~ 01T - 11
susy ~ ~ eV) = Mstring >~ O(107"GeV)
Mpianck

Here the transversal dimensions on the CY are only
moderately enlarged, R, ~ O(10°)GeV).

e All branes are supersymmetric (“global” supersym-
metry) —
Dynamical supersymmetry breaking in hidden sec-
tor:
3
Mhidden

2
Planck

Msusy =~ ~ O(1TeV) = Mhigden ~ O(1013GeV)

11



II) Intersecting Brane World Models

Consistency requirements for intersecting branes:
(i) RR-charge cancellation:

This implies absence of anomalies in the effective field
theory!

Chern-Simons actions:

A(R7)
S((:gp) — ,Up/D ch(F) A a /\Zan
b q

A(RN)

o _ L(Rr/4)
S = _ovdy, /O \/ﬁ(RN/4) A Cy
p q

For the case of D6-branes — equation of motion of C5:

1
—dxdC7 = pe ZNaé(wa) + ,UJ6ZNa5(7TZL) + 16Q6 6(m0s6),

K2

Integrate over M® — RR-tadpole cancellation as equa-
tion in homology:

Z Ny (mg + 7)) — 4woe = 0.

12



II) Intersecting Brane World Models

(ii) Stability of the scalar potential: NS tadpole cancel-
lation

Due to the tension of the D-branes a vacuum energy
V(¢4,U;) is induced which depends on the NS back-
ground fields: dilaton ¢4 , complex structure moduli
Ui.

For flat 4-dim. Minkowski space-time we need a stable
minimum of V(¢a4,U;) with Vnin = 0 +— Vanishing of
NS tadpoles!

Scalar (D-term) potential:

Yy = ¢ N, Vol(D6,) — 4Vol(O6
— 76 \/Vol(_/\/l6) <Z a O( a)_ O( )

a

= Ts €_¢4 (Z Na/ %(ei(baﬁg,) — 4/
a T+

To6

§R(§3)>
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II) Intersecting Brane Worlds

Minimization of V will fix (part of) the complex structure
moduli U;.

3 possible scenarios:

e “Global” N =1 supersymmetry:
Minima are such that all angles are supersymmet-
ric «+— all D6-branes conserve the same supersym-
metries as orientifold plane, i.e. all D6-branes be
calibrated with respect to 8%(523) = Vmin =0

e “Local” N =1 supersymmetry:
Minima are such that only SM angles are super-
symmetric «—— only SM D6-branes conserve the
same supersymmetries as orientifold plane, i.e. only
SM D6-branes be calibrated with respect to 8%(523).
(Here hidden sector is in general necessary for RR
tadpole cancellation.)

e NO supersymmetry:
Minima are such that SM angles are non-supersymmetric
+—— SM D6-branes do not conserve the same su-
persymmetries as orientifold plane. (Stability is very
difficult to achieve!)

14



IIT) MSSM-like models and gauge coupling

unification

(Blumenhagen, Stieberger, D.L., hep-th/0305146;
cfr. Antoniadis, Kiritsis, Tomaras, hep-th/0004214)

The three Standard Model gauge couplings gs, g, and
gy have different values at the weak scale.

Extrapolating these couplings due to the one-loop run-
ning

41 41 bq 7
= ko— + — IOg <—> + A,
92(n) g5 2« Mx

to higher scales, one finds that they all meet at

3 1
MX§2'1016 GeV, as:aw:_aY:anﬂa

if the light spectrum contains just the MSSM particles.

This is in accord with for instance an SU(5) Grand Uni-
fied gauge group at the GUT scale.

15



III) MSSM-like models and gauge coupling unification

GUT unification
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III) MSSM-like models and gauge coupling unification

In string theory one has a new scale M, so that it is
natural to relate Mx to M. In the heterotic string one
finds

k., = level of SU(N,;) Kac — Moody algebra.

At one loop level the relation between the string and
the Planck scale was found to be

Mg ~ g5t - 0.058 - M,

which, using g ~ 0.7, led to M, ~5-10' GeV.
(Kaplunovsky (1988); Derendinger, Ferrara, Kounnas, Zwirner

(1992))

The discrepancy between My and M, needs to be ex-
plained by moduli-dependent string threshold correc-

tions A, (or alternatively by heterotic M-theory).
(Ibanez, Ross, D.L. (1991/92); Nilles, Stieberger;, Witten (1996)

)

17



III) MSSM-like models and gauge coupling unification

In contrast to the heterotic string, in D-brane models
each gauge factor comes with its own gauge coupling,
which at string tree-level can be deduced from the Dirac-
Born-Infeld action
4 M3V,
gg N (27")3gst Ra
with k, = 1 for U(N,) and k, = 2 for SP(2N,)/SO(2N,).

, Va=(27)°R}.

By dimensionally reducing the type IIA gravitational ac-
tion one can similarly express the Planck mass in terms
of stringy parameters (M, = (Gn)72)

8 M8V,
=22 Vs=(2m)°R".
(271-) gst
Eliminating the unknown string coupling gs gives
1 My, Vs
Qo 2V2 ke MV

Due to
V., / o~
= %(62%93)
V V6 T

the gauge coupling only depends on the complex struc-
ture moduli.

18



III) MSSM-like models and gauge coupling unification

Consider the gauge coupling unification in a model in-
depedent bottom up approach.

3 phenomenological requirements:

e The SM branes mutually preserve N' = 1 supersym-
metry.

e The intersecting numbers realize a 3 generation
MSSM

e The U(1l)y gauge boson is massless

We will show that using these 3 reasonable assumptions
gauge coupling unification is achieved in a natural way!

19



III) MSSM-like models and gauge coupling unification

Two simple ways to embed the SM!
(Blumenhagen, Kors, D.L., hep-th/0012156;, Cremades, Ibanez,

Marchesano, Rabadan, hep-th/0105155, hep-th/0302105)
Both of them use four stacks of D6-branes:
A o U@@B)axSP(2)yxU(1l)exU(1l)y
B : U@B)yxUR)pxU(1)exU(1)g.

The chiral spectrum of the intersecting brane world
model should be identical to the chiral spectrum of the
standard model particles.

This fixes uniquely the intersection numbers of the four
3-cycles, (wq, T, Te, T4).

field sector I SU(3) xSU(R)xU(1)3
qr (ab) 3 (3,2.1,0,0)

UR (ac) 3 (3,1;-1,1,0)

dr (ac’) 3 (3,1;-1,-1,0)

cr (db) 3 (1,2,0,0,1)

eR (dc’) 3 (1,1;0,—1,—1)

VR (do) 3 (1,1:;0,1,—1)

20



III) MSSM-like models and gauge coupling unification

The hypercharge )y is given as the following linear com-
bination of the three U(1)s

Qr = 5Qu—Q— Qu

For intersecting brane worlds it can happen that some
of the stringy U(1)s are anomalous and get a mass
via some generalized Green-Schwarz mechanism or that
via axionic couplings some anomaly-free abelian gauge
groups become massive.

The condition that a linear combination U(1)y = > . ¢;U(1);
remains massless reads
Zci N; (m — 7'(';) = 0.
i
In general, if the hypercharge is such a linear combina-
tion of U(1)s, Qy =), ¢iQ;, then the gauge coupling is
given by

1 _ZNicZ?l
ay_ - 2 «j

In our case

21



III) MSSM-like models and gauge coupling unification

Realization of the MSSM:

Assume that the 3-cycles n, and @, have intersection
number w,om, = 3, then homologically choosing n; = n,
gives the right intersection numbers for = .

Therefore
Vo = V4.

The condition that U(1)y remains massless simply im-
plies «l, = =..

Therefore, at the bottom of this simple realization there
lies an extended Pati-Salam like model

U(4)a—|—d X SU(Q)(, X SU(Q)C
From the field theory point of view it is very natural to

assume, that the two gauge couplings of the two SU(2)
factors are the same, i.e.

Ve =W

22



III) MSSM-like models and gauge coupling unification

From the stringy point of view, even though we cannot
rigorously prove it in the general case, the constraints
from supersymmetry and the intersection numbers =, o
7w, = —mgom. = 3 dO not seem to leave very much room

to evade that V), = V..

Therefore

1 1
C\ld = Qg = as, Ol =— Eab = an,

which implies the Pati-Salam like tree-level relation

1 21
___|__

ay 3 ag Ol

This relation will allow for natural gauge coupling unifi-
cation!

23



III) MSSM-like models and gauge coupling unification

In the absence of threshold corrections, the one-loop
running of the three gauge couplings is described by the
well known formulas

L 1 ks (o
as(p) o ozs+27r|n (MS>

sin®@u,(p) 1 | by L
a(u)  aw om" <M>
cos®fu(p) _ 1 | b1 L
oG ay 2n <M>

where (b3, bo,b1) are the one-loop beta-function coeffi-
cients for SU(3)., SU(2)r and U(1)y.

Using the tree level relation at the string scale yields

2 1 2sin?0,(u) —1 B <u>
3 T aw  on

with

S

2
B:§b3—|—b2—b1.
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III) MSSM-like models and gauge coupling unification

Employing the measured Standard Model parameters

M; = 91.1876 GeV, a,(Mz)=0.1172,

1
My) = ———— sin?6,(Mz) = 0.23113
(Mz) 127.934 (Mz)

the resulting value of the unification scale only depends
on the combination B of the beta-function coefficients.

For the MSSM one has (bs,b2,b1) = (3,—-1,—-11), i.e
B = 12 and the unification scale is the usual GUT scale

M, = My = 2.04 - 10'° GeV.

Of course, for the individual gauge couplings at the
string scale we get

5
as(Ms) = ayw(M;) = gOéY(Ms) = 0.041,

which are just the supersymmetric GUT scale values
with the Weinberg angle being sin? 8, (M,) = 3/8.

Assuming gs = gx, for the internal radii one obtains

M,R=5.32, MR;=12.6, MR, =3.3.

25



III) MSSM-like models and gauge coupling unification

IBW unification with MSSM matter
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III) MSSM-like models and gauge coupling unification

In general besides the chiral matter string theory con-
tains also additional vector-like matter.

This is also localized on the intersection loci of the D6
branes and also comes with multiplicity n;; with ¢,5 €
{a,b,c,d}.

One finds the following contribution to B

B = 12 —2n4 — 4N + 2na¢c + 2ngq — 2105 + 2 nce
+2n0q + 2n4g4.

B does not depend on the number of weak Higgs mul-
tiplets ny..

Example A:

If we have a model with a second weak Higgs field, i.e.
ny. = 1, we still get B = 12 but with

(b3, b2,b1) = (3,—-2,-12).
The gauge couplings "unify” at the scale

M, = 2.02-10'°GeV.

However they are not all equal at that scale
as(M;) = 0.041, oan(Ms) =0.052, ay(M;) = 0.028.

27



III) MSSM-like models and gauge coupling unification

IBW unification with vector-like matter
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III) MSSM-like models and gauge coupling unification

Example B: intermediate scale model

For models with gravity mediated supersymmetry break-
ing (hidden anti-branes) the string scale is naturally in
the intermediate regime M, ~ 1011GeV.

Choosing vector-like matter

Naga = Ngd = Nagd = 2, ng = 1
leads to B = 18.
The string scale turns out to be

M, = 3.36 - 101 GeV.

The running of the couplings with
(b3a an bl) — (_17 _37 _65/3)

leads to the values of the gauge couplings at the string
scale

as(Mg) = 0.199, au(Ms) = 0.052, ay(M,) = 0.045.
Assuming g4 ~ 1, for the internal radii one obtains
MsR =230, MiR;=1.7, MR, = 3.3.

29



III) MSSM-like models and gauge coupling unification

IBW unification at intermediate scale
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III) MSSM-like models and gauge coupling unification

Example C: Planck scale model

Interestingly for B = 10 one gets

M T
M, 2

Choosing vector-like matter

Nga = 1,
the beta-function coefficients read
(b3, b2,b1) = (0,—1,—-11).
The couplings at the string scale turn out to be
as(Ms) = 0.117,  an(Ms) = 0.043, ay(M,) = 0.035
leading to sin? 6, (M,) = 0.445.

For the scales of the overall Calabi-Yau volume and the
3-cycles we obtain

M,R=0.6, MR,=1.9, MR, =3.3.

31



III) MSSM-like models and gauge coupling unification

IBW unification with exotic matter
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Summary: brane world models

Under a few natural assumptions supersymmetric Inter-
secting Brane World Models can make interesting pre-
dictions about gauge coupling unification.

The challenge remains to construct realistic supersym-
metric IBW models with the chiral spectrum of the
MSSM and only a mild amount of vector-like matter.

Other interesting topics:

e Computation of Yukawa couplings
(Cremades, Ibanez, Marchesano,; Cvetic, Papadimitriou)

e Dynamical supersymmetry breaking
(Cvetic, Langacker, Wang)

Proton decay: Tproton ~ 1030 years
(Klebanov, Witten; Friedmann, Witten)

Flavor changing neutral currents
(Abel, Masip, Santiago; Abel, Owen)

1-loop gauge threshold corrections A
(S. Stieberger, D.L., hep-th/0302221.)

33



1-loop gauge threshold corrections

Explicit computation of A, in toroidal and orbifold mod-
els:

(i) N = 4 sectors: A, =0.
(ii) N = 2 sectors:

AN 2 =by 2 In(T5V, |n(TH)|*) + const. ,
with the wrapped brane volume

, 1 . o
Ve = —|n, +U'm;|°.
Uz

(iii) NV =1 sectors:
F(1—1¢2) (1 —2¢2) T(1+ 2k + 2¢2)

Ao = b N e T T 162,y F(1 L, g2
7 ab w7 ab w7 ab w7 ab

n‘ZmbR] + mam‘zg

némi—n{)mé

(A, still depend on moduli! (Cfr. heterotic NN =

sectors: DKL))

COt(ngb) =

(iv) N = 0 sectors: UV divergent 1-loop threshold cor-
rections. Note: in “local” supersymmetric models all

SM thresholds can be made finite! .
(S. Stieberger, D.L.: work in progress)
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IV) Type II Compactifications with D-branes and
H-fluxes

Problem of moduli stabilization:

Type IIA: D6-branes wrapped around 3-cycles C3 ¢ M°,
Potential Vyane ~ VOI(C3) — fixes complex structure
moduli U;!

Q: How to fix the Kadhler moduli T; ~ Vol(C>) of MP°?

A: Turn on H-fluxes, i.e. background expectation values
for H-field strength fields!

E.g. RR 2-form field strength:

2 2 2
(H) = f{ HY = Ve ~ (H)?

2

Aim: Construct compactifications with D-branes and

fluxes:
(Blumenhagen, Taylor, D.L., hep-th/0303016; Cascales, Uranga,

hep-th/0303024)

D6-branes: Non-Abelian gauge bosons, chiral fermions
— SM, non-trivial Vy,.ane (U;).

H-fluxes: No chirality, non-trivial V. (T;).
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IV) Type II Compactifications with D-branes and
H-fluxes

T-dual type IIB (mirror) picture:

D-branes: Stacks of D9, branes which wrap mirror M?©
CY plus open string magnetic fields F,, through 2-cycles
of M® — Non-Abelian gauge bosons, chiral fermions
— Virane(T3), fixes Kdhler moduli of M6.

H-fluxes: RR and NS 3-form flux (HS)),(H]@) # 0
through 3-cycles of M® — V. (U;), fixes complex
structure moduli of M6.

Effective flux induced action:
(Taylor, Vafa, Kachru, Schulz, Trivedi; ...)

(i) Kinetic energy of 3-forms == scalar potential V.,

1
S I = - G N xG
‘ 45k3,3(7) J e
G = TH](\;?{—H}{:%), T:OO‘I'?:G_(b-
Expand G in terms of a basis of H3(M®, 2):
G = eAXA —I—mAF/\,
en = Texr+er, m=rml+mbd.
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IV) Type II Compactifications with D-branes and
H-fluxes

Scalar potential:
Vie = —ge=l(e+mN)(SN) (@ +mA)]
+ wz(m xe) =Vr+Vp

N denotes the period matrix:

_ S(EAR)S(Fsa)XT XA
N, = F 2 ,
AT A + 2t S(FrA) XTXA
XN = Qs, Fa= | €3
AA B/\

Ve depends on the compex structure moduli U; and .

Vr can be derived from a superpotential:
1
V2K10 J x5

For certain choices of fluxes with Ny, = m xe # 0O
supersymmetric minimima of W with Wy = W, =W =
0, i.e. Vg = 0 can be found.

W = Q3 A G = Juz(eaX™ + m"Fp)

Note: Since at the minimum Vj;,, = pu3(m x e) > 0 one
needs orientifold planes to cancel the vacuum energy of
the 3-form fluxes.
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IV) Type II Compactifications with D-branes and
H-fluxes

(ii) Topological action of 3-forms — RR-tadpoles

1 Ca NG NG
Scs = / h

2/4,%0 4131

This induces a RR tadpole for C4 given by

1
Ntz = /HI(%‘O’)/\HJ(\}?:mXe

2"3%0,“/3

So we need D-branes and orientifold planes in order to
cancel the flux RR-tadpole and the unbalanced flux vac-
uum energy!

— D9-branes with magnetic fluxes plus orientifold planes.
Example Z> x Z, orientifold: 4 tadpole conditions
8> [[ni+ Npue =32, 8) NanimZm? = +£32,
a I a
S} Z Nomin2m> = -32, 8 Z Nom}im2n2 = —32
Total scalar potential:
Viotal(Ti, Ui, T) = Viiue (Ui, 7) + Vpo(Ti, 7) — Vo3,07(Ti, T)
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IV) Type II Compactifications with D-branes and
H-fluxes

Concrete example:

One can construct a N = 1 supersymmetric Z> X Z»
orientifold model with supersymmetric D9-branes and
supersymmetric 3-form fluxes:

(i) 3-form fluxes «» complex structure moduli:

vtv?=-1, =-U3

(ii) 2 stacks of D9-branes:

18t stack : (nIamI) — {(07 1)7 (17 _1)7 (17 _1)}
2nd stack : (nIamI) — {(170)7 (07 _1)7 (07 _1)}

Kahler moduli:
T°T3 = (47°a’)?
Gauge group: G =U(4) x U(4)

Chiral fermions: (4,4) + (4,4)-representations (anoma-
lous, canceled by inflow mechanism).
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V) Non Calabi-Yau compactifications

So far we assumed that our internal space MP° is a Ricci-
flat CY space. However in general, the H-fluxes/wrapped
D-branes induce a strong backreaction on the underlying
space-time geometry! — M non-Ricci flat!

Supersymmetry transformations:
1
5WM — VME — ZHMG =0

B-functions (equations of motion):
- 2
Ryn — Z(H)MN =0
Questions:

e \What is the mathematical structure of M®? — Clas-
sification of possible spaces M%?

e Explicit examples for M7

e \What is the low-energy, 4-dim. effective action?

40



V) Non Calabi-Yau compactifications

Main results on the mathematical structure:

N = 1 space time supersymmetry =—> M?® is equipped
with a SU(3) connection with torsion:

Spaces with SU(3) structure and torsion are well known
in the mathematical literature: the allowed torsion ten-
sors fall into five different classes.

(Friedrich; Chiossi, Salomon)

Flux Background metric of M
M-theory — Ryn =0
(7-dim.) G» manifold
{ Sl-fibration
Type IIA H? £0 Ry = 0, d23 £ 0
D6-branes almost Kahler manifold
{§ T-duality
Type 1IB HP £0 R, =0
H](\?S) # 0 Calabi-Yau manifold
{ string duality
Heterotic HZ) #0 Rpn £ 0, dJ # O

complex Hermitian manifold
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V) Non Calabi-Yau compactifications

Take a 6-dim. manifold M® with Riemannian metric g,
almost complex structure J,

1 2 3 4 5 6
J=e Ne“F+e’ANe” +e’ ANe”,

with J-J = —1 (J-e* = Jgeb). This defines a U(3)
structure.

A SU(3) structure is determined by the (3,0)-form
W = (el +ie?) A (€3 +ie*) A (e® + ie).

W has norm 1 and is subject to the compatibility rela-
tions

2
J AL =0, Wy A =ZJNINJ,

where

V=vyr+w, ¢_=J 9.
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V) Non Calabi-Yau compactifications

The failure of the holonomy group of g to reduce to
SU(3) can be measured by the intrinsic torsion 7. The
space to which the torsion belongs can be decomposed
into five classes:

TEWIEWo D W3B Wis P Ws,

described by the decomposition of 7 into SU(3) irre-
ducible representations:

14+1)+@B+8)4+(64+6)+(3+3)+(3+4+3).
The five W; are fixed by dJ and dW:
Wi < [dJ]SY ) Wh o [dw]3?) |

Wi < [dJ]®Y, Wi JAdJ,
Ws <« [d\lf](3’1) .

Depending on the class of torsion we deal with the fol-
lowing manifolds:

i) Complex, Hermitian manifolds (W1 = W, = 0):

T € W3 <& special Hermitian manifolds,
T €Ws <« Kahler manifolds,
=0 <« Calabi—Yau manifolds.
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V) Non Calabi-Yau compactifications

i) Non-complex manifolds

T € W1 < nearly—Kahler manifolds,
T €Ws <& almost—Kadhler manifolds,
TEW; @W, ® W3 <& half-flat manifolds.
A half-flat manifold can be lifted to a 7-dim. G»>-space:
M-theory on a Ga-space X7 <— Type IIA with Ramond
2(1(95%5/“% arcégg,er aefg,t iﬂgygéﬁ%ﬁggsé}andhuben Gubser,
Gukov, Bilal, Derendinger, Sfetsos, Cvetic, Gibbons, Pope, Kaste,

Kehagias, Minasian, Petrini, Tomasiello, Behrndt, Dall’Agata,
Mahapatra, D.L. ...)

Circle fibration
7 X7—>./\/l6, g=A®A+7T*§>

g metric of M®, and dA = =*p with p some 2-form on
ME (p~ HD).

Go structure of X7: o =JANA+ Y

dp = dJ ANA+dy_+J Ap,
dx¢p = dpr NA+JAdT —pp Ap.
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V) Non Calabi-Yau compactifications

G2 holonomy implies that d¢ = dx ¢ = 0. Therefore
dJ =0, dy4 =0, dy_=—-JAp, JANdJ =0.
So we finally obtain
TeW,,

i.e. the type IIA space M® with Ramond 2-form flux is
an almost-Kahler manifold.

This result agrees with the construction of the IIA back-
ground M® by applying the mirror (T-duality) transfor-

mation on type IIB on a CY® with 3-form fluxes.
(Gurrieri, Louis, Micu. Waldram; Kachru, Schulz, Tripathy,

Trivedi)
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VI) Heterotic Strings with 3-form flux

(Strominger; Cardoso, Curio, Dall’Agata, Zoupanos, Manousselis,
D.L., hep-th/0211118; Gauntlett, Martelli, Waldram,
hep-th/0302158)

Consider a warped compactification of the 10-dimensional
heterotic string on R3 ® M® with metric:

d82 — €2A(y)(d$u 03¢ dxyn,ul/ + dym X dyngmn(y)) :
The additional background fields are:

Dilaton ¢(y), NS 3-form Hpnnp(y), Yang-Mills field F,.

Conditions for N/ = 1 space-time supersymmetry in 4
dimensions:

gravitino : 5\IJM:DMe:VMe—ZHMe=O,
1
gaugino : Sx = —ZI'MNeFMN =0,
1
dilatino : SA =V + o He=0,
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VI) Heterotic String with 3-form flux

Conditions on the geometry of M6":

e M5 must be complex:

Nijenhuis tensor: Np, = J7.0,Jy — JioJy, = 0.

| =

Spin connection with torsion has SU(3) holonomy:
S = Dy = Oy + 7 (W30 — B gy, = 0
Therefore H,’ denotes the torsion of MSO.
Integrability:

[Dim; Dnln4 = _R WTpgny =0 == R Jp =0

e There exists one holomorphic (3,0)-form w with:

*xdx J = i(0 — 9) log ||w]|, \U:ﬁ.
w
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VI) Heterotic Strings with 3-form flux

Conditions which link the matter fields to geometry:

e H-field:
) _
H=—-(0-0)J.
2( )

e Dilaton:

5(y) = = log |lw] + const,  A(y) = ¢(y) + const.

e Yang-Mills fields:
FonJ™ =0.

e Bianchi-identity:
dH =tr(RAR) —tr(FAF).
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V) Heterotic Strings with 3-form flux

Now reformulate the geometrical conditions in terms of
the five torsion classes:

e MP® is complex:

Wi=Wr =0 <— dJG0) = quw(22) = o,

e Holomorphic (3,0)-form w:

1
JAdJ = —dlog ||wl||, W4:§J/\dj, Ws = dlog ||w]] .

TEW3D W1 D Ws, 2Wa+Ws =0

Was and Ws exact.

) - 1
H:§(8—8)J, FonJ™ =0, ¢(y):§|09||w||7

dH =tr(RAR) —tr(FAF).
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IV) Heterotic Strings with 3-form flux

Special case:
W4 — Ws =0
So

T€W37

i.e. M® is a special-Hermitian manifold.

In this case the dilaton ¢ and the warp factor A are
constants, and w is a closed, holomorphic (3,0)-form of
constant norm.

The only difference between M°® and a CY-space is given
by a non-trivial 3-form H.

Examples:
Nilmanifolds (Salamon)

Moishezon manifolds
(Gutowski, Ivanov, Papadopoulos)
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V) Heterotic Strings with 3-form flux

BPS action and superpotential for heterotic string com-

pac(tification with fluxes:
Lopes Cardoso, Curio, Dall’Agata, D.L., hep-th/0306088;

cfr: Becker, Becker, Dasgupta, Prokushkin, hep-th/0304001)

Bosonic part of the 10D effective action (O(a/?)):

1 1
S = /dlox ged? [Z R — EHMNPHMNP + 16(0m¢)?
1

_Za/ <FJ{4NFIMN . R]-\I_/INPQR_*_ MNPQ) ] .

After compactification this yields

1 8¢ 1 8¢ Hab
Vv =< -= e®? (8dp + 0) A % (8dp + 6) + = e*? JNJ N R Jg
2 Me 8 Me
1

4 / d6y 96 €? Ny 99" gps Ngv*
1 8¢ 1 —8¢ 8¢ 1 —8¢ 8¢
+ = | ¥ ([H+Zxe8d® ) Ax(H+=+xe8d(e® )
2 M - 2
o 6 8 2,0)y2 02)y2 4 1 2
- 5 [ v vgee [tr(F( D)2 4 tr(FO2)2 + 2 tr (S Fun) ]
’ 1
+ % / d®y \/g6 € [tr(R+ (200)2 4 tr(RT©2)2 4 2 tr(Jm”R;gn)Q] } _
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V) Heterotic Strings with 3-form flux

Sum of BPS squares == T he supersymmetry conditions
provide a solution of the equations of motion!

Use:

H = —% xe 82d(e8? ) = %i((’) —9)J .

Corresponding superpotential:

Show that V can be partially written in standard N/ =1
form:

V =&t [¢"D;W D;W — 3|[W|?] ,
Consider the term:
V = —%/e&ﬁ (H—l—%*e_&bd(e&ﬁ J)) A * (H —|—%*e_8¢al(e8"5 J)) .
Now introduce
H=H-+ %e—&ﬁ d(e®? J),

Then (under some assumptions) the superpotential is:

WZ/H/\Q:/<H—I—%dJ>/\Q.

The deviation from a Calabi-Yau space is measured by
the geometrical term dJ A Q2!
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V) Heterotic Strings with 3-form flux

This superpotential is in quite analogy with the type IIB

superpotential with 3-form flux G on a CY-space:
(Mayr; Taylor, Vafa)

W:/GAQ:/<H§>_7H@>AQ.

It is also similar to the type IIA superpotential with 2-

form flux:
(Vafa; Curio, Ko6rs, D.L.; Gurrieri, Louis, Micu, Waldram)

W:/(Hg)/\J—I—dQ)/\J.

Here the deviation from a Calabi-Yau space is measured
by the term d<2 A J!
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VII) Conclusions

Important question: Does it make at all sense to con-
struct 4-dim. string vacua without knowing the dynami-
cal selection process which determines the unique string
ground state (if it exists)?

(Preliminary) answer: Probably Yes!

Statistics of string/M theory vacua:
(M. Douglas, hep-th/0303194)

Assume that we can construct the SM spectrum from
strings in several ways, where the SM couplings for each
model are statistically, i.e. uniformly distributed.

SM fills the following volume in the space of coupling
constants (measured in natural units):

SVgy ~ 107238

Therefore we need at least ©(10238) brane/flux string
vacua with SM spectrum in order to make the statistical

statement that string theory contains the SM.

This seems to be possible!
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