ANOMALY CANCELLATION IN SEVEN-DIMENSIONAL SUPERGRAVITY WITH A BOUNDARY.

A. Kehagias (NTU Athens)

Phys.Rev.D68:065019,2003

Phys.Rev.Lett.90:101601,2003

Kolymbari Crete, June 2003

2. THE MINIMAL $\mathcal{N}=2$ 7D SUGRA

There are 2 SUGRAs in 7D:

$$
\begin{array}{|ll}
\hline \mathcal{N}=4 & \text { R-symmetry }=S U(4), \\
\hline \mathcal{N}=2 & \text { R-symmetry }=S U(2),
\end{array}
$$

We will discuss the minimal $\mathcal{N}=2$ case the field content of which is $(M, N=0, \ldots, 6, \quad i, j=1,2$,

$$
\begin{array}{ll}
\left(A_{M}, A_{i}{ }^{j}, \psi^{i}\right), & \text { vector multiplet } \\
\left(g_{M N}, A_{M N K}, A_{M}{ }^{i j}, \phi, \psi_{M}^{i}, \chi^{i}\right), & \text { gravity multiplet }
\end{array}
$$

The vector multiplet contains:

- a vector A_{M},
- an $S U(2)$ triplet of scalars $A_{i}{ }^{j}$
- and an $S U(2)$ pseudo-Majorana spinor ψ^{i}

The gravity multiplet contains:

- the graviton $g_{M N}$
- an antisymmetric three-form $A_{M N K}$
- an $S U(2)$ triplet of vectors $A_{M}{ }^{i j}$,
-a scalar ϕ
- the $S U(2)$ pseudo-Majorana gravitinos ψ_{M}^{i}
- and spinors χ^{i}.

GAUGING THE R-SYMMETRY

The $S U(2)$ R-symmetry of the minimal $\mathcal{N}=27$ D SUGRA can be gauged. The resulting $\mathcal{N}=27 \mathrm{D}$ gauged SUGRA has two version:

- with an antisymmetric two-form $B_{M N}$ (Salam © Sezgin (1983), Han, Koh \mathcal{F} Lee (1985))

$$
\begin{equation*}
F_{4}=d A_{3}=* H_{3}=* d B_{2} \tag{0.1}
\end{equation*}
$$

- with the three-form $A_{M N P}$ Townsend \mathcal{E} Nieuwenhuizen (1983).

The coupling of n vector multiplets to the $7 \mathrm{D} \mathcal{N}=2$ supergravity leads to the irreducible multiplet

$$
\begin{gathered}
\left(g_{M N}, B_{M N}, A_{M}^{I}, \phi^{\alpha}, \psi, \chi^{a}, \psi_{M}^{i}\right) \\
I=1, \ldots, n+3, \quad a=1, \ldots, n, \quad \alpha=1, \ldots, 3 n
\end{gathered}
$$

The scalars parametrize the coset

$$
\frac{S O(n, 3)}{S O(n) \times S O(3)}
$$

We will consider the pure $\mathcal{N}=27 \mathrm{D}$ gauged supergravity with no vector multiplets.

THE LAGRANGIAN

The minimal $\mathcal{N}=27 \mathrm{D}$ SUGRA is described by the Lagrangian

$$
\begin{aligned}
& \kappa^{2} e^{-1} \mathcal{L}= \\
& \frac{\sigma^{-4}}{2} R-\frac{\sigma^{4}}{48} F_{M N P Q}^{2}-\frac{\sigma^{2}}{4} F_{M N i}{ }^{j} F^{M N}{ }_{j}^{i}-\frac{1}{2}\left(\partial_{M} \phi\right)^{2}-\frac{1}{2} \bar{\chi}^{i} \Gamma^{M} \mathcal{D}_{M} \chi_{i} \\
& -\frac{1}{2} \bar{\psi}_{M}^{i} \Gamma^{M N K} \mathcal{D}_{N} \psi_{K i}-\frac{i \sigma}{2 \sqrt{2}}\left(\frac{1}{2} \bar{\psi}_{K}^{i} \Gamma^{K M N R} \psi_{R j}+\bar{\psi}^{M i} \psi_{j}^{N}\right) F_{M N i}{ }^{j} \\
& -\frac{\sigma^{-2}}{8 \sqrt{2}}\left(\frac{1}{12} \bar{\psi}_{K}^{i} \Gamma^{K M N P Q R} \psi_{R i}+\bar{\psi}^{M i} \Gamma^{N P} \psi_{i}^{Q}\right) F_{M N P Q} \\
& -\frac{\sigma}{2 \sqrt{10}} \bar{\chi}^{i} \Gamma^{M} \Gamma^{N K} \psi_{M j} F_{N K i}{ }^{j}+\frac{\sigma^{-2}}{24 \sqrt{10}} \bar{\chi}^{i} \Gamma^{L} \Gamma^{M N P Q} \psi_{L i} F_{M N P Q} \\
& +\frac{\sigma^{-2}}{160 \sqrt{2}} \bar{\chi}^{i} \Gamma^{M N P Q} \chi_{i} F_{M N P Q}-\frac{3 i \sigma}{20 \sqrt{2}} \bar{\chi}^{i} \Gamma^{M N} \chi_{j} F_{M N i}{ }^{j} \\
& +\frac{i}{48 \sqrt{2}} F_{M N P Q}\left(F_{K L i}{ }^{j} A_{R j}{ }^{i}-\frac{2 i g}{3} \operatorname{tr}\left(A_{K} A_{L} A_{R}\right)\right) \epsilon^{M N P Q K L R} \\
& +60\left(m-\frac{2}{5} h \sigma^{4}\right)^{2}-10\left(m+\frac{8}{5} h \sigma^{4}\right)^{2}+\left(\frac{5}{2} m-h \sigma^{4}\right) \bar{\psi}_{M}^{i} \Gamma^{M N} \psi_{N i} \\
& +\sqrt{5}\left(m+\frac{8}{5} h \sigma^{4}\right) \bar{\psi}_{M}^{i} \Gamma^{M} \chi_{i}+\left(\frac{3}{2} m+\frac{27}{5} h \sigma^{4}\right) \bar{\chi}^{i} \chi_{i}+\frac{1}{2} \bar{\chi}^{i} \Gamma^{M} \Gamma^{N} \partial_{N} \phi \psi_{M i} \\
& +\frac{h}{36}{ }^{K L M N P Q R} F_{K L M N} A_{P Q R},
\end{aligned}
$$

where

$$
F_{K L M N}=4 \partial_{[K} A_{L M N]}, \quad \kappa^{2} \text { the 7D Newton's constant }
$$

The local supersymmetry transformation rules are

$$
\begin{align*}
\delta e_{M}^{A}= & \frac{1}{2} \bar{\epsilon}^{i} \Gamma^{A} \psi_{M i}, \\
\delta \psi_{M i}= & \mathcal{D}_{M} \epsilon_{i}+\frac{\sigma^{-2}}{80 \sqrt{2}}\left(\Gamma_{M}{ }^{N K P Q}-\frac{8}{3} \delta_{M}^{N} \Gamma^{K P Q}\right) F_{N K P Q} \epsilon_{i} \\
& +\frac{i \sigma}{10 \sqrt{2}}\left(\Gamma_{M}{ }^{N K}-8 \delta_{M}^{N} \Gamma^{K}\right) F_{N K i} \epsilon_{j}+\left(m-\frac{2}{5} h \sigma^{4}\right) \Gamma_{M} \epsilon_{i}, \\
\delta A_{M N K}= & \frac{3 \sigma^{2}}{2 \sqrt{2}} \bar{\psi}_{M M}^{i} \Gamma_{N K]} \epsilon_{i}+\frac{\sigma^{2}}{\sqrt{10}} \bar{\chi}^{i} \Gamma_{M N K} \epsilon_{i}, \\
\delta A_{M i}{ }^{j}= & \frac{i \sigma^{-1}}{\sqrt{2}}\left(\bar{\psi}_{M}^{j} \epsilon_{i}-\frac{1}{2} \delta_{i}^{j} \bar{\psi}_{M}^{k} \epsilon_{k}\right)-\frac{i \sigma^{-1}}{\sqrt{10}}\left(\bar{\chi}^{j} \Gamma_{M} \epsilon_{i}-\frac{1}{2} \delta_{i}^{j} \bar{\chi}^{k} \Gamma_{M} \epsilon_{k}\right), \\
\delta \chi_{i}= & \frac{1}{2} \Gamma^{M} \partial_{M} \phi \epsilon_{i}-\frac{i \sigma}{2 \sqrt{10}} \Gamma^{M N} F_{M N i}{ }^{j} \epsilon_{j}+\frac{\sigma^{-2}}{24 \sqrt{10}} \Gamma^{M N P Q} F_{M N P Q} \epsilon_{i} \\
& -\sqrt{5}\left(m+\frac{8}{5} h \sigma^{4}\right) \epsilon_{i}, \\
\delta \phi= & \frac{1}{2} \bar{\epsilon}^{i} \chi_{i} . \tag{0.2}
\end{align*}
$$

The notation here is

$$
\begin{array}{ll}
\mathcal{D}_{M} \chi_{i}=\partial_{M} \chi_{i}+\frac{1}{4} \omega_{M A B} \Gamma^{A B} \chi_{i}+i g A_{M i}{ }^{j} \chi_{j}, & m=-\frac{g \sigma^{-1}}{5 \sqrt{2}}, \\
{F_{M N i}}^{j}=\partial_{M} A_{N i}{ }^{j}+i g A_{M i}{ }^{k} A_{N k}{ }^{j}-M \leftrightarrow N, & \sigma=\exp \left(-\frac{\phi}{\sqrt{5}}\right),
\end{array}
$$ and

$$
g \text { is the } \mathrm{SU}(2) \text { coupling }
$$

The potential of the scalar ϕ is

$$
V(\phi)=16 h^{2} \sigma^{8}+80 h m \sigma^{4}-50 m^{2},
$$

For $h / g>0$ there are two extrema,

- a non-supersymmetric local minimum
- and a supersymmetric local maximum.

At the supersymmetric vacuum

$$
\begin{gathered}
<\sigma>=\left(\frac{g}{8 \sqrt{2} h}\right)^{1 / 5} \\
V(<\sigma>)=V_{0}=-15\left(\frac{h g^{4}}{16}\right)^{2 / 5}
\end{gathered}
$$

$V_{0}<0$ is the cosmological constant and, thus,

$$
\begin{equation*}
\text { SUSY vacuum of } \mathcal{N}=27 \mathrm{D} \text { SUGRA } \rightarrow \mathbf{A d S}_{7} \tag{0.3}
\end{equation*}
$$

S^{1} AND S^{1} / \mathbb{Z}_{2} COMPACTIFICATION

Although there exists no stable Minkowski vacuum, one can still perform a dimensional reduction of the theory (even in the presence of a cosmological constant). From the graviton multiplet we get:

$$
\begin{align*}
& g_{M N} \rightarrow\left(g_{\mu \nu}, g_{77}=\xi, g_{\mu 7}=A_{\mu}\right) \\
& A_{M N P} \rightarrow\left(A_{\mu \nu \rho}, A_{\mu \nu 7}=A_{\mu \nu}\right) \\
& A_{M i}{ }^{j} \rightarrow\left(A_{\mu i}{ }^{j}, A_{7 i}{ }^{j}=A_{i}{ }^{j}\right) \\
& \psi_{M}^{i} \rightarrow\left(\psi_{\mu}^{i}, \psi_{7}^{i}=\psi^{i}\right) \\
& \chi^{i} \rightarrow \chi^{i} \tag{0.4}
\end{align*}
$$

Dualizing the three-form $A_{\mu \nu \rho}$ into a vector B_{μ} we have the $\mathcal{N}=(1,1)$ 6D massless spectrum

$$
\begin{array}{ll}
\left(g_{\mu \nu}, A_{\mu}, A_{\mu \nu}, A_{\mu i}{ }^{j}, \phi, \psi_{\mu}^{i}, \chi^{i}\right), & \text { gravity multiplet } \\
\left(B_{\mu}, A_{i}{ }^{j}, \xi, \psi^{i}\right), & \text { vector multiplet }
\end{array}
$$

The minimal $\mathcal{N}=2$ 7D SUGRA is invariant under $x_{7} \rightarrow-x_{7}$ provided we have

$$
\begin{array}{lr}
A_{M N P} \rightarrow-A_{M N P}, & A_{M i}{ }^{j} \rightarrow-A_{M i}{ }^{j} \\
h \rightarrow-h, & m \rightarrow-m, \tag{0.5}
\end{array}
$$

As the \mathbb{Z}_{2} transformation $x_{7} \rightarrow-x_{7}$ is a symmetry of the theory, we can mod it out, by considering the compactification on S^{1} / \mathbb{Z}_{2}.

Surviving fields at the orbifold fixed points $\rightarrow \mathbb{Z}_{2}$ singlets (0.6)
\mathbb{Z}_{2}-parity assignments

$$
\begin{array}{ll}
g_{\mu \nu}, A_{\mu \nu}, \phi, \xi, A_{i}{ }^{j}, \psi_{\mu-}^{i}, \chi_{+}^{i}, \psi_{+}^{i} & \text { even parity } \\
A_{\mu}, B_{\mu}, A_{\mu i}{ }^{j}, \psi_{\mu+}^{i}, \chi_{-}^{i}, \psi_{-}^{i} & \text { odd parity }
\end{array}
$$

For supersymmetry parameters we have ϵ_{-}is even whereas ϵ_{+} is odd. The odd-parity fields are projected out while the evenparity fields survive the orbifold projection and are organized in $6 \mathrm{D} \boldsymbol{\mathcal { N }}=(0,1)$ representations. The surviving fields on the orbifold S^{1} / \mathbb{Z}_{2} are arranged into the following 6 D multiplets

$$
\begin{array}{lll}
& \left(g_{\mu \nu}, A_{\mu \nu}^{+}, \psi_{\mu}^{i}\right), & \text { gravity } \\
(*) & \left(A_{\mu \nu}^{-}, \phi, \chi^{i}\right), & \text { tensor } \\
& \left(A_{i}^{j}, \xi, \psi^{i}\right), & \text { hypermultiplet }
\end{array}
$$

where $\psi_{\mu}^{i}=\psi_{\mu-}^{i}$ are left-handed symplectic Majorana-Weyl fermions while $\chi^{i}=\chi_{+}^{i}$ and $\psi^{i}=\psi_{+}^{i}$ are right-handed.

The 6 D spectrum (*) at the orbifold fixed points is anomalous!

The only way to make sense of such a theory is to introduce extra vector, hyper, and tensor multiplets at the fixed points to cancel the anomalies as in the HW case.

Massless representations of the $(0,1)$ supersymmetry in 6 D , labeled by their $S U(2) \times S U(2)$ representations:
(i) gravity: $(1,1)+2\left(\frac{1}{2}, 1\right)+(0,1)=\left(g_{\mu \nu}, B_{\mu \nu}^{+}, \psi_{\mu}\right)$,
(ii) tensor: $(1,0)+2\left(\frac{1}{2}, 0\right)+(0,0)=\left(B_{\mu \nu}^{-}, \phi, \chi\right)$,
(iii) vector: $\left(\frac{1}{2}, \frac{1}{2}\right)+2\left(0, \frac{1}{2}\right)=(A \mu, \lambda)$,
(iv) hyper: $2\left(\frac{1}{2}, 0\right)+4(0,0)=\left(\phi^{\alpha}, \psi^{a}\right)$.

THE VACUUM OF THE THEORY

The supersymmetric vacuum is the one in which the Killing equations

$$
\begin{equation*}
\delta \psi_{M i}=\delta \chi_{i}=0, \tag{0.7}
\end{equation*}
$$

are satisfied. Assuming that all bulk fields are zero except for the scalar ϕ we find from Eq.(0.7) that

$$
\begin{equation*}
\langle\sigma\rangle=\left(\frac{g}{8 \sqrt{2} h}\right)^{\frac{1}{5}} . \tag{0.8}
\end{equation*}
$$

The supersymmetric vacuum invariant under $y \rightarrow-y$ is then specified to be

$$
\begin{equation*}
d s^{2}=e^{-2 k|y|} d x_{6}^{2}+d y^{2}, \tag{0.9}
\end{equation*}
$$

where $0 \leq y \leq \pi R$ and k is the AdS curvature scale which is given by

$$
\begin{equation*}
k=\left(\frac{h g^{4}}{16}\right)^{\frac{1}{5}} \tag{0.10}
\end{equation*}
$$

Namely it is a seven-dimensional Randall-Sundrum solution.
The cosmological constants are given by

$$
\begin{equation*}
\Lambda_{7}=-15 M^{5} k^{2} ; \quad \Lambda_{(0)}=-\Lambda_{(\pi R)}=10 M^{5} k \tag{0.11}
\end{equation*}
$$

where $M=\kappa^{-2 / 5}$ is the 7D Planck mass.

BULK-BOUNDARY LAGRANGIAN

The general boundary theory contains vector, hyper and tensor multiplets. The boundary action may collectively be written as

$$
S_{b o u n d a r y}=S_{Y M}+S_{H}+S_{T},
$$

$S_{Y M}, S_{H}, S_{T}$ are the actions for the vector, hyper, and tensor multiplets, respectively.

Supersymmetric action:

$$
S=S_{\text {bulk }}+S_{\text {boundary }}
$$

How we can couples the 6D boundary theory of vectors, hypers and tensor multiplets to the 7D bulk? Or, how can we determine $S_{Y M}, S_{H}, S_{T}$?

Strategy:

- Start with the globally supersymmetric theory.
- Perform local supersymmetric variations to both the bulk and the boundary.
- Add the interaction $\psi_{M} \mathcal{S}_{M}$ to cancel part of the variation.
- Modify the Bianchi identity of F_{4} to cancel the remaining variation.
- Add possible extra terms needed for making the total theory supersymmetric

Boundary vector multiplets

$$
\begin{aligned}
S_{Y M}= & -\frac{1}{\lambda^{2}} \int d^{6} x \sqrt{-g}\left[\frac{1}{4} \sigma^{-2} F_{\mu \nu}^{a} F^{a \mu \nu}+\frac{1}{2} \bar{\lambda}^{a} \Gamma^{\mu} D_{\mu} \lambda^{a}\right. \\
& +\frac{1}{4} \sigma^{-1} \bar{\psi}_{\mu} \Gamma^{\nu \rho} \Gamma^{\mu} \lambda^{a} F_{\nu \rho}^{a}+\frac{1}{2 \sqrt{5}} \sigma^{-1} \bar{\lambda}^{a} F_{\mu \nu}^{a} \Gamma^{\mu \nu} \chi \\
& \left.-\frac{1}{24 \sqrt{2}} \sigma^{-2} \bar{\lambda}^{a} \Gamma^{\mu \nu \rho} \lambda^{a} F_{\mu \nu \rho 7}+\frac{i}{2 \sqrt{2}} \sigma \bar{\lambda}^{a i} \Gamma^{\mu} F_{\mu 7 i}{ }^{j} \lambda_{j}^{a}\right],
\end{aligned}
$$

Invariance under the supersymmetry transformations (up to fermionic bilinear terms):

$$
\begin{aligned}
\delta A_{\mu}^{a} & =\frac{1}{2} \sigma \bar{\epsilon} \Gamma_{\mu} \lambda^{a}, \\
\delta \lambda^{a} & =-\frac{1}{4} \sigma^{-1} \Gamma^{\mu \nu} F_{\mu \nu}^{a} \epsilon .
\end{aligned}
$$

Modification of the Bianchi identity:

$$
\begin{equation*}
d F_{7 \mu \nu \rho \sigma}=\frac{\kappa^{2}}{\sqrt{2} \lambda^{2}} F_{[\mu \nu}^{a} F_{\rho \sigma]}^{a} \delta\left(x^{7}\right) \tag{0.12}
\end{equation*}
$$

Under gauge transformations

$$
\begin{equation*}
\delta A_{7 \mu \nu}=\frac{\kappa^{2}}{\sqrt{2} \lambda^{2}} \operatorname{tr}(\epsilon F) \tag{0.13}
\end{equation*}
$$

Boundary hypermultiplets

The supersymmetric boundary action for hypermultiplets is:

$$
\begin{aligned}
S_{H}= & \int d^{6} x \sqrt{-g}\left[-\frac{1}{2} g_{\alpha \beta}(\varphi) \partial_{\mu} \varphi^{\alpha} \partial^{\mu} \varphi^{\beta}-\frac{1}{2} \bar{\zeta}^{Y} \Gamma^{\mu} D_{\mu} \zeta_{Y}\right. \\
& +\frac{1}{2} \sigma^{1 / 2} \bar{\psi}_{\mu}^{i} \Gamma^{\nu} \Gamma^{\mu} \partial_{\nu} \varphi^{\alpha} V_{\alpha i}{ }^{Y} \zeta_{Y}+\frac{1}{2 \sqrt{5}} \sigma^{1 / 2} V_{\alpha i Y} \bar{\zeta}^{Y} \Gamma^{\mu} \partial_{\mu} \varphi^{\alpha} \chi^{i} \\
& \left.+\frac{1}{24 \sqrt{2}} \sqrt{-g} \sigma^{1 / 2} \bar{\zeta}^{Y} \Gamma^{\mu \nu \rho} \zeta_{Y} F_{7 \mu \nu \rho}\right],
\end{aligned}
$$

It is invariant under the superymmetry transformations

$$
\begin{aligned}
\delta \varphi^{\alpha} & =\frac{1}{2} \sigma^{-1 / 2} V^{\alpha}{ }_{i Y} \bar{\epsilon}^{i} \zeta^{Y} \\
\delta \zeta^{Y} & =\frac{1}{2} \sigma^{1 / 2} V_{\alpha i}{ }^{Y} \Gamma^{\mu} \partial_{\mu} \varphi^{\alpha} \epsilon^{i} .
\end{aligned}
$$

Here, $\varphi^{\alpha}\left(\alpha, \ldots=1, \ldots, 4 n_{H}\right), \zeta^{Y}\left(Y, \ldots=1, \ldots, 2 n_{H}\right)$ are, respectively, the scalar and fermion components of the n_{H} hypermultiplets on the boundary, and $g_{\alpha \beta}$ is the metric of the scalar manifold.The covariant derivative is defined as

$$
D_{\mu} \zeta^{Y}=\partial_{\mu} \zeta^{Y}+\Gamma_{\alpha X}^{Y} \partial_{\mu} \varphi^{\alpha} \zeta^{X}
$$

where $\Gamma_{\alpha X}^{Y}$ is the $S p\left(n_{H}\right)$ connection.
We should make sure that the scalar manifold is quaternionic as required by $\mathcal{N}=(0,1) 6 \mathrm{D}$ local supersymmetry. This condition is obtained in a novel way by the boundary value of the field strength of the bulk $S U(2)$ gauged R-symmetry group:

$$
F_{\mu \nu i}{ }^{j}=\frac{i}{4 \sqrt{2}} \kappa^{2} \partial_{\mu} \varphi^{\alpha} \partial_{\nu} \varphi^{\beta} J_{\alpha \beta i}{ }^{j} .
$$

$J_{i}{ }^{j}$ is the triplet of complex structures. Using this boundary value one may prove

$$
\Omega_{i}{ }^{j}=-\frac{g \kappa^{2}}{4 \sqrt{2}} J_{i}^{j},
$$

where $\Omega_{i}{ }^{j}$ is the $S p(1)$ curvature two-form.

ANOMALY CANCELLATION

There are three sources that can contribute to 6D gravitational anomalies, namely fermions, gravitinos and antisymmetric tensor fields which may spoil 6D diffeomorphisms. In particular, the anomaly eight forms for a right-handed fermion, a right-handed gravitino and a self-dual two-form are

$$
\begin{aligned}
& I_{1 / 2}=\frac{1}{(2 \pi)^{4}} \frac{1}{5760}\left[\operatorname{Tr} R^{4}+\frac{5}{4}\left(\operatorname{Tr} R^{2}\right)^{2}\right]=\frac{1}{5760}\left(7 p_{1}^{2}-4 p_{2}\right) \\
& I_{3 / 2}=\frac{1}{(2 \pi)^{4}} \frac{1}{5760}\left[245 \operatorname{Tr} R^{4}-\frac{215}{4}\left(\operatorname{Tr} R^{2}\right)^{2}\right]=\frac{1}{5760}\left(275 p_{1}^{2}-980 p_{2}\right) \\
& I_{A}=\frac{1}{(2 \pi)^{4}} \frac{1}{5760}\left[28 \operatorname{Tr} R^{4}-10\left(\operatorname{Tr} R^{2}\right)^{2}\right]=\frac{1}{5760}\left(16 p_{1}^{2}-112 p_{2}\right)
\end{aligned}
$$

The Pontryagin classes are defined as

$$
(2 \pi)^{2} p_{1}=-\frac{1}{2} \operatorname{Tr} R^{2}, \quad(2 \pi)^{4} p_{2}=-\frac{1}{4} \operatorname{Tr} R^{4}+\frac{1}{8}\left(\operatorname{Tr} R^{2}\right)^{2}
$$

Vectors and hypers may have gravitational, gauge and mixed anomalies. The anomaly eight form is given in this case by the eight form in the expansion $\operatorname{ch}(F) \hat{A}(M)$ where the Chern classes and the A roof genus are given by
$\operatorname{ch}(F)=\operatorname{Tr}_{\rho}\left(e^{i F / 2 \pi}\right), \quad \hat{A}(M)=1-\frac{1}{24} p_{1}+\frac{1}{5760}\left(7 p_{1}^{2}-4 p_{2}\right)+\ldots$
Recalling that fermions in vectors and hypermultiplets have opposite chiralities, the anomaly for N_{V} vector and N_{H} hypermultiplets in $6 D$, is

$$
I_{Y M+H}=\left(N_{V}-N_{H}\right) I_{1 / 2}+\frac{1}{48} p_{1} X^{(2)}+\frac{1}{24} X^{(4)}
$$

where $X^{(n)}$ are defined as

$$
(2 \pi)^{n} X^{(n)}=\operatorname{Tr} F^{n}-\sum_{\mathcal{R}} n_{\mathcal{R}} \operatorname{tr}_{\mathcal{R}} F^{n}
$$

As usual, Tr denotes the trace in the adjoint representation, $\operatorname{tr}_{\mathcal{R}}$ the trace in the representation \mathcal{R} of the group \mathcal{G}, and $n_{\mathcal{R}}$ is the number of hypermultiplets in the representation \mathcal{R}. Expressing $X^{(2)}, X^{(4)}$ as

$$
(2 \pi)^{2} X^{(2)}=\beta \operatorname{tr} F^{2}, \quad(2 \pi)^{4} X^{(4)}=\alpha \operatorname{tr} F^{4}+\gamma\left(\operatorname{tr} F^{2}\right)^{2}
$$

where α, β, γ are constants, we may write

$$
\begin{aligned}
I_{Y M+H}= & \left(N_{V}-N_{H}\right) I_{1 / 2}+\frac{1}{(2 \pi)^{2}} \frac{\beta}{48} p_{1} \operatorname{tr} F^{2} \\
& +\frac{1}{(2 \pi)^{4}} \frac{\gamma}{24}\left(\operatorname{tr} F^{2}\right)^{2}+\frac{1}{(2 \pi)^{4}} \frac{\alpha}{24} \operatorname{tr} F^{4}
\end{aligned}
$$

In our case, there are three possible contributions to the 6D anomaly:

- Bulk anomalies due to S^{1} / \mathbb{Z}_{2} compactification
- Anomalies in the boundary theory (due to vector, hyper and tensor multiplets)
- Anomalous variations of bulk Chern-Simons terms.

(a) Anomalies from the bulk fields

The bulk contribution is due to the localized graviton, hyper and tensor multiplet in the S^{1} / \mathbb{Z}_{2} compactification. It is evenly distributed between the two fixed points and it is written as

$$
\begin{aligned}
I_{\text {bulk }}= & \frac{1}{2}\left(I_{3 / 2}-2 I_{1 / 2}\right) \delta(y)+\frac{1}{2}\left(I_{3 / 2}-2 I_{1 / 2}\right) \delta(y-\pi R) \\
= & \frac{1}{2 \cdot 5760}\left(261 p_{1}^{2}-972 p_{2}\right) \delta(y) \\
& +\frac{1}{2 \cdot 5760}\left(261 p_{1}^{2}-972 p_{2}\right) \delta(y-\pi R)
\end{aligned}
$$

(b) Boundary-theory anomalies

The boundary theory contains vectors and hypers which contribute to gravitational, gauge and mixed anomalies whereas tensor multiplets contribute to gravitational anomalies. In particular, with $N_{V}\left(\tilde{N}_{V}\right)$, vectors, $N_{H}\left(\tilde{N}_{H}\right)$ hypers and $N_{T}\left(\tilde{N}_{T}\right)$ tensors at $y=0(\pi R)$, the boundary anomaly eight-form is

$$
\begin{aligned}
I_{b d}= & \left(I_{Y M+H}-N_{T} I_{A}-N_{T} I_{1 / 2}\right) \delta(y) \\
& +\left(\tilde{I}_{Y M+H}-\tilde{N}_{T} I_{A}-\tilde{N}_{T} I_{1 / 2}\right) \delta(y-\pi R)
\end{aligned}
$$

Tilded quantities will be used to denote that they are referred to
the theory at $y=\pi R$. Then the boundary anomaly is

$$
\begin{aligned}
I_{b d}= & \left\{\frac{1}{5760}\left[4\left(N_{H}+29 N_{T}-N_{V}\right) p_{2}+\left(7 N_{V}-7 N_{H}-23 N_{T}\right) p_{1}^{2}\right]\right. \\
& \left.+\frac{1}{(2 \pi)^{2}} \frac{\beta}{48} p_{1} \operatorname{tr} F^{2}+\frac{1}{(2 \pi)^{4}} \frac{\gamma}{24}\left(\operatorname{tr} F^{2}\right)^{2}+\frac{1}{(2 \pi)^{4}} \frac{\alpha}{24} \operatorname{tr} F^{4}\right\} \delta(y) \\
+ & \left\{\frac{1}{5760}\left[4\left(\tilde{N}_{H}+29 \tilde{N}_{T}-\tilde{N}_{V}\right) p_{2}+\left(7 \tilde{N}_{V}-7 \tilde{N}_{H}-23 \tilde{N}_{T}\right) p_{1}^{2}\right]\right. \\
& \left.+\frac{1}{(2 \pi)^{2}} \frac{\tilde{\beta}}{48} p_{1} \operatorname{tr} \tilde{F}^{2}+\frac{1}{(2 \pi)^{4}} \frac{\tilde{\gamma}}{24}\left(\operatorname{tr} \tilde{F}^{2}\right)^{2}+\frac{1}{(2 \pi)^{4}} \frac{\tilde{\alpha}}{24} \operatorname{tr} \tilde{F}^{4}\right\} \delta(y-\pi R)
\end{aligned}
$$

(c) Anomalies from bulk terms with anomalous variations

As in the HW case, there exists an anomalous variation of the bulk three-form $A_{M N P}$ which will contribute to the anomaly. Up to two derivative level, the only such contribution comes from the Chern-Simons term in the bulk Lagrangian (??), which in the "downstairs" approach is

$$
S_{C S}=\frac{2}{\kappa^{2}} \int_{M} h F_{4} \wedge A_{3},
$$

with A_{3} the three-form gauge field of 7D supergravity and $F_{4}=$ $d A_{3}$. We also expect, as in the 11D supergravity higher derivative terms which are expected to contribute to the anomaly. There are two possible such terms, namely

$$
S_{R}=\xi_{R} \int A_{3} \wedge p_{1}
$$

and the gravitational Chern-Simons term (in "downstairs" approach)

$$
S_{G C S}=\xi_{G} \int X_{7}
$$

where $\xi_{R}, \xi_{G}=n \pi$ are constants and X_{7} is a 7D Chern-Simons form satisfying

$$
X_{8}=d X_{7}=\frac{1}{48}\left(p_{2}-\frac{p_{1}^{2}}{4}\right)
$$

The above S_{R} and $S_{G C S}$ terms should exist in the gauged 7D $\mathcal{N}=2$ supergravity (resulting from the $K 3$ compactification of the 11D five-brane anomaly term $F_{4} \wedge X_{7}$), and they are expected to survive after gauging. Under diffeomorphism, X_{7} transforms as $X_{7} \rightarrow X_{7}+d X_{6}^{(0)}$. Thus, on a manifold with boundary, the anomalous variation of $S_{G C S}$ is

$$
\delta S_{G C S}=\xi_{G} \int X_{6}^{(0)}
$$

and the corresponding anomaly eight form is then

$$
I_{G C S}=\frac{\xi_{G}}{2 \pi} X_{8}
$$

The anomalous variations of $S_{C S}$ and S_{R} can be found by employing the boundary value and variation of A_{3}. The latter can be determined by recalling that on each component of the boundary, we will have

$$
\left.F_{4}\right|_{\partial M}=\frac{\kappa^{2}}{\sqrt{2} \lambda^{2}} Q_{4},
$$

where the four-form Q_{4} is defined as

$$
Q_{4}=\xi_{C S} \operatorname{tr} R^{2}-\operatorname{tr} F^{2}
$$

and $\xi_{C S}$ is a numerical constant. We may now define $Q_{3}=$ $\xi_{C S} \omega_{3 L}-\omega_{3 Y}$ where as usual $\omega_{3 Y, L}$ are the Yang-Mills and Lorentz Chern-Simons terms

$$
\begin{aligned}
& \omega_{3 Y}=\operatorname{tr}\left(A F-\frac{1}{3} A^{3}\right) \\
& \omega_{3 L}=\operatorname{tr}\left(\omega R-\frac{1}{3} \omega^{3}\right)
\end{aligned}
$$

Then, we have the descent equations

$$
Q_{4}=d Q_{3}, \quad \delta Q_{3}=d Q_{2}^{1}
$$

for δ gauge and Lorentz transformations which follows from

$$
\begin{array}{ll}
d \omega_{3 L}=\operatorname{tr} R^{2}, & \delta \omega_{3 L}=d \omega_{2 L}^{1}, \\
d \omega_{3 Y}=\operatorname{tr} F^{2}, & \delta \omega_{3 Y}=d \omega_{2 Y}^{1}
\end{array}
$$

In the following we will not need the explicit forms of $\omega_{3}, \omega_{2}^{1}$. Then, we have

$$
\left.A_{3}\right|_{\partial M}=\frac{\kappa^{2}}{\sqrt{2} \lambda^{2}} Q_{3}
$$

so that

$$
\left.\delta A_{3}\right|_{\partial M}=\frac{\kappa^{2}}{\sqrt{2} \lambda^{2}} d Q_{2}^{1}
$$

This variation is extendable to the bulk by writing

$$
\left.\delta A_{3}\right|_{\partial M}=d \Lambda,\left.\quad \Lambda\right|_{\partial M}=\frac{\kappa^{2}}{\sqrt{2} \lambda^{2}} Q_{2}^{1}
$$

Then, the anomalous variation of the bulk action is

$$
\delta S_{C S}=-\frac{\kappa^{2} h}{\lambda^{4}} \int_{M^{6}} Q_{2}^{1} \wedge Q_{4}
$$

where M^{6} is the boundary at $y=0$, and it should be compensated by the anomaly of the boundary theory. Thus, the bulk anomaly eight form from the Chern-Simons term $S_{C S}$ is

$$
I_{C S}=-\frac{\kappa^{2} h}{2 \pi \lambda^{4}} Q_{4} \wedge Q_{4}
$$

However, these are not the only sources which contribute to the anomaly. In particular, we expect a term (see Appendix B)

$$
S_{R}=-\xi_{R} \int_{M^{7}} A_{3} \wedge \operatorname{tr} R^{2}
$$

in the 7 D action where ξ_{R} is a dimensionful constant. Such a term exists in the gauged 7D $\mathcal{N}=2$ supergravity theory resulting from the $K 3$ compactification of the 11D five-brane anomaly term, and is expected to survive after gauging. The anomalous variation of S_{R} is

$$
\delta S_{R}=-\frac{\kappa^{2} \xi_{R}}{\sqrt{2} \lambda^{2}} \int_{M^{6}} Q_{2}^{1} \wedge \operatorname{tr} R^{2}
$$

so that the corresponding anomaly eight-form becomes

$$
I_{R}=-\frac{\kappa^{2} \xi_{R}}{2 \pi \sqrt{2} \lambda^{2}} Q_{4} \wedge \operatorname{tr} R^{2} .
$$

In addition, the anomaly eight-form for the boundary theory is

$$
I_{b d y}=\frac{1}{(2 \pi)^{4}}\left[\frac{1}{4608}\left(N_{V}-N_{H}+7 N_{T}\right)\left(\operatorname{tr} R^{2}\right)^{2}-\frac{\beta}{96} \operatorname{tr} R^{2} \operatorname{tr} F^{2}+\frac{\gamma}{24}\left(\operatorname{tr} F^{2}\right)^{2}\right]
$$

The reducible part of the anomaly eight-form from the bulk fields (??), is evenly distributed between the two fixed points and contributes a term

$$
I_{\text {bulk }}=\frac{1}{(2 \pi)^{4}} \frac{-1}{2 \cdot 5760} \frac{225}{4}\left(\operatorname{tr} R^{2}\right)^{2},
$$

at each fixed point. Finally, there exists a contribution to the anomaly arising from the gravitational Chern-Simons term (0.18). The irreducible $\operatorname{tr} R^{4}$ part in Eq.(0.21) has been cancelled against the bulk and boundary irreducible parts of the anomaly. The remaining contribution of the gravitational Chern-Simons term to the anomaly is then

$$
I_{G C S}=\frac{1}{(2 \pi)^{4}} \frac{n}{8 \cdot 192}\left(\operatorname{tr} R^{2}\right)^{2}
$$

The total anomaly eight-form coming from the bulk, the boundary theory and the Chern-Simons terms is

$$
I_{\text {total }}=I_{b u l k}+I_{b d y}+I_{C S}+I_{R}+I_{G C S}
$$

It is a polynomial in $\operatorname{tr} R^{4},\left(\operatorname{tr} R^{2}\right)^{2}, \operatorname{tr} R^{2} \operatorname{tr} F^{2}$ and $\left(\operatorname{tr} F^{2}\right)^{2}$ and the vanishing of the total anomaly is equivalent to the vanishing of the coefficients of these terms. We get:

$$
\begin{aligned}
\operatorname{tr} R^{4}: \quad & N_{H}+29 N_{T}-N_{V}=\frac{243}{2}-15 n, \quad y=0 \\
& \tilde{N}_{H}+29 \tilde{N}_{T}-\tilde{N}_{V}=\frac{243}{2}+15 n, \quad y=\pi R \\
\left(\operatorname{tr} R^{2}\right)^{2}: & 320 \gamma \xi_{C S}^{2}-80 \beta \xi_{C S}+2\left(N_{V}-N_{H}+N_{T}\right)+3=0, \\
\operatorname{tr} R^{2} \operatorname{tr} F^{2}: & 384 \sqrt{2} \pi^{3} \xi_{R} \frac{\kappa^{2}}{\lambda^{2}}=\beta-8 \gamma \xi_{C S},
\end{aligned}
$$

respectively, whereas the vanishing of the $\left(\operatorname{tr} F^{2}\right)^{2}$ specifies the dimensionless ratio, η, as

$$
\eta \equiv \frac{h \kappa^{2}}{\lambda^{4}}=\frac{\gamma}{3(4 \pi)^{3}}
$$

The last relation fixes the gauge coupling, λ, in terms of the gravitational coupling, κ, and the topological mass parameter, h, of the Chern-Simons term. This is similar to the relation obtained in the HW theory except for the presence of the extra parameter, h. The difference is due to the fact that in the 11D HW theory the Chern-Simons term is fixed by supersymmetry, whereas in seven dimensions the theory is supersymmetric up to an arbitrary topological mass parameter, h.

The DR of the $F_{4} \wedge X_{7}$ term of 11D SUGRA

The dimensional reduction of the interaction term $F_{4} \wedge X_{7}$ of 11D supergravity gives rise to a gravitational Chern-Simons term, $S_{G C S}$ and the term S_{R} in (??). In 11D supergravity the correct normalization of the $F_{4} \wedge X_{7}$ term is

$$
\begin{equation*}
S_{G C S}=\frac{1}{2}\left(\frac{4 \pi^{2}}{3 \kappa_{11}^{2}}\right)^{1 / 3} \int F_{4} \wedge X_{7}, \tag{0.14}
\end{equation*}
$$

where κ_{11} is the 11D Newton's constant. Upon compactification on $K 3$, the above interaction gives rise to two terms in the 7D effective supergravity action

$$
\begin{equation*}
S_{G C S}=\frac{1}{2}\left(\frac{4 \pi^{2}}{3 \kappa_{11}^{2}}\right)^{1 / 3}\left(\int_{K 3} F_{4}\right) \int X_{7} \equiv \xi_{G} \int X_{7}, \tag{0.15}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{R}=\frac{1}{2}\left(\frac{4 \pi^{2}}{3 \kappa_{11}^{2}}\right)^{1 / 3} \int F_{4} \wedge \int_{K 3} X_{7} . \tag{0.16}
\end{equation*}
$$

According to [?],[?], the F_{4}-fluxes are quantized according to

$$
\begin{equation*}
\int_{\mathcal{C}_{4}} F_{4}=(6 \pi)^{1 / 3} \kappa_{11}^{2 / 3} n \tag{0.17}
\end{equation*}
$$

where n is an integer or half-integer. If \mathcal{C}_{4} is the $K 3$ surface, we obtain for $S_{G C S}$ the result

$$
\begin{equation*}
S_{G C S}=n \pi \int X_{7} \tag{0.18}
\end{equation*}
$$

so that $\xi_{G}=n \pi$ and X_{7} is a 7D Chern-Simons term satisfying

$$
\begin{equation*}
X_{8}=d X_{7}=\frac{1}{(2 \pi)^{4}} \frac{1}{192}\left[\frac{1}{4}\left(\operatorname{tr} R^{2}\right)^{2}-\operatorname{tr} R^{4}\right] \tag{0.19}
\end{equation*}
$$

Under diffeomorphisms, X_{7} transforms as $X_{7} \rightarrow X_{7}+d X_{6}^{(0)}$. Thus, on a manifold with a boundary, the anomalous variation of $S_{G C S}$ is

$$
\begin{equation*}
\delta S_{G C S}=\xi_{G} \int X_{6}^{(0)} \tag{0.20}
\end{equation*}
$$

and the corresponding anomaly eight form is then

$$
\begin{equation*}
I_{G C S}=\frac{\xi_{G}}{2 \pi} X_{8}[\delta(y)-\delta(y-\pi R)] \tag{0.21}
\end{equation*}
$$

and similarly at $y=\pi R$.
Performing the integral in (0.16), it is not difficult to see that

$$
\begin{equation*}
X_{3}=\int_{K 3} X_{7}=\frac{1}{4 \cdot(2 \pi)^{2}} \omega_{3 L}, \tag{0.22}
\end{equation*}
$$

so that the term S_{R} can be written as

$$
\begin{equation*}
S_{R}=-\frac{1}{8 \cdot(2 \pi)^{2}}\left(\frac{4 \pi^{2}}{3 \kappa_{11}^{2}}\right)^{1 / 3} \int A_{3} \wedge \operatorname{tr} R^{2} \tag{0.23}
\end{equation*}
$$

Thus the coefficient ξ_{R} is determined to be

$$
\begin{equation*}
\xi_{R}=\left(\frac{\pi^{2}}{48 \kappa_{11}^{2}}\right)^{1 / 3}=\left(\frac{\pi^{2}}{48 \kappa^{2}}\right)^{1 / 3} V_{K 3}^{-1 / 3} \tag{0.24}
\end{equation*}
$$

where $V_{K 3}$ is the volume of $K 3$ and the relation $\kappa_{11}^{2}=V_{K 3} \kappa^{2}$ between the 11D and 7D Newton constants κ_{11} and κ, respectively, has been used.

Solutions

We tabulate here all the solutions which satisfy the anomaly constraint conditions for $n_{T}=1$.

$\mathcal{G}_{1} \times \mathcal{G}_{2}$	$\left(n_{1}, n_{2}, n_{S}\right)$
$E_{8} \times E_{7}$	$(0,10,64),(1,5,96)$
$E_{8} \times E_{6}$	$(0,18,83),(1,8,105)$
$E_{8} \times F_{4}$	$(0,17,101),(1,7,113)$
$E_{8} \times G_{2}$	$(0,11,428),(0,46,183),(1,16,145),(2,1,2)$
$E_{7} \times E_{7}$	$\left(n_{1}, 8-n_{1}, 61\right)$
$E_{7} \times E_{6}$	$\left(n_{1}, 14-2 n_{1}, 76-2 n_{1}\right),(2,7,153)$
$E_{7} \times F_{4}$	$\left(n_{1}, 13-2 n_{1}, 90-4 n_{1}\right),(2,6,160)$
$E_{7} \times G_{2}$	$\left(n_{1}, 34-6 n_{1}, 152-14 n_{1}\right),(1,12,250),(2,13,187),(6,7,5)$
$E_{6} \times E_{6}$	$\left(n_{1}, 12-n_{1}, 75\right),(2,7,156)$
$E_{6} \times F_{4}$	$\left(n_{1}, 11-n_{1}, 87-n_{1}\right),(2,6,163),(5,9,4),(7,1,158)$
$E_{6} \times G_{2}$	$\left(n_{1}, 28-3 n_{1}, 139-6 n_{1}\right),(0,12,251),(2,13,190)$,
	$(3,14,156),(5,22,46),(9,6,50),(10,7,16)$
$F_{4} \times F_{4}$	$\left(n_{1}, 10-n_{1}, 87\right),(1,6,165),(4,9,9)$
$F_{4} \times G_{2}$	$\left(n_{1}, 25-3 n_{1}, 134-5 n_{1}\right),(1,13,192),(2,14,159)$,
	$(4,22,51),(8,6,59),(9,7,26)$
$G_{2} \times G_{2}$	$\left(n_{1}, 20-n_{1}, 131\right),(1,14,166),(6,19,96)$,
	$(7,22,68),(8,28,19)$

CONCLUSIONS

- A Horava-Witten type S^{1} / \mathbb{Z}_{2} compactification of gauged $\mathcal{N}=$ 2 7D SUGRA leads to an anomalous 6D theory.
- The vacuum of this theory is a 7D Randal-Sundrum bacground.
- Matter should exists at the orbifold fixed points.
- Anomalies can be cancelled by inflow mechanism leading to sensible 6D theory.
- Further compactification to 4D.
- String or M-theory embedding.
- Various limits of the background. Taking the UV brane to infinity decouples gravity. Tensionless strings.
- AdS/CFT correspondence. Dual CFT theory.

