

LINKING TESTS OF GRAVITY ON ALL SCALES

TESSA BAKER

IN COLLABORATION WITH C. SKORDIS & D. PSALTIS.

OUTLINE

Theme of this talk: a **synoptic** approach to testing gravity.

• Model-independent methods for cosmology — status quo.

• A parameter space for tests of gravity: How do laboratory, astrophysical and cosmological tests link up?

- An attempt to step beyond this tangle of models.
- Build a general template for MG, with free `slots'.
- Phenomenological example:

- An attempt to step beyond this tangle of models.
- Build a general template for MG, with free `slots'.
- Phenomenological example:

(eg. Leonard et al. 1501.03509, many others).

- An attempt to step beyond this tangle of models.
- Build a general template for MG, with free `slots'.
- Formal example: the EFT of Dark Energy (Gleyzes et al. 1411.3712).

Background expansion.

$$S = \int d\eta d^3x \, N\sqrt{h} \left[\frac{M_P^2}{2} f(\eta) R - \Lambda(\eta) - c(\eta) N \right]$$

+ $\frac{m_1^4 (\delta N)^2 + m_2^3 \delta N \, \delta K + m_3^2 (\delta K)^2 + m_4^2 \, \delta K_\nu^\mu \delta K_\mu^\nu + m_5^2 {}^{(3)}R \, \delta N + m_6 {}^{(3)}R \, \delta K + m_7 \, ({}^{(3)}R)^2 + m_8 {}^{(3)}R_\nu^\mu {}^{(3)}R_\mu^\nu \right]$

Perturbations.

Constrain combinations of these coefficients (functions of time).

We apply the familiar cosmological datasets:

Galaxy weak lensing

CMB lensing

- An attempt to step beyond this tangle of models.
- Build a general template for MG, with free `slots'.
- Two options: formal or phenomenological.

`Formal'

 \Rightarrow The data are not powerfully constraining yet .

THE OBSERVATIONAL TOOLBOX

But this isn't the full story...

Galaxy weak lensing

CMB lensing

THE OBSERVATIONAL TOOLBOX

But this isn't the full story...

Cosmological

Astrophysical

Laboratory

What controls whether two tests probe the same `regime' of gravity?

The size of the system?

The gravitational potential?

Spacetime curvature?

The energy scale?

The environmental density?

A PARAMETER SPACE FOR GRAVITY

First, we need a simple way to quantify the gravitational field strengths.

How to describe a gravitational field?

A PARAMETER SPACE FOR GRAVITY

First, we need a simple way to quantify the gravitational field strengths.

How to describe a gravitational field?

K=Kretschmann scalar.

Unlike Φ , it is dimensionful. We will use units of cm⁻².

$$\Phi = \frac{GM}{rc^2}$$

$$K = \sqrt{48} \, \frac{GM}{r^3 c^2}$$

$$\Phi = \frac{GM}{rc^2}$$

$$K = \sqrt{48} \, \frac{GM}{r^3 c^2}$$

$$\Phi = \frac{GM}{rc^2}$$

$$K = \sqrt{48} \, \frac{GM}{r^3 c^2}$$

For the FRW metric:

$$K = \frac{\sqrt{12}}{a^2} \left(\dot{\mathcal{H}}^2 + \mathcal{H}^4\right)^{\frac{1}{2}}$$

(in conformal time)

Potential:

$$2\nabla^2 \Phi = 3\mathcal{H}^2 \Omega_M \Delta_M \qquad \qquad \Delta_M = \delta_M + 3\frac{\mathcal{H}}{k} v_M$$

Kretschmann:

zeroth- $\delta K(k,a) = K_{\text{linear}}(k,a) - \overline{K_0(a)} \checkmark$ order piece plug in perturbed FRW metric + LCDM growth approximations $\delta K(k,a) = \Phi(k,a) \left[A(a) + k^2 B(a) \right]$ uninteresting functions of time

Potential:

$$\Phi = \frac{GM}{rc^2}$$

$$K = \sqrt{48} \, \frac{GM}{r^3 c^2}$$

For the FRW metric:

$$K = \frac{\sqrt{12}}{a^2} \left(\dot{\mathcal{H}}^2 + \mathcal{H}^4\right)^{\frac{1}{2}}$$

(in conformal time)

<u>Features:</u>

- Coincident tests.

- Phenomenological acceleration scale:

a* ~ c H

Eg. Schwarzschild case: $y = \frac{M}{r^3}, \quad x = \frac{M}{r}$ acceleration, $a \sim \frac{M}{r^2}$ $\Rightarrow y \simeq \frac{a^2}{x}$

⇒ Straight line with negative gradient.

<u>Features:</u>

- Coincident tests.

- Phenomenological acceleration scale:

a* ~ c H

Eg. Schwarzschild case: $y = \frac{M}{r^3}, \quad x = \frac{M}{r}$ acceleration, $a \sim \frac{M}{r^2}$ $\Rightarrow y \simeq \frac{a^2}{x}$

⇒ Straight line with negative gradient.

Curvature (cm^{-2)}

Curvature (cm⁻²⁾

Features:

Choose powers P, Q in:

 $M^{P} R^{Q}$

to build a physical scale (eg. density, acceleration, mass, curvature...).

⇒ lines with different gradients on the diagram.

DISCLAIMER

• Other choices of axes are possible.

• For example:

Observational
cosmologyRedshiftStrong-field
regimeVelocityScreening
mechanismsDensity

• Maybe one for the discussion session — what would you plot?

CONCLUSIONS

- Two principles of this `synoptic' thinking:
 - Test gravity in a model-independent manner.
 - Use information from **all** scales.
- I've presented **one** scheme for quantitatively linking very different gravitational regimes.
- Plenty of data is forthcoming in the strong-field and ultra weak-field regimes. But can we probe the curvature desert?

More details: arXiv 1501.03509.

tessa.baker@astro.ox.ac.uk

A WORD ABOUT SCREENING

MECHANISM	ENVIRONMENTAL CRITERION	'TRIGGER'
Chameleon, dilaton symmetron.	$\Phi> ilde{\Lambda}$	potential
k-essence, TeVeS-like.	$ a = \nabla \Phi > \tilde{\Lambda}^2$	acceleration
Vainshstein.	$R \simeq \nabla^2 \Phi > \tilde{\Lambda}^3$	curvature

But most theories do **not** have a known screening mechanism.

- \rightarrow keep an open mind.
- → are other trigger quantities possible?