Scale Invariance at Low Accelerations and
MOND phenomenology

Moti Milgrom (Weizmann)

Heraklion May 2015



MOND — synopsis
MOND is a modified-dynamics alternative to DM that hinges on accelerations.
Departure at small accelerations: weak-field dynamics is scale invariant.

Works very well in predicting many properties of galaxies of all types.

Leaves some discrepancy in galaxy clusters (isolated, bullet). Needs a small
fraction of the still missing baryons.

Not yet a coherent picture for cosmology.
Strongly connected with cosmology in different ways.

Several full-fledged theories (relativistic and their NR limits), but | think we do
not have the final one (maybe not even close).




MOND from DM? Nol!!

In the DM picture, the baryon/DM in galaxies (~ 0.01 — 0.02) is much
smaller than the cosmic value (~ 0.2): e.g., integrated DM of DM fits to RCs,
baryonic TFR, direct evidence from weak lensing. So MOST of the baryons in
galaxies were lost somewhere on the way (‘feedback”).

The successes of MOND show that baryons alone account accurately for
different independent aspects of dynamics, at least in galaxies. So, the small
fraction of leftover baryons are supposed to do this?

But this is inconceivable: Present day galaxies are end products of diverse,
haphazard, formation /evolution processes, which, furthermore, affect DM and
baryons in very different ways: mergers, accretion, feedback, collapse.

DM is inherently incapable of making predictions for individual galaxies as
MOND does: Formation history is unknowable. MOND predictions are
independent of history.




The road to MOND

e Basic premise: The dynamics of systems showing large mass discrepancies (so
termed DML dynamics) are space-time scale invariant.
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EoMs are invariant to (t,r) — A(t,r): If my;, ri(t) is the solution for some
initial conditions, then m;, Ar;(t/)) is the solution for the scaled IC.




e (5 cannot appear in the DML; has to be replaced by another gravitational

constant, Ag (apart from particle masses). It has to have dimensions [Ag] =
[m]=P€]7[t]~7 standardized to 5 = 1.

e The Umbrella theory satisfies the universality of free fall, and hence the
constant that marks the boundary between the two limits of the theory
has to be (after some standardization) a9 = Ag/G, which has dimensions

ao] = [(P=3[t]=0=2)

e In MOND, v =4, so ag is an acceleration, which the data point too forcibly.




agp — =¥
ag can be derived in several independent ways:
ap~ 1.2 x 1078 cm s2
o = 2mag ~ cHy ~ c(A/3)1/?
Uy = c?/ag = Ly My = ct/ Ay ~ My
Why a critical acceleration? a < ag = £, = c?/a > by ~ Ly
No MOND black hole with Rs < Ryubbie

No MOND departure for cosmological strong lensing

No significant gravitational Cherenkov losses




MOND laws of galactic dynamics

Essentially follow from only the basic tenets of MOND

Are independent as phenomenological laws—e.g., if interpreted as effects of DM
(just as the BB spectrum, the photo electric effect, H spectrum, superconduc-
tivity, etc. are independent in QM)

Pertain separately to properties of the "DM" alone (e.g., asymptotic flatness,
“universal” X)), of the baryons alone (e.g., M — o, maximum %), relations
between the two (e.g., M — V)

Revolve around ag in different roles




Some of the MOND laws

Asymptotic constancy of orbital velocity: V() — Vo (H)
Light-bending angle becomes asymptotically constant (H)

The velocity mass relation: V2 = MGag (H-B)

Discrepancy appears always at VV?/R = aq (H-B)

Isothermal spheres have surface densities > < ag/G (B)

ot ~ MGayg relation (“isothermal” spheres, virial relation) (B, H-B)
The central surface density of “dark halos” is ~ a(/27G (H)

Disc galaxies have a disc AND a spherical "DM” components (H)

Full rotation curves from baryon distribution alone (H-B)




Asymptotic flatness

V (km s

r (m)

Figure 1: From Famaey and McGaugh 2012
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Mass discrepancies
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Discrepancy-acceleration correlation for
pressure-supported systems
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“"Halo’ central SD—Salucci et al. 2012
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Rotation velocity (km/s)
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Rotation Curves of Disc Galaxies
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x-ray Ellipticals, tested over an acceleration
range ~ 10ag — 0.1ayg

N

-l

o

-
e 9
= =
S Nt
— —
[+ "
g - g
= =

el N N TS | " M 203 gl 1
1 10 100 1 10 100
R (kpe) R (kpc)

Baryon (dashed) and dynamical masses (grey band and large circles) from Humphrey et al. 2011,2012; MOND

points (squares and small rings) from Milgrom 2012
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Andromeda satellites—internal dynamics
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Galaxy-galaxy lensing
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Data from Brimioulle et al. 2013, analysis from Milgrom 2013.
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All I1s not roses

e Galaxy clusters

Newton MOND
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In modified gravity, DM is NOT expected to be where the baryons are.

A small fraction (~ 5 %) of the still missing baryons (~ 50 — 70 %) is enough
to bridge the gap.

e Cosmological DM
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Summary

MOND is a paradigm still under construction that replaces DM with new
physics (or novel DM) at accelerations below ag ~ cHy ~ cAl/2.

Strongly anchored in symmetry (NR space-time scaling, de Sitter symmetry)

Several theoretical directions; can differ greatly on second-rank predictions
(e.g., EFE, solar system)

There are some important things that it was not yet shown with certainty to
do (e.g. replacing cosmological DM—some preliminary work).

Still, it does a lot, and it does it extremely well.

Rather inconceivable that MOND phenomenology can be explained as some
organizing principle for CDM.
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