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Cosmology with galaxy redshift surveys:  
new data, new challenges 



Galaxy redshift surveys: a major pillar of the cosmological model… 

220,000 redshifts 

~year 2000 



…but also of our understanding of how galaxies form and evolve… 

•  SDSS: statistical distribution of galaxy properties for ~106 galaxies  



The clustering power spectrum: a probe of the underlying cosmology 



We need to understand galaxies, to do cosmology… 

Kauffman & Diaferio 1998 
Cattaneo et al. 2011 – halo mass vs stellar mass;  
(toy model on high-resolution simulation DM halos) 



The clustering power spectrum: a probe of the underlying cosmology 



D. Eisenstein 2007 

SDSS 

Baryonic Acoustic Oscillations: a standard ruler to measure H(z)  



SDSS: Eisenstein et al 2005 

BAO detection in galaxy redshift surveys 

Fourier Space 
(wiggles): 

Configuration Space 
(BAO peak): 

Percival et al 2010 

BOSS: Anderson et al. 2012, 2013 

2dFGRS: Cole et al 2005 



Springel et al. 

Z=6 

Z=2 

Z=0 

H(z) measures how the box expands with 
time --> equation of state w(z) 

f(z) traces how structure grows inside the 
box --> gravitation theory 

€ 

˙ ̇ δ + 2H (t) ˙ δ = 4πG ρ δ

€ 

δ+ (x ,t) = ˆ δ (x )D(t)

€ 

f ≡ d lnD
d lna

Linear growth rate 

Not only H(z)… 



Growth produces motions: galaxy peculiar velocities 



 real space 

Eke & 2dFGRS 2003 

Peculiar velocities manifest 
themselves in galaxy redshift 
surveys as redshift-space 
distortions (Kaiser 1987) 



 redshift space 

Line of sight to observer 

Peculiar velocities manifest 
themselves in galaxy redshift 
surveys as redshift-space 
distortions (Kaiser 1987) 

 



2001 

Nature 410, 169 (2001)  

Redshift-Space Distortions: an old way to look at a new thing…  

 
 

Nature 451, 541 (2008)  
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De la Torre, LG et al. 2013 

Redshift-space distortions as a dark energy test 

The function hNgal(m|z,MB)i is shown in Fig. 13 for the di↵erent
values of x probed with VIPERS. We checked the consistency of
this parameterization and verify that the wp(rp) predicted by the
mocks and the that measured are good agreement for all probed
redshift and luminosity thresholds. This is shown in the accom-
panying paper (Marulli et al. 2013).

7. Redshift-space distortions

The main goal of VIPERS is to provide with the final sample
accurate measurements of the growth rate of structure in two
redshift bins between z = 0.5 and z = 1.2. The growth rate of
structure f can be measured from the anisotropies observed in
redshift space in the galaxy correlation function or power spec-
trum. Although this measurement is degenerate with galaxy bias,
the combination f�8 is measurable and still allows a fundamen-
tal test of modifications of gravity since it is a mixture of the
di↵erential and integral growth. In this Section, we present an
initial measurement of f�8 from the VIPERS first data release.

7.1. Method

With the first epoch VIPERS data we can reliably probe scales
below about 35 h�1 Mpc. The use of the smallest non-linear
scales, i.e. typically below 10 h�1 Mpc, is however di�cult be-
cause of the limitations of current redshift-space distortion mod-
els, which cannot describe the non-linear e↵ects that relate the
evolution of density and velocity perturbations. However, with
the recent developments in perturbation theory and non-linear
models for RSD (e.g. Taruya et al. 2010; Reid & White 2011;
Seljak & McDonald 2011), we can push our analysis well into
mildly non-linear scales and obtain unbiased measurements of
f�8 while considering minimum scales of 5� 10 h�1 Mpc (de la
Torre & Guzzo 2012).

With the VIPERS first data release, we perform an initial
redshift-space distortion analysis, considering a single redshift
interval of 0.7 < z < 1.2. We select all galaxies above the mag-
nitude limit of the survey in that interval. The e↵ective pair-
weighted mean redshift of the subsample is z = 0.8. The mea-
sured anisotropic correlation function ⇠(rp, ⇡) is shown in the
top panel of Fig. 14. We have used here a linear binning of
�rp = �⇡ = 1 h�1 Mpc. One can see in this figure the two main
redshift-space distortion e↵ects: the elongation along the line-
of-sight, or Finger-of-God e↵ect, which is due to galaxy ran-
dom motions within virialized objects and the squashing e↵ect
on large scales, or Kaiser e↵ect, which represents the coherent
large-scale motions of galaxies towards overdensities. The lat-
ter e↵ect is the one we are interested in since its amplitude is
directly related to the growth rate of pertubations. Compared to
the previous high-redshift studiy using the VVDS survey, this
signature is detected with impressive signal-to-noise, with the
flattening being apparent to rp > 30 h�1 Mpc.

The two-dimensional anisotropic correlation has been exten-
sively used in the literature to measure the growth-rate param-
eter. However, with the increasing size and statistical power
of redshift surveys, an alternative approach has grown in im-
portance: the use of the multipole moments of the anisotropic
correlation function. This approach has the main advantage of
reducing the number of observables, compressing the cosmolog-
ical information contained in the correlation function. In turn,
this eases the estimation of the covariance matrices associated
with the data. We adopt this methodology in this analysis and fit
for the two first non-null moments ⇠0(s) and ⇠2(s), where most
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Fig. 14. Anisotropic correlation function of galaxies at 0.7 < z <
1.2. The top panel shows the results for the VIPERS first data release,
deduced by the Landy-Szalay estimator counting pairs in cells of side
1 h�1 Mpc. The lower two panels show the results of two simulations,
which span the 68% confidence range on the fitted value of the large-
scale flattening (see Section 7.4).
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BOSS: fσ8(z=0.57) = 0.447±0.028 

2013 

VIPERS: fσ8(z=0.8) = 0.47±0.08 

Samushia et al. 2014 



Galaxy clustering: a primary probe to answer the high-level 
questions… 

•  Nature of Dark Matter ? 

•  Nature of Dark Energy ? 

•  Behaviour of gravity at the largest scales (did Einstein have 
final word)? 

•  Physics of the initial conditions (inflation) ? 

Implications for physics 

! the Standard Model of cosmology (ΛCDM)   

! the Standard Model of particle physics 



…if a galaxy redshift survey is properly designed 

STATISTICAL ERRORS (not an issue nowadays?): 

•  Sample bigger volumes to push down sample variance, but being sufficiently 
dense to stay away from shot noise regime on the scales of interest 

•  Use multiple populations? (seemed more promising) " survey design 

SYSTEMATIC ERRORS: 

•  How do my galaxy tracers sample dark-matter distribution? DM-baryon 
connection (bias) " survey design (type of tracers, …) 

•  Minimize impact of non-linear clustering " survey design (largest possible 
volume) 

•  Accuracy of modelling (e.g. RSD), to match requirements of precision 
cosmology " technical advances, but also survey design (some tracers may be 
less affected than others) 

•  Use multiple populations, as a cross-check of systematic effects " survey design 



Borgani & Guzzo 2001 

SEE THE WHOLE MOVIE, NOT JUST THE FINAL PICTURE… 



Push deeper using a sparse “special” galaxy population… 

E.g. SDSS-LRG, and BOSS (see also Wigglez – Blake et al.): 
•  BOSS: “CMASS” LRG-like col-col selection, “loosely selecting constant mass galaxies”, z<0.7 

•  Area=8500 deg2 , Volume~6 h-3 Gpc, Ngal = 690,000 " <n>~10-4 h3 Mpc-3 

•  Optimized for BAO measurement, excellent (a posteriori) for Redshift Space Distortions 

•  See e.g. Samushia et al. (2014) and references therein 



…or push to higher redshift, but aiming at a volume and 
density comparable to 2dFGRS and SDSS, with similarly broad 
selection function 



•  Galaxy clustering at z~1 with comparable precision to 
z~0: 
–  Evolution of ξ(r) and P(k) (Ωm, Ωb at z~1) 
–  Dependence on galaxy properties 
–  Galaxy-DM relations (HOD modeling)  

•  Growth rate from redshift-space distortions at z~1 
•  Evolution and non-linearity of galaxy biasing 
•  Evolution of galaxy colors and environmental effects  
•  Bright/massive/rare galaxies at z~1 and evolution of 

the galaxy luminosity and stellar mass functions 
•  Combined clustering / weak-lensing analysis (photo-z calibr., 

CFHTLenS match) 
•  Multi-wavelength studies (SWIRE, XMM-XXL, UDS, VIDEO,…) 

VIPERS headline science goals 



VIMOS @ VLT fills unique niche in density-area space 

At VIPERS depth:  ~100 gal/quadrant " 
400/224 gal/arcmin2 ~ 6500 gal/deg2 



•  Want volume and density comparable to a survey like 
2dFGRS, but at z=[0.5-1]: cosmology driven, but with broader 
legacy return 

•  Means Vol~5 x 107 h-3 Mpc3, ~100,000 redshifts, close to 
full sampling 

•  Implies IAB<22.5, ~24 deg2   

•  Improve sampling within redshift range of interest through z>0.5 
robust color-color pre-selection (+star-galaxy separation), with 
also better match to VIMOS multiplexing: >40% sampling 

•  CFHTLS Wide (W1 and W4 fields, ~16 + 8 deg2) provides accurate 
multi-band photometry to support this 

•  VIMOS LR Red grism, 45 min exposure 

•  288 pointings, 440.5 VLT hours (~55 night-equivalent) 

VIPERS strategy 



VIPERS Team 
•  MILANO OAB (Project Office): L. Guzzo (P.I.), B. Granett, J. Bel, A. Iovino, S. 

Rota, U. Abbas (Turin) (+A. Hawken, D. Micheletti, A. Pezzotta) 
•  MILANO IASF (Data Reduction Centre): B. Garilli, M. Scodeggio, A. Fritz, D. 

Bottini, P. Franzetti, D. Maccagni, A. Marchetti, M. Polletta, [L. Paioro] 
•  BOLOGNA: M. Bolzonella, O. Cucciati, Y. Davidzon, A. Cappi, F. Marulli, L. 

Moscardini, D. Vergani, G. Zamorani, A. Zanichelli, E. Branchini (Rome), G. De Lucia 
(Trieste), [C. Di Porto] 

•  EDINBURGH: J. Peacock, M. Wilson 
•  GARCHING MPE: [S. Phleps], [M. Schlagenhaufer] 
•  MARSEILLE: S. de la Torre, O. Le Fevre, C. Adami, V. Le Brun, L. Tasca, C. 

Marinoni, E. Jullo, C. Schimd 
•  PARIS (TERAPIX): H. McCracken, Y. Mellier, J. Coupon (Geneva), [M. Wolk] 
•  PORTSMOUTH: W. Percival, R. Tojeiro (St.Andrews), A. Burden, R. Nichol 
•  WARSAW: A. Pollo, J. Krywult (Kielce), K. Malek, O. Solarz 

(see http://vipers.inaf.it) 



•  On average, 360 spectra 
observed per VIMOS 
pointing, given VIPERS 
target sample surface 
density and clustering 

 
 
•  VIPERS strategy yields 

mean spatial density 
<n>~10-2 h3 Mpc-3 within 
the range of interest 

  

VIPERS single-shot footprint on the sky 



1.  Automatic spectral extraction/calibration + redshift measurement: EasyLife 
pipeline running at INAF- IASF Milano (Garilli et al. 2012, PASP, 124) 

2.  Redshift review and validation: VIPGI (Scodeggio et al. 2005, PASP, 117) & 
EZ (Garilli et al. 2010, PASP, 122) 



Sky coverage today: VIPERS is finished! 

W1 W4 



•  Survey completed in January 2015; all data now reduced and 
validated: internal final (V6.0) catalogue available to team: 

•  Summer 2016: public release of full data set 

VIPERS Status 



53,609 redshifts 

(~63% of total) 

PDR-1 redshift distribution  

(Guzzo et al. 2014) 







De la Torre et al.  2013 

Redshift-space clustering and growth rate of 
structure from the PDR-1 

The function hNgal(m|z,MB)i is shown in Fig. 13 for the di↵erent
values of x probed with VIPERS. We checked the consistency of
this parameterization and verify that the wp(rp) predicted by the
mocks and the that measured are good agreement for all probed
redshift and luminosity thresholds. This is shown in the accom-
panying paper (Marulli et al. 2013).

7. Redshift-space distortions

The main goal of VIPERS is to provide with the final sample
accurate measurements of the growth rate of structure in two
redshift bins between z = 0.5 and z = 1.2. The growth rate of
structure f can be measured from the anisotropies observed in
redshift space in the galaxy correlation function or power spec-
trum. Although this measurement is degenerate with galaxy bias,
the combination f�8 is measurable and still allows a fundamen-
tal test of modifications of gravity since it is a mixture of the
di↵erential and integral growth. In this Section, we present an
initial measurement of f�8 from the VIPERS first data release.

7.1. Method

With the first epoch VIPERS data we can reliably probe scales
below about 35 h�1 Mpc. The use of the smallest non-linear
scales, i.e. typically below 10 h�1 Mpc, is however di�cult be-
cause of the limitations of current redshift-space distortion mod-
els, which cannot describe the non-linear e↵ects that relate the
evolution of density and velocity perturbations. However, with
the recent developments in perturbation theory and non-linear
models for RSD (e.g. Taruya et al. 2010; Reid & White 2011;
Seljak & McDonald 2011), we can push our analysis well into
mildly non-linear scales and obtain unbiased measurements of
f�8 while considering minimum scales of 5� 10 h�1 Mpc (de la
Torre & Guzzo 2012).

With the VIPERS first data release, we perform an initial
redshift-space distortion analysis, considering a single redshift
interval of 0.7 < z < 1.2. We select all galaxies above the mag-
nitude limit of the survey in that interval. The e↵ective pair-
weighted mean redshift of the subsample is z = 0.8. The mea-
sured anisotropic correlation function ⇠(rp, ⇡) is shown in the
top panel of Fig. 14. We have used here a linear binning of
�rp = �⇡ = 1 h�1 Mpc. One can see in this figure the two main
redshift-space distortion e↵ects: the elongation along the line-
of-sight, or Finger-of-God e↵ect, which is due to galaxy ran-
dom motions within virialized objects and the squashing e↵ect
on large scales, or Kaiser e↵ect, which represents the coherent
large-scale motions of galaxies towards overdensities. The lat-
ter e↵ect is the one we are interested in since its amplitude is
directly related to the growth rate of pertubations. Compared to
the previous high-redshift studiy using the VVDS survey, this
signature is detected with impressive signal-to-noise, with the
flattening being apparent to rp > 30 h�1 Mpc.

The two-dimensional anisotropic correlation has been exten-
sively used in the literature to measure the growth-rate param-
eter. However, with the increasing size and statistical power
of redshift surveys, an alternative approach has grown in im-
portance: the use of the multipole moments of the anisotropic
correlation function. This approach has the main advantage of
reducing the number of observables, compressing the cosmolog-
ical information contained in the correlation function. In turn,
this eases the estimation of the covariance matrices associated
with the data. We adopt this methodology in this analysis and fit
for the two first non-null moments ⇠0(s) and ⇠2(s), where most
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Fig. 14. Anisotropic correlation function of galaxies at 0.7 < z <
1.2. The top panel shows the results for the VIPERS first data release,
deduced by the Landy-Szalay estimator counting pairs in cells of side
1 h�1 Mpc. The lower two panels show the results of two simulations,
which span the 68% confidence range on the fitted value of the large-
scale flattening (see Section 7.4).
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VIPERS: fσ8(z=0.8) = 0.47±0.08 



The power spectrum of the galaxy distribution at z=0.5-1.1 from 
VIPERS (S. Rota PhD work) 

(Rota, Bel, Granett, LG & VIPERS Team, to be submitted) 
•  4 independent estimates: 2 z bins in 2 
independent fields (W1 and W4) 

•  Very careful treatment of window function 

FKP method – 
W(k) Convolved  

z1 

z2 

W1 W4 

0.6 

0.9 

1.1 



The power spectrum of the galaxy distribution at z=0.5-1.1 from 
VIPERS (S. Rota PhD work) 

(Rota, Bel, Granett, LG & VIPERS Team, to be submitted) 
•  4 independent estimates: 2 z bins in 2 
independent fields (W1 and W4) 

•  Very careful treatment of window function 

FKP method – 
W(k) Convolved  



Comparison to z~0,  
2dFGRS 

Percival et al. (2001)#

Cole et. al. (2005)#

!"



Cole et. al. (2005)#

Tegmark et al. (2004)#

Percival et al. (2001)#

!"

Comparison to z~0,  
2dFGRS vs SDSS 



Percival et al. (2001)#

Cole et. al. (2005)#

!"

Comparison to z~0,  
VIPERS vs 2dFGRS 

(Rota, Bel, Granett, LG & VIPERS Team, to be submitted) 



Relevance of systematic effects: dependence on kmax in the fit 

(Higher-z " less non-linearity " push to higher kmax) 
!"



Non-linearity of galaxy bias and its evolution 

Using Sigad, Branchini & Dekel 
(2000) inversion technique  

 
 
 
 
 
 
 
 
(Di Porto, Branchini & VIPERS Team 
2014) 
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2SLAQ
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SDSS LRG
WiggleZ
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6dFGS

VIPERS

2

Survey z f(z)σ8(z) Reference

6dFGS 0.067 0.423 ± 0.055 Beutler et al. (2012)

LRG200 0.25 0.3512 ± 0.0583 Samushia et al. (2012)

0.37 0.4602 ± 0.0378

LRG60 0.25 0.3665 ± 0.0601

0.37 0.4031 ± 0.0586

BOSS 0.30 0.408 ± 0.0552 Tojeiro et al. (2012)
ρ=−0.19 0.60 0.433 ± 0.0662

WiggleZ 0.44 0.413 ± 0.080 Blake et al. (2012)
ρ=0.51 0.60 0.390 ± 0.063
ρ=0.56 0.73 0.437 ± 0.072

VIPERS 0.8 0.47 ± 0.08 de la Torre et al. (2013)

TABLE I: Compilation of recent published values of f(z)σ8(z)
(ordered by redshift). We indicate the correlation coefficient
ρ where the measurements are correlated in adjacent redshift
bins (the 1st and 3rd redshift bins in the WiggleZ survey are
uncorrelated).

sider only growth rate measurements with RSDs, with
published values of f(z)σ8(z), as summarised in Table I.
We consider the χ2 statistic, given by

χ2 = (x− x̄)C−1(x− x̄) (1)

where x is a vector of observed values, x̄ is a vector of
corresponding values from a model for x, and C is the
covariance matrix for the measurements.
In Tojeiro et al. (2012), the growth rate from the

BOSS survey was fitted at four correlated redshift values,
although the publicly available covariance matrix is for
three redshift measurements, to reduce correlations be-
tween the measurements. We find that even with three
redshift bins, the block-diagonal covariance matrix is too
highly correlated, and thus we do not include the highly
correlated intermediate redshift measurement. We anal-
yse the data with two different measurements from the
LRG survey, with a maximum correlation length of 200
h−1Mpc (LRG200) and also with a maximum correlation
length of 60 h−1Mpc (LRG60) – we do not analyse the
data with both LRG200 and LRG60 simultaneously. For
both data sets, we calculate conditional best fit param-
eters, and the corresponding χ2 for w, σ8, and γ, with
other parameters fixed. For comparison, we also fit the
measurements to a single, constant value of f(z)σ8(z)
that does not vary with redshift. The results are sum-
marised in table II.
We note that in fact the best fit to the data (in terms

of minimum χ2) is a single, constant value, that is, there
is no preference for a model with any change in the
growth rate. We find when varying w a best fit value
> −1, or when varying σ8 a best fit value less than the
Planck value of 0.834±0.027 (Planck Collaboration et al.
2013a). When varying γ, we find a best fit value higher
than expected in General Relativity. In Figure 1 we
plot the growth rate measurements from Table I, with
growth rate models for ΛCDM, and also for our best fit

Parameter ΛCDM, Planck Best fit χ2 PTE

w -1 -0.74 ± 0.07 2.70 0.952

σ8 0.834 ± 0.027 0.722 ± 0.038 2.91 0.940

γ 6

11
0.778 ± 0.16 3.18 0.923

Constant 0.415 ± 0.042 2.09 0.978

w -1 -0.78 ± 0.07 4.01 0.856

σ8 0.834 ± 0.027 0.741 ± 0.034 4.05 0.852

γ 6

11
0.740 ± 0.14 4.05 0.853

Constant 0.425 ± 0.038 3.71 0.883

TABLE II: χ2 and corresponding Probability To Exceed
(PTE) for the best fits to w, σ8, γ and also a single constant
value for the growth rate. We indicate the expected values
of w and γ in ΛCDM, and the measured value of σ8 from
Planck Collaboration et al. (2013a). The first set of results
is for the LRG60 data set, and the second set is for LRG200.
Both data sets have 8 degrees of freedom.
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FIG. 1: Comparing recent measurements of f(z)σ8(z) to mod-
els for a range of w. We are plotting results for the LRG60

data set. The measurement error bars are at the 1 standard
deviation uncertainty level. The dashed line is the expected
growth rate from ΛCDM with Planck parameters, and the
solid line is the best-fit growth rate for a variable w, with the
1 and 2 standard deviation uncertainty illustrated with the
shaded regions. We note that all the measurements include
our best fit model at the 1 standard deviation uncertainty
level, which is reflected in the low χ2 in Table II.

w = −0.74 ± 0.07 with the LRG60 data set. We note
that the PTE decreases with the LRG200 data set, since
the LRG200 measurements have a larger scatter than the
LRG60 measurements. This is likely due to the fact that
most of the coherent clustering signal is due to correla-
tions on scales less than 100 h−1Mpc, so the additional
correlations are effectively adding noise to the signal.
Although we find that at face value, the current growth

rate measurements appear to suggest w > −1 or a low
value of σ8, we also emphasise the low χ2 / ndof we find in

(Macaulay et al. 2013) 

Is there a real tension of current constraints on fσ8 
with GR+Planck predictions?  

Planck w=-0.74 

Planck (fiducial) 

(de la Torre & VIPERS 2013) 

Planck 

WMAP 

(see also Salvatelli et al. 2014) 



Measuring RSD: how this is done in detail 

  B. Fit single multipoles A. Fit the full 2D correlation function, expressed 
as combination of spherical armonics (moments) 

The function hNgal(m|z,MB)i is shown in Fig. 13 for the di↵erent
values of x probed with VIPERS. We checked the consistency of
this parameterization and verify that the wp(rp) predicted by the
mocks and the that measured are good agreement for all probed
redshift and luminosity thresholds. This is shown in the accom-
panying paper (Marulli et al. 2013).

7. Redshift-space distortions

The main goal of VIPERS is to provide with the final sample
accurate measurements of the growth rate of structure in two
redshift bins between z = 0.5 and z = 1.2. The growth rate of
structure f can be measured from the anisotropies observed in
redshift space in the galaxy correlation function or power spec-
trum. Although this measurement is degenerate with galaxy bias,
the combination f�8 is measurable and still allows a fundamen-
tal test of modifications of gravity since it is a mixture of the
di↵erential and integral growth. In this Section, we present an
initial measurement of f�8 from the VIPERS first data release.

7.1. Method

With the first epoch VIPERS data we can reliably probe scales
below about 35 h�1 Mpc. The use of the smallest non-linear
scales, i.e. typically below 10 h�1 Mpc, is however di�cult be-
cause of the limitations of current redshift-space distortion mod-
els, which cannot describe the non-linear e↵ects that relate the
evolution of density and velocity perturbations. However, with
the recent developments in perturbation theory and non-linear
models for RSD (e.g. Taruya et al. 2010; Reid & White 2011;
Seljak & McDonald 2011), we can push our analysis well into
mildly non-linear scales and obtain unbiased measurements of
f�8 while considering minimum scales of 5� 10 h�1 Mpc (de la
Torre & Guzzo 2012).

With the VIPERS first data release, we perform an initial
redshift-space distortion analysis, considering a single redshift
interval of 0.7 < z < 1.2. We select all galaxies above the mag-
nitude limit of the survey in that interval. The e↵ective pair-
weighted mean redshift of the subsample is z = 0.8. The mea-
sured anisotropic correlation function ⇠(rp, ⇡) is shown in the
top panel of Fig. 14. We have used here a linear binning of
�rp = �⇡ = 1 h�1 Mpc. One can see in this figure the two main
redshift-space distortion e↵ects: the elongation along the line-
of-sight, or Finger-of-God e↵ect, which is due to galaxy ran-
dom motions within virialized objects and the squashing e↵ect
on large scales, or Kaiser e↵ect, which represents the coherent
large-scale motions of galaxies towards overdensities. The lat-
ter e↵ect is the one we are interested in since its amplitude is
directly related to the growth rate of pertubations. Compared to
the previous high-redshift studiy using the VVDS survey, this
signature is detected with impressive signal-to-noise, with the
flattening being apparent to rp > 30 h�1 Mpc.

The two-dimensional anisotropic correlation has been exten-
sively used in the literature to measure the growth-rate param-
eter. However, with the increasing size and statistical power
of redshift surveys, an alternative approach has grown in im-
portance: the use of the multipole moments of the anisotropic
correlation function. This approach has the main advantage of
reducing the number of observables, compressing the cosmolog-
ical information contained in the correlation function. In turn,
this eases the estimation of the covariance matrices associated
with the data. We adopt this methodology in this analysis and fit
for the two first non-null moments ⇠0(s) and ⇠2(s), where most
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Fig. 14. Anisotropic correlation function of galaxies at 0.7 < z <
1.2. The top panel shows the results for the VIPERS first data release,
deduced by the Landy-Szalay estimator counting pairs in cells of side
1 h�1 Mpc. The lower two panels show the results of two simulations,
which span the 68% confidence range on the fitted value of the large-
scale flattening (see Section 7.4).
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Fig. 17. Monopole and quadrupole moments of the redshift-space
correlations, as a function of scale. The shallow curves show the results
for the 26 individual MultiDark simulation mocks; the points are for the
measured VIPERS data over the full redshift range, with assigned error
bars based on the scatter in the mocks. The solid and dotted lines corre-
spond to the best fitting models to the data for model B with Gaussian
or Lorentzian damping function respectively.

7.4. Results

We perform the redshift-space distortion analysis of the VIPERS
data in the context of a flat ⇤CDM cosmological model. Be-
fore considering the redshift-space distortions in the data, we
first test the methodology and expected errors on f�8 using the
mock samples. We fix the shape of the mass non-linear power
spectrum to that of the simulation (since the observed real-space
correlations are of high accuracy) and perform a likelihood anal-
ysis of each individual MD mock. In the case of model C we
also fix the normalisation of the power spectrum as discussed
above. The distribution of best-fitting f�8 gives us a direct esti-
mate of the probability distribution function of the parameter for
a given fitting method, and serves as a check on the errors from
the full likelihood function. We estimate the median and 68%
confidence region of the distribution. These are shown in figure
16 for the di↵erent models presented in the previous section and
for various minimum scales smin in the fit.

Model A is known to be the most biased model (e.g. Oku-
mura & Jing 2011; Bianchi et al. 2012; de la Torre & Guzzo
2012) and our results confirm these findings. We thus decide
not to describe in the following the detailed behaviour of this
model and focus on models B and C. We find that in general
model B tends to be less biased than model C, which is surpris-
ing at first sight as model C is the most advanced and supposed
to be the most accurate (Kwan et al. 2012; de la Torre & Guzzo
2012). This could be due to the quite restricted scales that we
consider and the limited validity of its implementation on scales
below s ' 10 h�1 Mpc as the maximum wavenumber to which
we can predict P�✓ and P✓✓ is about k = 0.3. We defer the anal-
ysis of this issue to the redshift-space distortion analysis of the
final sample and concentrate here on model B. The shape of the
damping function in the models also a↵ects the recovered f�8,
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Fig. 18. Marginalized likelihood distribution of f�8 in the data (solid
curve) and distribution (histogram) of fitted values of f�8 for the 26
individual MultiDark simulation mocks. These curves show a preferred
value and a dispersion in the data that is consistent at the 1� level with
the distribution over the mocks.

as expected given the minimum scales we consider, although in
the case of model B the change in f�8 is at most 5%. Includ-
ing smaller scales in the fit reduces the statistical error but at the
price of slightly larger systematic error. Therefore from this test
we decided to use model and a compromise value for the mini-
mum scale of smin = 6 h�1 Mpc.

With this preamble, we can finally compare with the corre-
sponding analysis of the real data. We assume a shape of the
mass power spectrum consistent with the cosmological parame-
ters obtained from WMAP9 (Hinshaw et al. 2012) and perform a
maximum likelihood analysis on the data. The best-fitting mod-
els are shown in Figure 17 when considering either a Gaussian
or a Lorentzian damping function. Although the mock samples
tend to slightly prefer models with Lorentzian damping as seen
in Fig. 16, we find that the Gaussian damping provides a much
better fit in the real data and we decided to quote the corre-
sponding f�8 as our final measurement. We measure a value of
f (0.8)�8(0.8) = 0.47±0.08 which is consistent with the General
Relativity prediction in a flat ⇤CDM Universe with cosmologi-
cal paramaters given by WMAP9, for which the expected value
is f (0.8)�8(0.8) = 0.45. The marginalised likelihood distribu-
tion of f�8 is shown superimposed on the mock results in Fig.
18. We see that the preferred values of the growth rate are con-
sistent with the mocks, in terms of the width of the likelihood
function being comparable to the scatter in mock fitted values.
To illustrate the degree of flattening of the anisotropic correla-
tion function induced by structure growth, we show in the mid-
dle and bottom panels of Fig. 14 ⇠(rp, ⇡) for two MD mocks
for which the measured f�8 roughly coincide with the 1� limits
around the best-fit f�8 value obtained in the data. We therefore
conclude that the initial VIPERS data prefer a growth rate that is
fully consistent with predictions based on standard gravity. Our
measurement of f�8 is also in good agreement with previous
measurements at lower redshifts as shown in Figure 19. In par-
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Pros: highly non-linear scales where 
FoG dominates more cleanly removed 
Cons: lots of d.o.f. " covariance matrix 
estimation more difficult 

Pros: compress the information " 
easier to estimate covariance matrix 
Cons: uncertainties in modelling small-
scale non-linearity (FoG) affect all scales 



Kaiser/Hamilton linear redshift-distortion model + correction$



Systematic effects on Redshift-Space Distortions… 

6 Elisabetta Majerotto et al.
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Figure 2. Fisher matrix forecasts of the errors expected on the growth rate (dark-blue error bars), expressed through the bias-free
combination f(z

i

)�
8

(z
i

), obtainable from the Euclid baseline redshift survey through the combination of amplitude and redshift-space
anisotropy of galaxy clustering. The light-blue error bars (shown with a slight o↵set in redshift for visualisation purposes) represent the
case of a galaxy density reduced by a factor of two with respect to that forecasted for the galaxies observed by Euclid (Geach et al.
2008). The solid black line represents the fiducial f �

8

, computed for the cosmology shown in Eq. (5). The dashed green line shows the
growth of a flat DGP model (calculated by numerical integration of the corresponding equation for f(z)). The red dotted line represents
f �

8

of a coupled models with coupling parameter �
c

= 0.2. All models are computed for ⌦
m0

= 0.271 and for the same �
8

(z
CMB

) as for
the fiducial model. In the same plot we also show measurements of f �

8

from past surveys (magenta error bars) and the recent Wiggle-z
survey (pink error bars), see explanation in the text.

survey reference paper z f�
8

VVDS F22 Guzzo et al. (2008) 0.77 0.49± 0.19
wide

2SLAQ Ross et al. (2007) 0.55 0.50± 0.07
galaxy

SDSS LRG Cabre & Gaztanaga (2009) 0.34 0.53± 0.07
Samushia et al. (2011) 0.25 0.35± 0.06
Samushia et al. (2011) 0.37 0.46± 0.04

2dFGRS Hawkins et al. (2003) 0.15 0.39± 0.08

WiggleZ Blake et al. (2011) 0.22 0.49± 0.07
0.41 0.45± 0.04
0.6 0.43± 0.04
0.78 0.78± 0.04

Table 2. Current measurements of f�
8

We notice that we reach accuracies between 1.3% and
4.4% in the measurement of f �

8

depending on the redshift
bin, where the highest precision is reached for redshifts z '
1.0.

5.1 Comparison to other surveys

Together with Euclid, other ongoing and future surveys will
constrain cosmology by measuring f�

8

. Here we compare the
relative errors on f�

8

obtained using di↵erent spectroscopic
galaxy redshift surveys. In particular, we consider the BOSS
survey5 (see Schlegel et al. 2009), the BigBOSS6 Emission
Line Galaxies (ELGs) and Luminous Red Galaxies (LRGs)7

Regarding the fiducial bias, we use the forecasts by Orsi
et al. (2009) for BigBOSS ELGs. We use b = 2G(0)/G(z)
(where G(z) is the standard linear growth rate) for BOSS
and BigBOSS LRGs (see Reid et al. (2010)). Table 3 sum-
marises the main characteristics of these surveys.

The results are shown in Fig. 3. We first notice that Eu-
clid (represented by dark-green circles) will obtain the most
precise measurements of growth, even in the pessimistic situ-
ation of detecting only half the galaxies (light-green circles).
In redshift coverage it will be perfectly complementary to
BOSS. The partial overlap with BigBOSS, whose ELG sam-
ple will reach similar errors up to z ⇠ 1.4, will allow for inter-
esting useful independent measurements and cross-checks.

5 http://cosmology.lbl.gov/BOSS/
6 http://bigboss.lbl.gov/
7 We thank the BigBOSS consortium for providing their latest
estimate of their expected galaxy densities, which we used in cre-
ating this plot.
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Euclid forecasts 

Need to improve modelling to enter “precision RSD era”  

" e.g. EUCLID: 1-3% precision on  fσ8 
" “Standard” RSD dispersion 
model: up to 10% systematic error  

(also Okumura & Jing, 2011) 

8 D. Bianchi, et al.
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Figure 5. The mean values of β averaged over 27 sub-cubes, as measured in each mass sample (open circles) estimated using the
“standard” linear-exponential model of Eq. (11). The dark- and light-green bands give respectively the 1σ and 3σ confidence intervals
around the mean. The measured values are compared to the expected values βt, computed using Eqs. (16-18). We also give the 1σ and
3σ theoretical uncertainty around βt, due to the uncertainty in the bias estimate ( brown and red bands, respectively).

depending on the linear assumption, from those introduced
by a limited recontruction of the underlying real-space cor-
relation function. In Appendix B we shall therefore discuss
separately the effects of deriving ξ(r) directly from the ob-
servations.

Despite the apparently very good fits (Fig. 4), we find a
systematic discrepancy between the measured and the true
value of β. The systematic error is maximum (≈ 10%) for
low-bias (i.e. low mass) halos and tends to decrease for larger
values (note that here with “low bias” we indicate galaxy-
sized halos with M ≈ 1012 h−1 M⊙). In particular for Mcut

between 7× 1012 and ≈ 1013 h−1 M⊙ the expectation value
of the measurement is very close to the true value βt.

It is interesting, and somewhat surprising, that, al-
though massive halos are intrinsically sparser (and hence
disfavoured from a statistical point of view), the scatter of
β (i.e. the width of the green error corridor in Figure 5) does
not increase in absolute terms, showing little dependence on
the halo mass. Since the value of β is decreasing, however,
the relative error does have a dependence on the bias, as we
shall better discuss in § 5.

4.2 Is a pure Kaiser model preferable for

cluster-sized halos?

Groups and clusters would seem to be natural candidates
to trace large-scale motions based on a purely linear de-

scription, since they essentially trace very large scales and
most non-linear velocities are confined within their struc-
ture. Using clusters as test particles (i.e. ignoring their in-
ternal degrees of freedom) we are probing mostly linear, co-
herent motions. It makes sense therefore to repeat our mea-
surements using the linear model alone, without exponential
damping correction. The results are shown in Figure 6. The
relative error (lower panel) obtained in this case is in gen-
eral smaller than when the exponential damping is included.
Both models yield similar systematic error (central panel),
except for the small mass range where the exponential cor-
rection clearly has a beneficial effect. In the following we
briefly summarize how relative and systematic errors com-
bine. To do this we consider three different mass ranges ar-
bitrarily choosen.

(i) Small masses (Mcut ! 5× 1012 h−1M⊙)
This range corresponds to halos hosting single L∗ galaxies.
Here the linear exponential model, which gives a smaller
systematic error, is still not able to recover the expected
value of β. However, any consideration about these “galactic
halos” may not be fully realistic since our halo catalogues
are lacking in sub-structure (see Section 4.4).

(ii) Intermediate masses

(5 × 1012 ! Mcut ! 2 × 1013 h−1 M⊙)
This range corresponds to halos hosting very massive galax-
ies and groups. The systematic error is small compared to

© 0000 RAS, MNRAS 000, 1–19
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" A lot of modelling work ongoing 
(Scoccimarro, Taruya+, Kwan+, Reid+, 
Samushia+, Seljak+, Bianchi+, Kopp+, …   



Reducing systematics: better RSD models? 

Blake et al. (2011) " Test of various models on WiggleZ data 



Better RSD models: understand pairwise f(v) 

•  Goal: reduce degrees of freedom on 
description of the pairwise velocity PDF in 
the context of the streaming model 

 
•  PDF described as weighted sum of 

Gaussians, whose mean and dispersion are 
described in turn by bivariate Gaussian 

 
 
•  Works extremely well: naturally provides 

exponential/Gaussian/skewed PDFs, 
depending on separation 

•  Uhlemann et al. (2015): development using 
Edgeworth expansion 

D. Bianchi (now @ICG Portsmouth) PhD 
work – Bianchi, Chiesa & LG, 2014, MNRAS 
446, 75 

The function hNgal(m|z,MB)i is shown in Fig. 13 for the di↵erent
values of x probed with VIPERS. We checked the consistency of
this parameterization and verify that the wp(rp) predicted by the
mocks and the that measured are good agreement for all probed
redshift and luminosity thresholds. This is shown in the accom-
panying paper (Marulli et al. 2013).

7. Redshift-space distortions

The main goal of VIPERS is to provide with the final sample
accurate measurements of the growth rate of structure in two
redshift bins between z = 0.5 and z = 1.2. The growth rate of
structure f can be measured from the anisotropies observed in
redshift space in the galaxy correlation function or power spec-
trum. Although this measurement is degenerate with galaxy bias,
the combination f�8 is measurable and still allows a fundamen-
tal test of modifications of gravity since it is a mixture of the
di↵erential and integral growth. In this Section, we present an
initial measurement of f�8 from the VIPERS first data release.

7.1. Method

With the first epoch VIPERS data we can reliably probe scales
below about 35 h�1 Mpc. The use of the smallest non-linear
scales, i.e. typically below 10 h�1 Mpc, is however di�cult be-
cause of the limitations of current redshift-space distortion mod-
els, which cannot describe the non-linear e↵ects that relate the
evolution of density and velocity perturbations. However, with
the recent developments in perturbation theory and non-linear
models for RSD (e.g. Taruya et al. 2010; Reid & White 2011;
Seljak & McDonald 2011), we can push our analysis well into
mildly non-linear scales and obtain unbiased measurements of
f�8 while considering minimum scales of 5� 10 h�1 Mpc (de la
Torre & Guzzo 2012).

With the VIPERS first data release, we perform an initial
redshift-space distortion analysis, considering a single redshift
interval of 0.7 < z < 1.2. We select all galaxies above the mag-
nitude limit of the survey in that interval. The e↵ective pair-
weighted mean redshift of the subsample is z = 0.8. The mea-
sured anisotropic correlation function ⇠(rp, ⇡) is shown in the
top panel of Fig. 14. We have used here a linear binning of
�rp = �⇡ = 1 h�1 Mpc. One can see in this figure the two main
redshift-space distortion e↵ects: the elongation along the line-
of-sight, or Finger-of-God e↵ect, which is due to galaxy ran-
dom motions within virialized objects and the squashing e↵ect
on large scales, or Kaiser e↵ect, which represents the coherent
large-scale motions of galaxies towards overdensities. The lat-
ter e↵ect is the one we are interested in since its amplitude is
directly related to the growth rate of pertubations. Compared to
the previous high-redshift studiy using the VVDS survey, this
signature is detected with impressive signal-to-noise, with the
flattening being apparent to rp > 30 h�1 Mpc.

The two-dimensional anisotropic correlation has been exten-
sively used in the literature to measure the growth-rate param-
eter. However, with the increasing size and statistical power
of redshift surveys, an alternative approach has grown in im-
portance: the use of the multipole moments of the anisotropic
correlation function. This approach has the main advantage of
reducing the number of observables, compressing the cosmolog-
ical information contained in the correlation function. In turn,
this eases the estimation of the covariance matrices associated
with the data. We adopt this methodology in this analysis and fit
for the two first non-null moments ⇠0(s) and ⇠2(s), where most
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Fig. 14. Anisotropic correlation function of galaxies at 0.7 < z <
1.2. The top panel shows the results for the VIPERS first data release,
deduced by the Landy-Szalay estimator counting pairs in cells of side
1 h�1 Mpc. The lower two panels show the results of two simulations,
which span the 68% confidence range on the fitted value of the large-
scale flattening (see Section 7.4).
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Improving RSD measurements: better tracers of LSS and v 

F. Mohammad PhD project: RSD from the group-galaxy cross-correlation 
(Mohammad, et al., submitted), plus define customized multipole expansion 
(“truncated multipoles”) to reduce weight of nonlinear scales 
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Bel et al. 2014, A&A, 563, 37 

(3) “Optimized” statistics: the “clustering ratio” from counts 
in cells (Bel et al.), an implicit probe of P(k) shape  

where: 
 
•  R=smoothing radius of galaxy field  
•  r=nR (n=3,4,5) i.e. correlated on 

larger scales 
•  Ratio has favourable propertites wrt to 

quasi-linear/mildly nonlinear effects on 
the P(k): most of these  factor out 

•  Essentially a ratio of power in two 
different k bands 

" Reduce the effect on P(k) shape 
of the “Big Three”, i.e. nonlinearity, 
bias and RSD 
 



Identify new cosmological probes: cosmic voids at z~1 

Micheletti, Iovino, 
Hawken, Granett & 
VIPERS team, 2014 



Identify new cosmological probes: cosmic voids at z~1 

Modelling the cross-correlation function: A. Hawken et al., in preparation 

"  How precise and accurate can this method be? 
"  Needs highly-samples surveys like GAMA and VIPERS 



Minimize observational effects (not obvious at 1% level!) 
E.g. detailed correction of masking effects in the VIPERS data on the estimate of two-
point correlations (A. Pezzotta PhD work) 

" This will be very relevant for Euclid slitless spectroscopic mode 



Account for all existing components: neutrinos! 

Carbone et al., DEMNUni simulations 



Improve understanding relation between DM and baryons 
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•  Halo Occupation 
Distribution modelling of 
VIPERS correlation 
function  

(De la Torre & VIPERS team 
2015, in preparation) 



VIPERS provides detailed structure AND galaxy properties 

 Color-density relation: Cucciati et al., in prep. 

 (U-B) rest frame  



I.  Davidzon, Bolzonella et al. 2013, A&A, 
558, 23 

II.  Fritz et al. (CM diagram + LF), 2014, 
A&A, 563, 92 

Galaxy Stellar Mass Function 

MOST PRECISE MEASUREMENT EVER OF THE 
NUMBER DENSITY OF MASSIVE GALAXIES AT Z~1 



Φ Φ+Ψ

Kilbinger+13 
CFHTLens 

de la Torre+13 
VIPERS 

Cosmic shear: 

Percival+10 

BAO: a(τ)  RSD: 

: governs motion of matter 

: governs motion of light 

Φ = Ψ for GR

Combining imaging and spectroscopy: the importance of photometry  

De la Torre, Jullo & VIPERS Team, in preparation 



Euclid	
 •  ESA mission + extra contribution 
by national agencies (legacy of 
parent DUNE+SPACE projects) 

•  Euclid Consortium Lead: Yannick 
Mellier (IAP) 

•  1.2 m telescope 
•  Visible imaging (1 band) 
•  Infrared imaging (Y,J,H) 
•  Infrared slitless spectroscopy 
•  Launch 2020 

•  15,000 deg2 survey 
•  Images for 2x109 galaxies 
•  Spectra for ~5 x 107 galaxies 

(0.9<z<1.8) 



Euclid	


OBJECTIVES: 
 
•  Build a map of dark and 

luminous matter over 1/3 of 
the sky and to z~2 

•  Unveil the nature of dark 
matter 

•  Solve the mystery of dark 
energy (cosmic acceleration) 

•  Use multiple probes " max 
control over systematic errors 

The Euclid “Red Book” 
http://sci.esa.int/science-e/www/object/

index.cfm?fobjectid=48983#  

GALAXY CLUSTERING 
(BAO + RSD) 

WEAK LENSING 
(GEOMETRY AND 
GROWTH) 



Summary 
•  An exciting future for cosmology from galaxy clustering: galaxy redshift surveys can measure 

both w(z) and f(z) using BAOs/P(k) and z-distortions " test dark energy vs modified gravity 
•  A renaissance for redshift-space distortions: not considered in this context before 2008, now 

a key “dark energy probe” (EUCLID) 

More and more data will push statistical errors into 1% regime: 
•  Over the past 3 years new RSD results from WiggleZ, BOSS, VIPERS  
•  VIPERS fills a specific niche, thanks to its high sampling, allowing complementary 

approaches (multi-population still atractive?)  
•  EUCLID will couple a ~30 million galaxy (slitless) redshift survey with a high-resolution 

imaging survey, to combine galaxy clustering and weak lensing (launch 2020) 
•  Other ground-based surveys, like DESI, are planned in the 10-million z regime 

Need to increase control over systematic effects: 
•  Improve modelling of RSD: rapid and promising development after 2008 renaissance (e.g. 

building upon Scoccimarro 2004) 
•  Streaming model approach yields promising results (Reid+, Bianchi+, Uhllemann+) 
•  Use different tracers of RSD, possibly with reduced weight of nonlinear effects (e.g. 

Mohammad et al., group-galaxy correlations) 
•  New probes (e.g. voids) / new statistics / improved corrections of observational biases 
•  All existing components need to be accounted for (e.g. neutrinos cannot be neglected…) 



EXTRA MATERIAL 



Models: improved dispersion approach 
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The correlation function multipole moments of the Kaiser term in
the case of the model of Eq. 14 are given in Appendix A.

2.3 From mass to galaxies

The models derived in the previous section apply in the case of per-
fectly unbiased tracers of mass. Real galaxies however are biased
with respect to mass. Galaxy biasing is generally expected to be
non-linear, scale-dependent, stochastic, and to depend on galaxy
type, although it is still poorly constrained by observations. On
large scales in the linear regime, one expects the bias to be a con-
stant multiplicative factor to the mass density field as �

g

= b
L

�. In
that case, it is convenient to replace the growth rate f in the mod-
els by an effective distortion parameter � = f/b

L

, which accounts
for the large-scale linear bias b

L

of the considered galaxies. This
simple model is valid on large scales where the bias asymptotes
to a constant value but breaks down on small non-linear scales,
where bias possibly varies with scale. Recently, Okumura & Jing
(2011) showed that the scale-dependent behaviour of halo bias can
strongly affect the recovery of the growth rate. While some analyt-
ical approaches have been proposed to include bias non-linearity
in the model (Desjacques & Sheth 2010; Matsubara 2011), here we
follow a different route and assume that the galaxy scale-dependent
bias is known. In fact, the latter can be measured to some extent
from the data themselves in configuration space, once the shape for
the underlying non-linear mass power spectrum is assumed. Gen-
eral arguments may suggest that galaxy motions are also biased
with respect to the mass velocity field, while observations tend to
indicate that this bias is small (Tinker et al. 2006; Skibba et al.
2011). In this analysis we will neglect the galaxy velocity bias in
the models but discuss and quantify its impact on the recovery of f
in Section 3.4.

2.4 Constructing the galaxy redshift-space distortion models

We will use in this analysis different combinations of Kaiser terms,
damping functions, and bias prescriptions. Although we will work
in configuration space, we refer to the different models in this sec-
tion as their Fourier-space counterpart for clarity. All the models
we consider take the general form,
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Hereafter, we will refer as the different P
K

models to A,
B, and C. Model A corresponds to the Kaiser (1987) model with
the non-linear power spectrum instead of the linear one. It as-
sumes a linear coupling between the density and velocity fields
such as � / ✓. Model B is the generalisation proposed by Scoc-
cimarro (2004) that accounts for the non-linear coupling between
the density and velocity fields, making explicitly appearing the ve-
locity divergence auto-power spectrum and density–velocity diver-
gence cross-power spectrum. Finally, model C is an extension of
model B that contains the two additional correction terms proposed
by Taruya et al. (2010) to correctly account for the coupling be-
tween the Kaiser and damping terms. Besides, we will consider
two deterministic galaxy biasing prescriptions: a constant linear
bias b(k) = b

L

and a general non-linear bias which we define as
b(k) = (P

gg

/P
��

)

1/2

(k) = b
L

b
NL

(k), where P
gg

is the galaxy
power spectrum and b

NL

(k) is the scale-dependent part of the bias
that tends to unity at small k.

The redshift-space distortions models necessitate P
��

, P
�✓

,
and P

✓✓

real-space power spectra as input. Here we use the P
��

provided by CosmicEmu emulator (Lawrence et al. 2010) and the
fitting functions of Jennings et al. (2011) to obtain P

✓✓

and P
�✓

from P
��

. The latter fitting functions have an accuracy of 5% to
k = 0.2 for both standard ⇤CDM and quintessence dark energy
cosmological models. Alternatively P

✓✓

, P
�✓

, P
��

can be obtained
analytically using perturbation theory. Although standard pertur-
bation theory does not describe well the shape of these power
spectra on intermediate and non-linear scales, improved treatments
such as Renormalised Perturbation Theory (RPT, Crocce & Scoc-
cimarro 2006) or Closure Theory (Taruya et al. 2009) have shown
to be much more accurate (see Carlson et al. 2009, for a thorough
comparison). In particular, Closure Theory predictions are found
to match large N-body simulation real-space power spectra to the
percent-level up to k = 0.2 for z > 0.5 (Taruya et al. 2009).

In Fig. 1 and 2 we confront the P
��

, P
�✓

, P
✓✓

calibrated on
N-body simulations by Lawrence et al. (2010) and Jennings et al.
(2011) with Closure Theory 2-loop analytical predictions at z = 0

and z = 1. We find that all power spectra agree very well below
k ' 0.2 and k ' 0.3 respectively for the two redshifts considered,
except in the case of P

�✓

for which they systematically differ by
about 10%. While all other power spectra match on linear scales,
the P

�✓

fitting formula from Jennings et al. (2011) stays somewhat
below (dotted lines in the figures). We find that by multiplying the
latter by a factor of 1.1 one obtains an excellent match with Clo-
sure Theory predictions on both linear and non-linear scales (solid
lines in the figures). We will then adopt this correcting factor in the
following when calculating the redshift-space distortions models.

It is noticeable that Closure Theory breaks down at lower
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The correlation function multipole moments of the Kaiser term in
the case of the model of Eq. 14 are given in Appendix A.

2.3 From mass to galaxies

The models derived in the previous section apply in the case of per-
fectly unbiased tracers of mass. Real galaxies however are biased
with respect to mass. Galaxy biasing is generally expected to be
non-linear, scale-dependent, stochastic, and to depend on galaxy
type, although it is still poorly constrained by observations. On
large scales in the linear regime, one expects the bias to be a con-
stant multiplicative factor to the mass density field as �
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�. In
that case, it is convenient to replace the growth rate f in the mod-
els by an effective distortion parameter � = f/b
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, which accounts
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of the considered galaxies. This
simple model is valid on large scales where the bias asymptotes
to a constant value but breaks down on small non-linear scales,
where bias possibly varies with scale. Recently, Okumura & Jing
(2011) showed that the scale-dependent behaviour of halo bias can
strongly affect the recovery of the growth rate. While some analyt-
ical approaches have been proposed to include bias non-linearity
in the model (Desjacques & Sheth 2010; Matsubara 2011), here we
follow a different route and assume that the galaxy scale-dependent
bias is known. In fact, the latter can be measured to some extent
from the data themselves in configuration space, once the shape for
the underlying non-linear mass power spectrum is assumed. Gen-
eral arguments may suggest that galaxy motions are also biased
with respect to the mass velocity field, while observations tend to
indicate that this bias is small (Tinker et al. 2006; Skibba et al.
2011). In this analysis we will neglect the galaxy velocity bias in
the models but discuss and quantify its impact on the recovery of f
in Section 3.4.

2.4 Constructing the galaxy redshift-space distortion models

We will use in this analysis different combinations of Kaiser terms,
damping functions, and bias prescriptions. Although we will work
in configuration space, we refer to the different models in this sec-
tion as their Fourier-space counterpart for clarity. All the models
we consider take the general form,
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Hereafter, we will refer as the different P
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models to A,
B, and C. Model A corresponds to the Kaiser (1987) model with
the non-linear power spectrum instead of the linear one. It as-
sumes a linear coupling between the density and velocity fields
such as � / ✓. Model B is the generalisation proposed by Scoc-
cimarro (2004) that accounts for the non-linear coupling between
the density and velocity fields, making explicitly appearing the ve-
locity divergence auto-power spectrum and density–velocity diver-
gence cross-power spectrum. Finally, model C is an extension of
model B that contains the two additional correction terms proposed
by Taruya et al. (2010) to correctly account for the coupling be-
tween the Kaiser and damping terms. Besides, we will consider
two deterministic galaxy biasing prescriptions: a constant linear
bias b(k) = b
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and a general non-linear bias which we define as
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can be obtained
analytically using perturbation theory. Although standard pertur-
bation theory does not describe well the shape of these power
spectra on intermediate and non-linear scales, improved treatments
such as Renormalised Perturbation Theory (RPT, Crocce & Scoc-
cimarro 2006) or Closure Theory (Taruya et al. 2009) have shown
to be much more accurate (see Carlson et al. 2009, for a thorough
comparison). In particular, Closure Theory predictions are found
to match large N-body simulation real-space power spectra to the
percent-level up to k = 0.2 for z > 0.5 (Taruya et al. 2009).

In Fig. 1 and 2 we confront the P
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calibrated on
N-body simulations by Lawrence et al. (2010) and Jennings et al.
(2011) with Closure Theory 2-loop analytical predictions at z = 0

and z = 1. We find that all power spectra agree very well below
k ' 0.2 and k ' 0.3 respectively for the two redshifts considered,
except in the case of P
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for which they systematically differ by
about 10%. While all other power spectra match on linear scales,
the P
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fitting formula from Jennings et al. (2011) stays somewhat
below (dotted lines in the figures). We find that by multiplying the
latter by a factor of 1.1 one obtains an excellent match with Clo-
sure Theory predictions on both linear and non-linear scales (solid
lines in the figures). We will then adopt this correcting factor in the
following when calculating the redshift-space distortions models.

It is noticeable that Closure Theory breaks down at lower
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The correlation function multipole moments of the Kaiser term in
the case of the model of Eq. 14 are given in Appendix A.

2.3 From mass to galaxies

The models derived in the previous section apply in the case of per-
fectly unbiased tracers of mass. Real galaxies however are biased
with respect to mass. Galaxy biasing is generally expected to be
non-linear, scale-dependent, stochastic, and to depend on galaxy
type, although it is still poorly constrained by observations. On
large scales in the linear regime, one expects the bias to be a con-
stant multiplicative factor to the mass density field as �
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�. In
that case, it is convenient to replace the growth rate f in the mod-
els by an effective distortion parameter � = f/b

L

, which accounts
for the large-scale linear bias b
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of the considered galaxies. This
simple model is valid on large scales where the bias asymptotes
to a constant value but breaks down on small non-linear scales,
where bias possibly varies with scale. Recently, Okumura & Jing
(2011) showed that the scale-dependent behaviour of halo bias can
strongly affect the recovery of the growth rate. While some analyt-
ical approaches have been proposed to include bias non-linearity
in the model (Desjacques & Sheth 2010; Matsubara 2011), here we
follow a different route and assume that the galaxy scale-dependent
bias is known. In fact, the latter can be measured to some extent
from the data themselves in configuration space, once the shape for
the underlying non-linear mass power spectrum is assumed. Gen-
eral arguments may suggest that galaxy motions are also biased
with respect to the mass velocity field, while observations tend to
indicate that this bias is small (Tinker et al. 2006; Skibba et al.
2011). In this analysis we will neglect the galaxy velocity bias in
the models but discuss and quantify its impact on the recovery of f
in Section 3.4.

2.4 Constructing the galaxy redshift-space distortion models

We will use in this analysis different combinations of Kaiser terms,
damping functions, and bias prescriptions. Although we will work
in configuration space, we refer to the different models in this sec-
tion as their Fourier-space counterpart for clarity. All the models
we consider take the general form,
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models to A,
B, and C. Model A corresponds to the Kaiser (1987) model with
the non-linear power spectrum instead of the linear one. It as-
sumes a linear coupling between the density and velocity fields
such as � / ✓. Model B is the generalisation proposed by Scoc-
cimarro (2004) that accounts for the non-linear coupling between
the density and velocity fields, making explicitly appearing the ve-
locity divergence auto-power spectrum and density–velocity diver-
gence cross-power spectrum. Finally, model C is an extension of
model B that contains the two additional correction terms proposed
by Taruya et al. (2010) to correctly account for the coupling be-
tween the Kaiser and damping terms. Besides, we will consider
two deterministic galaxy biasing prescriptions: a constant linear
bias b(k) = b
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and a general non-linear bias which we define as
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provided by CosmicEmu emulator (Lawrence et al. 2010) and the
fitting functions of Jennings et al. (2011) to obtain P
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. The latter fitting functions have an accuracy of 5% to
k = 0.2 for both standard ⇤CDM and quintessence dark energy
cosmological models. Alternatively P
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can be obtained
analytically using perturbation theory. Although standard pertur-
bation theory does not describe well the shape of these power
spectra on intermediate and non-linear scales, improved treatments
such as Renormalised Perturbation Theory (RPT, Crocce & Scoc-
cimarro 2006) or Closure Theory (Taruya et al. 2009) have shown
to be much more accurate (see Carlson et al. 2009, for a thorough
comparison). In particular, Closure Theory predictions are found
to match large N-body simulation real-space power spectra to the
percent-level up to k = 0.2 for z > 0.5 (Taruya et al. 2009).

In Fig. 1 and 2 we confront the P
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calibrated on
N-body simulations by Lawrence et al. (2010) and Jennings et al.
(2011) with Closure Theory 2-loop analytical predictions at z = 0

and z = 1. We find that all power spectra agree very well below
k ' 0.2 and k ' 0.3 respectively for the two redshifts considered,
except in the case of P
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for which they systematically differ by
about 10%. While all other power spectra match on linear scales,
the P
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fitting formula from Jennings et al. (2011) stays somewhat
below (dotted lines in the figures). We find that by multiplying the
latter by a factor of 1.1 one obtains an excellent match with Clo-
sure Theory predictions on both linear and non-linear scales (solid
lines in the figures). We will then adopt this correcting factor in the
following when calculating the redshift-space distortions models.

It is noticeable that Closure Theory breaks down at lower
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where we defined uk(r) = �vk(r)/(faH(a)) with f being the
linear growth rate. The linear growth rate parameter is defined as
the logarithmic derivative of the linear growth factor D(a) and
given by f(a) = d lnD/d ln a. To a very good approximation it
has a generic form (Wang & Steinhardt 1998; Linder 2005),

f(a) ' ⌦

m

(a)� (4)

where
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(a) =
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m,0

a3

H2

0
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. (5)

In this parametrisation, while ⌦
m

characterises the mass content in
the Universe, the exponent � directly relates to the theory of gravity
(e.g. Linder 2004). General Relativity scenarios have � ' 0.55.

From Eq. 2 and Eq. 3, one can write the redshift-space density
field as,
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. (6)

One usually assumes an irrotational velocity field for which
uk(r) = @k�

�1✓(r) and where ✓(r) = r · v(r) is the veloc-
ity divergence field and � denotes the Laplacian. In that case Eq. 6
can be recast,
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In Fourier space, it is noticeable that @2

k�
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= (kk/k)
2

= µ2

with µ being the cosine of the angle between the line-of-sight and
the separation vector. Therefore, one can write the redshift-space
density field (Scoccimarro et al. 1999) as,

�s(k, µ) =

Z
d3s

(2⇡)3
e�ik·s�s(s) (8)

=

Z
d3r

(2⇡)3
e�ik·re�ikfµ

[�(x) + µ2f✓(x)] (9)

and the redshift-space power spectrum as,

P s

(k, µ) =

Z
d3r

(2⇡)3
e�ik·r

D
e�ikfµ�uk⇥

[�(x) + µ2f✓(x)][�(x0
) + µ2f✓(x0

)]

↵
(10)

where in the latter equation, �uk = uk(x) � uk(x
0
) and r =

x � x

0. The redshift-space power spectrum given in Eq. 10 is al-
most exact, the only approximation which has been done is to as-
sume that all object line-of-sight separations are parallel. This ap-
proximation is valid for samples with pairs covering angles typ-
ically lower than 10

� (Matsubara 2000). Eq. 10 captures all the
different regimes of distortions. While the terms in square brackets
describe the squashing effect or “Kaiser effect” which leads to an
enhancement of clustering on large scales due to the coherent infall
of mass towards overdensities, the exponential prefactor is respon-
sible to some extent for the Fingers-of-God effect (FoG, Jackson
1972) which disperses objects along the line-of-sight due to ran-
dom motions in virialised structures. Scoccimarro (2004) proposed
a simple ansatz for the redshift-space anisotropic power spectrum
by making the assumption that the exponential prefactor and the
term involving the density and velocity fields can be separated in
the ensemble average. In that case Eq. 10 simplifies to,

P s

(k, µ) = e�(fkµ�v)
2 ⇥

P
��

(k) + 2µ2fP
�✓

(k) + µ4f2P
✓✓

(k)
⇤
,

(11)
where P

��

, P
�✓

, P
✓✓

are respectively the non-linear mass density-
density, density-velocity divergence, and velocity divergence-
velocity divergence power spectra and �

v

is the pairwise velocity

dispersion defined as,

�2

v

=

1

6⇡2

Z
P
✓✓

(k)dk. (12)

It is found that this model captures most of the distortion fea-
tures predicted by N-body simulations (Scoccimarro 2004; Jen-
nings et al. 2011) although it breaks down in the non-linear regime
(Percival & White 2009; Taruya et al. 2010). Note that in the linear
regime where P

��

= P
�✓

= P
✓✓

= P and in the limit where k�
v

tends to zero, one recovers the original Kaiser (1987) formula,

P s

(k, µ) = [1 + 2µ2f + µ4f2

]P (k), (13)

derived from linear-order calculations.
In principle, the exponential prefactor and the term involving

the density and velocity fields in Eq. 10, which we will refer to as
the damping and Kaiser terms in the following, cannot be treated
separately. Additional terms may arise in Eq. 11 from the coupling
between the exponential prefactor and the velocity divergence and
density fields. Taruya et al. (2010) proposed an improved model
that takes into account these couplings, adding two correction terms
C

A

and C
B

to Scoccimarro (2004)’s formula such as,

P s

(k, µ) = D(kµ�
v

)

⇥
P
��

(k) + 2µ2fP
�✓

(k) + µ4f2P
✓✓

(k)

+C
A

(k, µ; f) + C
B

(k, µ; f)] , (14)

whose perturbative expressions are given in their appendix A. In
the improved model, the exponential prefactor has been replaced
by an arbitrary functional form D(kµ�

v

) for which �
v

is an ef-
fective pairwise velocity dispersion parameter that can be fitted for.
Taruya et al. (2010) showed that while adopting a Gaussian or a
Lorentzian for the damping function and letting �

v

free, one im-
proves dramatically the fit to the redshift-space power spectrum in
large dark matter simulations, particularly on translinear scales.

The function D(kµ�
v

) damps the power spectra in the Kaiser
term but also partially mimics the effects of the pairwise velocity
distribution (PVD) in virialised systems, which translate into the
FoG seen in the anisotropic power spectrum and correlation func-
tion on small scales. This is analogous to the phenomenological
dispersion model proposed in the early nineties (e.g. Fisher et al.
1994; Peacock & Dodds 1994) in which the linear Kaiser model
in configuration space (Hamilton 1992) is radially convolved with
a PVD model to reproduce the FoG elongation on small scales, as
for the early streaming model (Peebles 1980).

There is however not any simple general functional form for
the PVD that matches all scales for all types of tracers. The shape
of the PVD is found to depend on galaxy physical properties and
halo occupation (Li et al. 2006; Tinker et al. 2006), and its asso-
ciated pairwise velocity dispersion to vary with scale, in particular
at small separations (e.g. Hawkins et al. 2003; Cabré & Gaztañaga
2009b). It can be shown mathematically that the PVD is in fact not
a single function but rather an infinite number of PVD correspond-
ing to different scales and angles between velocities and separation
vectors (Scoccimarro 2004). In practice however, the use of an ex-
ponential distribution, a Gaussian or other forms with more degrees
of freedom (e.g. Tang et al. 2011; Kwan et al. 2012) shows to be
very useful to fit the residual small-scale distortions remaining once
the large-scale Kaiser distortions are accounted for, unless one is
interested in modelling the very small highly non-linear scales.

2.2 Configuration space

The redshift-space anisotropic two-point correlation function can
be obtained by Fourier-transforming the anisotropic redshift-space
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where we defined uk(r) = �vk(r)/(faH(a)) with f being the
linear growth rate. The linear growth rate parameter is defined as
the logarithmic derivative of the linear growth factor D(a) and
given by f(a) = d lnD/d ln a. To a very good approximation it
has a generic form (Wang & Steinhardt 1998; Linder 2005),
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In this parametrisation, while ⌦
m

characterises the mass content in
the Universe, the exponent � directly relates to the theory of gravity
(e.g. Linder 2004). General Relativity scenarios have � ' 0.55.

From Eq. 2 and Eq. 3, one can write the redshift-space density
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with µ being the cosine of the angle between the line-of-sight and
the separation vector. Therefore, one can write the redshift-space
density field (Scoccimarro et al. 1999) as,
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where in the latter equation, �uk = uk(x) � uk(x
0
) and r =
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0. The redshift-space power spectrum given in Eq. 10 is al-
most exact, the only approximation which has been done is to as-
sume that all object line-of-sight separations are parallel. This ap-
proximation is valid for samples with pairs covering angles typ-
ically lower than 10

� (Matsubara 2000). Eq. 10 captures all the
different regimes of distortions. While the terms in square brackets
describe the squashing effect or “Kaiser effect” which leads to an
enhancement of clustering on large scales due to the coherent infall
of mass towards overdensities, the exponential prefactor is respon-
sible to some extent for the Fingers-of-God effect (FoG, Jackson
1972) which disperses objects along the line-of-sight due to ran-
dom motions in virialised structures. Scoccimarro (2004) proposed
a simple ansatz for the redshift-space anisotropic power spectrum
by making the assumption that the exponential prefactor and the
term involving the density and velocity fields can be separated in
the ensemble average. In that case Eq. 10 simplifies to,
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velocity divergence power spectra and �
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is the pairwise velocity

dispersion defined as,

�2

v

=

1

6⇡2

Z
P
✓✓

(k)dk. (12)

It is found that this model captures most of the distortion fea-
tures predicted by N-body simulations (Scoccimarro 2004; Jen-
nings et al. 2011) although it breaks down in the non-linear regime
(Percival & White 2009; Taruya et al. 2010). Note that in the linear
regime where P
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= P and in the limit where k�
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tends to zero, one recovers the original Kaiser (1987) formula,
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(k, µ) = [1 + 2µ2f + µ4f2

]P (k), (13)

derived from linear-order calculations.
In principle, the exponential prefactor and the term involving

the density and velocity fields in Eq. 10, which we will refer to as
the damping and Kaiser terms in the following, cannot be treated
separately. Additional terms may arise in Eq. 11 from the coupling
between the exponential prefactor and the velocity divergence and
density fields. Taruya et al. (2010) proposed an improved model
that takes into account these couplings, adding two correction terms
C

A

and C
B

to Scoccimarro (2004)’s formula such as,
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whose perturbative expressions are given in their appendix A. In
the improved model, the exponential prefactor has been replaced
by an arbitrary functional form D(kµ�

v

) for which �
v

is an ef-
fective pairwise velocity dispersion parameter that can be fitted for.
Taruya et al. (2010) showed that while adopting a Gaussian or a
Lorentzian for the damping function and letting �

v

free, one im-
proves dramatically the fit to the redshift-space power spectrum in
large dark matter simulations, particularly on translinear scales.

The function D(kµ�
v

) damps the power spectra in the Kaiser
term but also partially mimics the effects of the pairwise velocity
distribution (PVD) in virialised systems, which translate into the
FoG seen in the anisotropic power spectrum and correlation func-
tion on small scales. This is analogous to the phenomenological
dispersion model proposed in the early nineties (e.g. Fisher et al.
1994; Peacock & Dodds 1994) in which the linear Kaiser model
in configuration space (Hamilton 1992) is radially convolved with
a PVD model to reproduce the FoG elongation on small scales, as
for the early streaming model (Peebles 1980).

There is however not any simple general functional form for
the PVD that matches all scales for all types of tracers. The shape
of the PVD is found to depend on galaxy physical properties and
halo occupation (Li et al. 2006; Tinker et al. 2006), and its asso-
ciated pairwise velocity dispersion to vary with scale, in particular
at small separations (e.g. Hawkins et al. 2003; Cabré & Gaztañaga
2009b). It can be shown mathematically that the PVD is in fact not
a single function but rather an infinite number of PVD correspond-
ing to different scales and angles between velocities and separation
vectors (Scoccimarro 2004). In practice however, the use of an ex-
ponential distribution, a Gaussian or other forms with more degrees
of freedom (e.g. Tang et al. 2011; Kwan et al. 2012) shows to be
very useful to fit the residual small-scale distortions remaining once
the large-scale Kaiser distortions are accounted for, unless one is
interested in modelling the very small highly non-linear scales.

2.2 Configuration space

The redshift-space anisotropic two-point correlation function can
be obtained by Fourier-transforming the anisotropic redshift-space
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the observed recent acceleration of the expansion of the Universe
(Riess et al. 1998; Perlmutter et al. 1999). This degeneracy can be
lifted by measuring the growth rate at different epochs (Peacock
et al. 2006; Albrecht et al. 2006). Indeed, scenarios with similar
expansion history but different gravity or type of dark energy will
have a different rate of structure growth resulting from different
effective gravity strength in action. This makes redshift-space dis-
tortions measured from large spectroscopic surveys a very efficient
probe to test cosmology, at the same level as BAO and cosmolog-
ical microwave background (CMB) anisotropies. In fact, although
this effect is known since the late eighties (Kaiser 1987), its use-
fulness as a probe of dark energy and modified gravity has been
realised only recently (Guzzo et al. 2008).

Measuring the growth rate of structure from redshift-space
distortions is however non trivial. The linear theory formalism for
the power spectrum was first derived by Kaiser (1987) (see Hamil-
ton 1992, for its configuration-space counterpart). Its validity is
however limited to very large scales as it lacks a description of
small-scale non-linear fluctuations. This model has been extended
to quasi- and non-linear scales in the early nineties using the earlier
ideas of the “streaming model” (Peebles 1980), in which the lin-
ear correlation function is convolved along the line-of-sight with a
pairwise velocity distribution (Fisher et al. 1994; Peacock & Dodds
1994). This enables one to approximately reproduce the Fingers-of-
God small-scale elongation (Jackson 1972). Fitting functions cal-
ibrated on simulations have also been proposed for this purpose
(Hatton & Cole 1999; Tinker et al. 2006). Such extension of the lin-
ear model, usually referred as the “dispersion model”, has been ex-
tensively used to measure the growth rate of structure f or the dis-
tortion parameter � = f/b

L

from redshift surveys, using measure-
ments of both redshift-space correlation function (Peacock et al.
2001; Hawkins et al. 2003; Zehavi et al. 2005; Ross et al. 2007;
Okumura et al. 2008; Guzzo et al. 2008; da Ângela et al. 2008;
Cabré & Gaztañaga 2009a,b; Samushia et al. 2011b) and power
spectrum (Percival et al. 2004; Tegmark et al. 2004, 2006; Blake
et al. 2011a). We refer the reader to Hamilton (1998) for a review
of older studies. Although generally the dispersion model is found
to be a good fit on linear and quasi-linear scales (Percival & White
2009; Blake et al. 2011a), it breaks down in the non-linear regime
(Taruya et al. 2010; Okumura & Jing 2011). In particular, it has
been shown that it introduces systematic errors of about 10� 15%

on the growth rate parameter (e.g. Taruya et al. 2010; Okumura &
Jing 2011; Bianchi et al. 2012), of the order of or greater than the
statistical errors expected from on-going and prospected very large
spectroscopic surveys such as WiggleZ (Drinkwater et al. 2010),
GAMA (Driver et al. 2011), VIPERS (Guzzo et al. 2012), BOSS
(White et al. 2011), Euclid (Laureijs et al. 2011), or BigBOSS
(Schlegel et al. 2011). In particular, Euclid, the recently selected
ESA dark energy mission, should be able to constrain the growth
rate at the percent level (Wang et al. 2010; Samushia et al. 2011a;
Majerotto et al. 2012). There is therefore a strong need to go beyond
the dispersion model, in order to bring systematic errors below this
expected level of precision, i.e. measure the growth rate parameter
in an unbiased way. This is particularly crucial to be able to disen-
tangle different models of gravity. For instance, modified-gravity
models with Dark Matter-Dark Energy time-dependent or constant
coupling predict variations from General Relativity on the growth
rate smaller than 10% (Guzzo et al. 2008).

Work in this direction started since quite some time, concen-
trating first on describing the redshift-space clustering and dynam-
ics of dark matter. Scoccimarro (2004) demonstrated that the dis-
persion model gives rise to unphysical distributions of pairwise ve-

locities and proposed an ansatz that accounts, to some extent, for
the non-linear coupling between the velocity and the density fields.
This latter model has been shown to provide a better match to the
observed redshift-space power spectrum in dark matter simulations
(Scoccimarro 2004; Jennings et al. 2011) and has later on been re-
fined by Taruya et al. (2010). Further approaches have also been
proposed while completing this paper (Seljak & McDonald 2011;
Reid & White 2011; Cai & Bernstein 2012), but we shall not dis-
cuss them in this analysis.

All mentioned advanced redshift-space distortions models
have been tested so far only on the redshift-space power spectra
of dark matter and dark matter haloes, as extracted from large N-
body simulations (Kwan et al. 2012; Reid & White 2011; Oku-
mura et al. 2012; Nishimichi & Taruya 2011). This is quite differ-
ent from a real survey, in which the most useful tracers of mass, the
galaxies, are in general biased with respect to the underlying den-
sity field through a bias which is generally non-linear and scale-
dependent. The performance of redshift-space distortions models
applied to galaxy populations with a priori unknown biases, has to
be precisely investigated. This is the aim of this paper, in which
we confront non-linear models of redshift-space distortions for the
anisotropic two-point correlation function in the case of realistic
galaxy samples. This is done in the framework of the concordant
⇤CDM cosmological model. We study the ability of these mod-
els to recover the linear growth rate of structure and their range
of applicability. Furthermore we investigate the effects of galaxy
non-linear spatial and velocity biases and quantify how the latter
affect the estimated linear growth rate for differently biased galaxy
populations.

The paper is organised as follows. In Sect. 2, we present the
redshift-space distortions formalism and how models can be imple-
mented in practice. In Sect. 3, we present the comparison between
the different models and study the effect of galaxy non-linear bias.
In Sect. 4, we investigate the impact of neglecting galaxy veloc-
ity bias in the modelling. In Sect. 5, we summarise our results and
conclude.

2 REDSHIFT-SPACE DISTORTIONS THEORY

2.1 Fourier space

The peculiar velocity v alters objects apparent comoving position
s from their true comoving position r, as

s = r +

vk(r)êk

aH(a)
, (1)

where H(a) is the Hubble parameter, a is the scale factor, and êk is
the line-of-sight unit vector. The redshift-space density field �s(s)
can be obtained from the real-space one by requiring mass conser-
vation, i.e. [1 + �s(s)] d3s = [1 + �(r)] d3r, as

�s(s) = [1 + �(r)]

����
d3s

d3r

����
�1

� 1. (2)

In the following we shall work in the plane-parallel approximation
and in this limit, the Jocobian of the real- to redshift-space trans-
formation can be simply written as,

����
d3s

d3r

���� = 1� f@kuk, (3)

where we defined uk(r) = �vk(r)/(faH(a)) with f being the
linear growth rate. The linear growth rate parameter is defined as
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the logarithmic derivative of the linear growth factor D(a) and
given by f(a) = d lnD/d ln a. To a very good approximation it
has a generic form (Wang & Steinhardt 1998; Linder 2005),

f(a) ' ⌦

m

(a)� (4)

where

⌦

m

(a) =
⌦

m,0

a3

H2

0

H2

(a)
. (5)

In this parametrisation, while ⌦
m

characterises the mass content in
the Universe, the exponent � directly relates to the theory of gravity
(e.g. Linder 2004). General Relativity scenarios have � ' 0.55.

From Eq. 2 and Eq. 3, one can write the redshift-space density
field as,

�s(s) =
�
�(r) + f@kuk

� �
1� f@kuk

��1

. (6)

One usually assumes an irrotational velocity field for which
uk(r) = @k�

�1✓(r) and where ✓(r) = r · v(r) is the veloc-
ity divergence field and � denotes the Laplacian. In that case Eq. 6
can be recast,

�s(s) =
�
�(r) + f@2

k�
�1✓(r)

� �
1� f@2

k�
�1✓(r)

��1

. (7)

In Fourier space, it is noticeable that @2

k�
�1

= (kk/k)
2

= µ2

with µ being the cosine of the angle between the line-of-sight and
the separation vector. Therefore, one can write the redshift-space
density field (Scoccimarro et al. 1999) as,

�s(k, µ) =

Z
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(2⇡)3
e�ik·s�s(s) (8)

=

Z
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e�ik·re�ikfµ
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and the redshift-space power spectrum as,
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e�ikfµ�uk⇥
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)]
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where in the latter equation, �uk = uk(x) � uk(x
0
) and r =

x � x

0. The redshift-space power spectrum given in Eq. 10 is al-
most exact, the only approximation which has been done is to as-
sume that all object line-of-sight separations are parallel. This ap-
proximation is valid for samples with pairs covering angles typ-
ically lower than 10

� (Matsubara 2000). Eq. 10 captures all the
different regimes of distortions. While the terms in square brackets
describe the squashing effect or “Kaiser effect” which leads to an
enhancement of clustering on large scales due to the coherent infall
of mass towards overdensities, the exponential prefactor is respon-
sible to some extent for the Fingers-of-God effect (FoG, Jackson
1972) which disperses objects along the line-of-sight due to ran-
dom motions in virialised structures. Scoccimarro (2004) proposed
a simple ansatz for the redshift-space anisotropic power spectrum
by making the assumption that the exponential prefactor and the
term involving the density and velocity fields can be separated in
the ensemble average. In that case Eq. 10 simplifies to,
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where P
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are respectively the non-linear mass density-
density, density-velocity divergence, and velocity divergence-
velocity divergence power spectra and �

v

is the pairwise velocity
dispersion defined as,
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(k)dk. (12)

It is found that this model captures most of the distortion fea-
tures predicted by N-body simulations (Scoccimarro 2004; Jen-
nings et al. 2011) although it breaks down in the non-linear regime
(Percival & White 2009; Taruya et al. 2010). Note that in the linear
regime where P
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= P and in the limit where k�
v

tends to zero, one recovers the original Kaiser (1987) formula,
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]P (k), (13)

derived from linear-order calculations.
In principle, the exponential prefactor and the term involving

the density and velocity fields in Eq. 10, which we will refer to as
the damping and Kaiser terms in the following, cannot be treated
separately. Additional terms may arise in Eq. 11 from the coupling
between the exponential prefactor and the velocity divergence and
density fields. Taruya et al. (2010) proposed an improved model
that takes into account these couplings, adding two correction terms
C

A

and C
B

to Scoccimarro (2004)’s formula such as,
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(k, µ) = D(kµ�
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whose perturbative expressions are given in their appendix A. In
the improved model, the exponential prefactor has been replaced
by an arbitrary functional form D(kµ�

v

) for which �
v

is an ef-
fective pairwise velocity dispersion parameter that can be fitted for.
Taruya et al. (2010) showed that while adopting a Gaussian or a
Lorentzian for the damping function and letting �

v

free, one im-
proves dramatically the fit to the redshift-space power spectrum in
large dark matter simulations, particularly on translinear scales.

The function D(kµ�
v

) damps the power spectra in the Kaiser
term but also partially mimics the effects of the pairwise velocity
distribution (PVD) in virialised systems, which translate into the
FoG seen in the anisotropic power spectrum and correlation func-
tion on small scales. This is analogous to the phenomenological
dispersion model proposed in the early nineties (e.g. Fisher et al.
1994; Peacock & Dodds 1994) in which the linear Kaiser model
in configuration space (Hamilton 1992) is radially convolved with
a PVD model to reproduce the FoG elongation on small scales, as
for the early streaming model (Peebles 1980).

There is however not any simple general functional form for
the PVD that matches all scales for all types of tracers. The shape
of the PVD is found to depend on galaxy physical properties and
halo occupation (Li et al. 2006; Tinker et al. 2006), and its asso-
ciated pairwise velocity dispersion to vary with scale, in particular
at small separations (e.g. Hawkins et al. 2003; Cabré & Gaztañaga
2009b). It can be shown mathematically that the PVD is in fact not
a single function but rather an infinite number of PVD correspond-
ing to different scales and angles between velocities and separation
vectors (Scoccimarro 2004). In practice however, the use of an ex-
ponential distribution, a Gaussian or other forms with more degrees
of freedom (e.g. Tang et al. 2011; Kwan et al. 2012) shows to be
very useful to fit the residual small-scale distortions remaining once
the large-scale Kaiser distortions are accounted for, unless one is
interested in modelling the very small highly non-linear scales.

2.2 Configuration space

The redshift-space anisotropic two-point correlation function can
be obtained by Fourier-transforming the anisotropic redshift-space
power spectrum as,

⇠(r?, rk) =

Z
d3k

(2⇡)3
eik·sP s

(k, µ) =
X

l

⇠s
l

(s)L
l

(⌫) (15)
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Figure 5. Same as Fig. 4 but at redshift z = 0.1. Note the very different
behaviour of all estimators with respect to the z = 1 case.

rate by 3 � 7% and 5 � 8% at z = 1 and z = 0.1 respectively.
Finally, we note that model A with exponential damping (A-
EXP) applied to scales rmin

? < 10h

�1

Mpc, which is one of the
most commonly used model in the literature, performs worst,
systematically underestimating f by up to 10% in agreement
with recent analysis (e.g. Bianchi et al. 2012).

These results are qualitatively consistent with the power
spectrum analysis of Kwan et al. (2012), who show that for
dark matter only at z = 0, z = 0.5 and z = 1, C-GAUSS1

is the least biased model when fitting up to k
max

= 0.1. Our
tests show however that for galaxies, model C-EXP is less biased
than C-GAUSS. In fact the choice of damping function has only a
significant impact on model’s ability to handle small scales, with
the difference diminishing with increasing rmin

? given the similar
asymptotic behaviour of the two functional forms. Conversely, we
note that the Gaussian damping produces in general slightly lower
statistical errors than the exponential damping. These tend also to
be about 15% smaller for models A and B than for model C.

It is important to note that for rmin

? < 10h

�1

Mpc, the
accuracy with which f is recovered tends to deteriorate for
all models. This may be associated with the increase of non-
linearities in the clustering. In this regime, the assumption of
linear biasing breaks down and it becomes crucial to account
for non-linearities to recover unbiased measurements of the
growth rate, as we will discuss in the next sections.

3.3 Effect of galaxy scale-dependent bias

We now let the galaxy bias vary with scale in the models and
study whether this can improve the recovery of the growth
rate parameter, in particular when including scales below
10h

�1

Mpc in the fitting. In general, the galaxy bias in config-
uration space can be defined as,

b(r) =

✓
⇠
gg

(r)

⇠
��

(r)

◆
1/2

= b
L

b
NL

(r) (26)

where ⇠
gg

is the galaxy real-space auto-correlation function and
b
NL

(r) is the non-linear scale-dependent part of the bias. It is im-
portant to stress that ⇠

gg

(r) is directly measurable from observa-
tions by deprojecting the observed projected correlation function
w(r?) (Saunders et al. 1992). This procedure allows one to cor-
rectly recover the shape of ⇠

gg

(r) up to about 30h�1

Mpc (e.g.
Saunders et al. 1992; Cabré & Gaztañaga 2009b) while it can
possibly introduce noise. In principle the latter can increase
the statistical error but may not introduce any systematic bias
in the recovery of f , although this has to be investigated in
more details in practical applications. In the following we will
therefore make the assumption that ⇠

gg

(r) is known and use the
measured real-space ⇠

gg

(r) from the simulated catalogues to infer
b
NL

(r) to be used in the models. In fact, it is not necessary to know
the exact shape of ⇠

gg

(r) on scales larger than about 20 � 30 h

�1

Mpc, where one generally finds the galaxy bias to be almost scale-
independent and can thus safely assume b

NL

(r) = 1. A notable
exception is that of more non-linear objects, for which the scale
dependence may extend to larger scales (see section 3.3.2).

Fig. 8 shows the non-linear scale-dependent component of
galaxy bias, b

NL

(r), for the different galaxy populations in our
simulated catalogues at the two reference redshifts considered,
z = 1 and z = 0.1. In the previous section we considered only
catalogues of galaxies with L > L⇤, while in this figure we in-
troduce more extreme galaxy populations, which we analyse in the
following section. To define b

NL

(r), the linear bias b
L

has been
determined for each galaxy population by minimising the differ-
ence between ⇠

gg

and b2
L

⇠
��

on scales above r = 10h

�1

Mpc.

1 This model is referred to as Taruya++ with empirical damping in Kwan
et al. (2012)
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rate by 3 � 7% and 5 � 8% at z = 1 and z = 0.1 respectively.
Finally, we note that model A with exponential damping (A-
EXP) applied to scales rmin

? < 10h

�1

Mpc, which is one of the
most commonly used model in the literature, performs worst,
systematically underestimating f by up to 10% in agreement
with recent analysis (e.g. Bianchi et al. 2012).

These results are qualitatively consistent with the power
spectrum analysis of Kwan et al. (2012), who show that for
dark matter only at z = 0, z = 0.5 and z = 1, C-GAUSS1

is the least biased model when fitting up to k
max

= 0.1. Our
tests show however that for galaxies, model C-EXP is less biased
than C-GAUSS. In fact the choice of damping function has only a
significant impact on model’s ability to handle small scales, with
the difference diminishing with increasing rmin

? given the similar
asymptotic behaviour of the two functional forms. Conversely, we
note that the Gaussian damping produces in general slightly lower
statistical errors than the exponential damping. These tend also to
be about 15% smaller for models A and B than for model C.

It is important to note that for rmin

? < 10h

�1

Mpc, the
accuracy with which f is recovered tends to deteriorate for
all models. This may be associated with the increase of non-
linearities in the clustering. In this regime, the assumption of
linear biasing breaks down and it becomes crucial to account
for non-linearities to recover unbiased measurements of the
growth rate, as we will discuss in the next sections.

3.3 Effect of galaxy scale-dependent bias

We now let the galaxy bias vary with scale in the models and
study whether this can improve the recovery of the growth
rate parameter, in particular when including scales below
10h

�1

Mpc in the fitting. In general, the galaxy bias in config-
uration space can be defined as,

b(r) =

✓
⇠
gg

(r)

⇠
��

(r)

◆
1/2

= b
L

b
NL

(r) (26)

where ⇠
gg

is the galaxy real-space auto-correlation function and
b
NL

(r) is the non-linear scale-dependent part of the bias. It is im-
portant to stress that ⇠

gg

(r) is directly measurable from observa-
tions by deprojecting the observed projected correlation function
w(r?) (Saunders et al. 1992). This procedure allows one to cor-
rectly recover the shape of ⇠

gg

(r) up to about 30h�1

Mpc (e.g.
Saunders et al. 1992; Cabré & Gaztañaga 2009b) while it can
possibly introduce noise. In principle the latter can increase
the statistical error but may not introduce any systematic bias
in the recovery of f , although this has to be investigated in
more details in practical applications. In the following we will
therefore make the assumption that ⇠

gg

(r) is known and use the
measured real-space ⇠

gg

(r) from the simulated catalogues to infer
b
NL

(r) to be used in the models. In fact, it is not necessary to know
the exact shape of ⇠

gg

(r) on scales larger than about 20 � 30 h

�1

Mpc, where one generally finds the galaxy bias to be almost scale-
independent and can thus safely assume b

NL

(r) = 1. A notable
exception is that of more non-linear objects, for which the scale
dependence may extend to larger scales (see section 3.3.2).

Fig. 8 shows the non-linear scale-dependent component of
galaxy bias, b

NL

(r), for the different galaxy populations in our
simulated catalogues at the two reference redshifts considered,
z = 1 and z = 0.1. In the previous section we considered only
catalogues of galaxies with L > L⇤, while in this figure we in-
troduce more extreme galaxy populations, which we analyse in the
following section. To define b

NL

(r), the linear bias b
L

has been
determined for each galaxy population by minimising the differ-
ence between ⇠

gg

and b2
L

⇠
��

on scales above r = 10h

�1

Mpc.

1 This model is referred to as Taruya++ with empirical damping in Kwan
et al. (2012)
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sample log(M) range b̄lin b̄LPT n̄ (h�1Mpc)�3

high >13.387 2.67 2.79 7.55 ⇥ 10�5

low 12.484 - 12.784 1.41 1.43 4.04 ⇥ 10�4

HOD - 1.84 1.90 3.25 ⇥ 10�4

Table 1. Halo samples from N-body simulations. The first two samples
are defined by sharp cuts in FoF halo mass (linking length 0.168), while
the third sample contains all halos that host at least one galaxy in the mock
catalogues of White et al. (2011). This is equivalent to a catalogue of all
mock central galaxies and no satellite galaxies. The bias values b̄lin and
b̄LPT we list are derived by fitting the real space halo correlation function
to the linear theory and Lagrangian perturbation theory predictions for ⇠(r),
including scales r > 30 h�1Mpc. b̄lin assumes a scale-independent linear
bias, while b̄LPT is fit including the second order bias implied from the
peak background split (see Matsubara (2008b) for details).

and halos in N-body simulations, assuming a relation like Eq. 24,
but with a more general multiplicative damping term. Their proce-
dure does not work for halos unless they account for a higher order
term in perturbation theory which scales like b2B��✓.

Going beyond linear theory perturbatively introduces extra
“mode coupling” terms, some of which can be resummed into a
µ-dependent damping (Bharadwaj 1996; Eisenstein, Seo & White
2007; Crocce & Scoccimarro 2008; Matsubara 2008a,b; Taruya,
Nishimichi & Saito 2010). For example, in the formalism of Mat-
subara (2008a,b) the damping is exponential with an angular de-
pendence (k+ f kµẑ)2 or [1+ f ( f + 2)µ2] k2 and the mode-coupling
terms go up to µ8. However the range of validity of perturbation
theory is limited, and it clearly cannot be extended to the dynam-
ics of collapsed objects, so it is not clear how much guidance these
forms provide.

Another issue of utmost importance in the application to
galaxy surveys, but that was not addressed in most of these re-
cent perturbation theory studies, is the inclusion of bias. Heav-
ens, Matarrese, & Verde (1998) computed the redshift space power
spectrum for biased tracers in standard perturbation theory. This ap-
proach is complicated by the need to introduce a smoothing scale
by which to define local Eulerian biasing, and Roth & Porciani
(2011) found that this biasing scheme is not very accurate com-
pared with halos in N-body simulations. Finally, standard pertur-
bation theory cannot be used to predict the behaviour of the corre-
lation function because P1�loop

S PT (k) diverges for large k, which con-
tribute to ⇠(r) even for large r (see discussion in Section IIIB of
Matsubara 2008a).

Recently Matsubara (2008a,b) have addressed both of these
shortcomings of SPT by developing a Lagrangian perturbation the-
ory (LPT) description including non-linear local Lagrangian bias in
redshift space which does not require the introduction of a smooth-
ing scale, and is well-behaved at large k for ⇠(r) to be computed.
In Fig. 2, we compare the prediction from this theory to our N-
body simulation results for halo clustering for three different halo
masses given in Table 1. The bottom right panel shows good agree-
ment for both the monopole and quadrupole on BAO scales (see
also Padmanabhan, White & Cohn 2009; Noh, White & Padman-
abhan 2009). The upper left panel shows reasonable agreement for
⇠0 between the theory and simulations. However, the theory pre-
dictions for ⇠2 and ⇠4 do not fit the quasilinear scales of interest in
this paper (⇠ 30 � 80 h�1Mpc), and so a more accurate theory must
be developed in order to infer the peculiar velocity field amplitude
from halo clustering in redshift space.

Figure 3. The radial pairwise halo velocity probability distribution func-
tion for the HOD halo subsample in Table 1 for pair separations 30 h�1Mpc
< r < 31.5 h�1Mpc (solid curves) compared with a Gaussian distribu-
tion (dashed curves) with the same mean (�1.6 h�1Mpc) and variance
18 (h�1Mpc)2. The normalisation is arbitrary. While the halo PDF has clear
skewness and kurtosis, the PDF for dark matter particles in our simulation
has 30 per cent larger variance and exponential tails. The mean infall be-
tween dark matter particles (�0.9 h�1Mpc) is smaller than the more highly
biased halo samples.

2.5 A non-perturbative real-to-redshift space mapping: the
scale-dependent Gaussian streaming model

As perturbation theory does a good job of describing P�✓ and P✓✓
on the relevant scales (Carlson, White, & Padmanabhan 2009, see
also our section 5.1) we conjecture that the failure of perturba-
tion theory descriptions of the redshift space power spectra can
be traced to the inaccuracy of a perturbative description of the
real-to-redshift space mapping (Scoccimarro, Couchman, & Frie-
man 1999). Fisher (1995) derived the exact result for the redshift
space correlation function in the case where both density and ve-
locity fields are Gaussian and related to one another as in linear
theory (our Eq. 15). Thereafter, several authors (Bharadwaj 2001;
Scoccimarro 2004; Shaw & Lewis 2008) showed that there are sig-
nificant differences between the exact result and the Kaiser limit,
Eq. 6, which can be traced to additional assumptions inherent in
the Kaiser derivation. However, we found that this exact mapping
for Gaussian fields does not improve agreement with N-body sim-
ulation results for halo clustering in redshift space.

A principle object of interest in the study of redshift space
clustering statistics is the pairwise velocity probability distribution
function (PDF) P(vz, r), i.e., the probability that a pair with real
space separation r has relative LOS velocity vz. Even for the ex-
act result in the Gaussian case (Eq. 15), the corresponding pair-
wise velocity PDF is non-Gaussian; however, near its peak it can
be approximated by a Gaussian centred on µv12(r) (Scoccimarro
2004). By resumming the mean infall velocity term (/ µv12(r))
from Eq. 15 into the exponential, we recover a streaming model
expression that agrees to linear order with the Gaussian case, and
for which the corresponding pairwise velocity PDF’s mean and dis-
persion are correct:

1 + ⇠s
g(r�, r⇡) =

Z h
1 + ⇠r

g(r)
i

e�[r⇡�y�µv12(r)]2/2�2
12(r,µ) dy

q
2⇡�2

12(r, µ)
.

(25)
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Figure 9. Left panel: Pairwise halo infall velocities for the halo subsamples listed in Table 1 divided by the linear theory expectation (Eq. 7); the high
(circles) and low (triangles) bias bins are offset by ±10 per cent for clarity relative to the HOD sample (diamonds). Note that the expected vlin

12 (r) depends
on halo bias; we use the best fit LPT bias given in Table 1. The solid curves show the prediction for linearly-biased tracers from our perturbation theory
calculation, Eq. 27. Middle and right panels: Pairwise halo velocity dispersions measured from the simulations are shown as dotted curves for the directions
along and perpendicular to the pair separation vector. For �2

k (r) we subtract the square of the mean infall v2
12(r) to get the dispersion about the mean, and

account for this accordingly in the perturbation theory prediction. On large scales there is a small offset from the linear theory predictions (dashed curves). We
shift the measured dispersions by a constant value (lower dotted curves) to compare the scale-dependence with both linear theory (dashed) and perturbation
theory (solid; also shifted to agree with linear theory at r = 180 h�1Mpc). For �2?(r), the agreement between the perturbation theory calculation and the halo
dispersions in simulations is so good that the curves are difficult to distinguish in the figure.

Eq. 11, we present results for the velocity dispersion perpendicular
and parallel to the LOS, which can be combined to give the disper-
sion as a function of (r, µ2).

�2
12(r, µ2) =

D
(1 + b�(x))(1 + b�(x + r))(v`(x + r) � v`(x))2

E

h(1 + b�(x))(1 + b�(x + r))i (28)

We again separate the terms by their bias and scale dependence,
and provide explicit expressions in Appendix A:

h
1 + b2⇠(r)

i
�2

12(r, µ2) =

2
⇣D

(v`(x))2 � v`(x)v`(x + r)
E⌘
+ (29)

2b
D
�(x)(v`(x))2

E
+ (30)

2b
⇣D
�(x)(v`(x + r))2

E
� 2
D
�(x)v`(x)v`(x + r)

E⌘
+ (31)

+2b2
hD
�(x)�(x + r)(v`(x))2

E
�
D
�(x)�(x + r)v`(x)v`(x + r)

Ei
. (32)

The higher order terms in line 29 can be accounted for in the form
of Equations 9 and 10, but replacing Pr

m(k) with the perturbation
theory result for P✓✓(k). The term in line 30 evaluates to a con-
stant, which for our fiducial cosmological parameters is 13.24b f 2

(h�1Mpc)2. While the perturbation theory calculation overestimates
the amplitude of the effect, Fig. 9 does show a large scale off-
set between the linear theory velocity dispersions and those mea-
sured for halos in our simulations; the offset for our HOD sample
is ⇠ 1.5 (h�1Mpc)2. There is a slight dependence on halo mass,
with the high mass sample offset ⇠ 1.0 (h�1Mpc)2 and the low
mass sample offset ⇠ 2.2 (h�1Mpc)2. The offsets for the parallel
and perpendicular components are in agreement with each other
at the level of 0.1 (h�1Mpc)2. In a future paper we expect to ac-
commodate this offset into our theory along with other small-scale
isotropic dispersions due to redshift errors and fingers-of-god from
satellite galaxies. However, we point out that for halos, the small-
scale, incoherent velocity dispersion is much smaller than the linear
theory dispersion �2

v = 21 (h�1Mpc)2 that appears in Eq. 24.
Line 31 has many terms that depend on B�✓✓; we evaluate them

explicitly in the Appendix A. Finally, line 32 reduces to

b2⇠r
m(r)�2

12,lin(r, µ2) +
1
2

v2
12,lin(r)µ2 (33)

This shows that the pair-weighting factor cancels out to leading or-
der, and the dispersion should be increased along the separation
vector due to the linear infall. The middle and right panels of Fig. 9
compare the scale dependence of the HOD halo subsample veloc-
ity dispersions parallel and perpendicular to the LOS, respectively.
The upper dotted curves show the dispersions about the mean infall
measured from the halos in the simulations. To compare the scale
dependence, we subtract a constant from the measured velocity dis-
persions (lower dotted curves), forcing agreement with the linear
theory expectation (dashed curves) on the largest scales. The solid
curves show the perturbation theory expectation after subtracting
the expected mean infall contribution, hv12(r)i2 µ2, and a constant
to force agreement on the largest scales. As the figure shows, the
agreement between the scale-dependence of the dispersions pre-
dicted from perturbation theory and the simulations is excellent for
the HOD subsample. We find that it is only slightly worse in the
radial direction for the other mass bins.

6 ACCURACY OF THE PERTURBATION THEORY
SCALE-DEPENDENT GAUSSIAN STREAMING
MODEL

By combining the results in Section 5.1, using Eq. 25, we have an
analytic prediction for ⇠0,2,4. Because ⇠2 contains almost all of the
available information on f�8 (see Fig. 5), we focus on that quan-
tity here. Fig. 10 shows the same simulation results as in Fig. 6
for ⇠2 (symbols with errors) while the lines show the prediction of
the perturbation theory scale-dependent Gaussian streaming model.
While the agreement is excellent for the HOD halo subsample, the
accuracy of the model is worse than 2 per cent for scales smaller
than ⇠ 40 h�1Mpc. This disagreement can be traced almost entirely
to insufficient accuracy in the perturbation theory prediction for
v12(r). Replacing the perturbation theory prediction for v12(r) with

c� 0000 RAS, MNRAS 000, 1–15
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Figure 7. Real space correlation functions for the halo samples in Table
1. The high (low) bias bins are offset by ±10 per cent for clarity. The solid
curve shows the prediction of Matsubara (2008b) when we fit for the large
scale bias as a free parameter. For the dashed-dot curves, we show the Mat-
subara (2008b) prediction when we artificially set b2 = 0, just to show the
order of magnitude of the contribution from non-linear halo bias. Using the
linear theory covariance matrix, we find a good fit for scales r > 25 h�1Mpc
to our simulation results, which total 67.5 h�3Gpc3. BAO scales are not
shown here, but the fit is good on those scales as well.

found that the Eulerian local biasing scheme is not very accurate,
and it is not equivalent to a Lagrangian biasing scheme (Matsubara
2011). For these reasons, we perform our velocity calculations for
the simplest model of linearly biased tracers with bias b, which we
identify with the large scale bias we fit to the real space correlation
function using LPT.

5.1 Halo real space correlation function, ⇠r
h(r)

The Lagrangian perturbation theory prescription of Matsubara
(2008b) for describing local Lagrangian biased objects includes
both first and second order bias terms, which are related by the
peak-background split to the halo mass function. This theory pro-
vides a good description (accurate at the 1 per cent level) on
scales r > 25 h�1Mpc. We show this explicitly for scales r <
80 h�1Mpc in Fig. 7, and note that the fit is good on the full range
of scales we study (r < 180 h�1Mpc). If we fit the LPT predic-
tion to ⇠r

h(r) for separations 30 h�1Mpc < r < 180 h�1Mpc, we
find �2 = 93, 104, 119 for 99 degrees of freedom and one free
parameter (the large-scale halo bias) for the high, low, and HOD
halo subsamples, respectively. Fitting instead to linear theory gives
�2 = 212, 274, 403. In both cases we use the standard linear theory
with the Poisson sampling assumption to derive the covariance ma-
trix
D
�⇠(ri)�⇠(r j)

E
. To illustrate the amplitude of the second order

bias corrections for the halos of interest, we also plot the LPT pre-
diction when b2 is artificially set to zero (dashed-dot curve) com-
pared with the LPT prediction including nonzero b2 (solid curve);
the second order bias contribution to ⇠r

h is quite small for the linear
halo bias values we consider.

5.2 Mean halo infall velocities, v12(r)

A mean (pairwise halo) velocity along the pair separation vector
arises from the correlation of the density field with the velocity
field:

v12(r)r̂ =
h[1 + b�(x)][1 + b�(x + r)][v(x + r) � v(x)]i

h[1 + b�(x)][1 + b�(x + r)]i (26)

where b is the linear halo bias. In perturbation theory, the density
and velocity fields are written as a sum of terms (� = �1 + �2 +

�3 + ...), with the subscript denoting the order of their dependence
on the linear density field, �1(k). Up to fourth order in �1(k), there
are three distinct corrections to the linear theory expectation v12(r)
given in Eq. 7, each with a different dependence on bias:

h
1 + b2⇠r

m(r)
i

vPT
12 (r)r̂ = 2b h�1(x)v1(x + r)i +

2b
X

i>0

h�i(x)v4�i(x + r)i + 2b2
X

i, j>0

D
�i(x)� j(x + r)v4�i� j(x + r)

E
. (27)

The three h�iv4�ii terms arise from the perturbation theory correc-
tions to P�✓, and the bias dependence is the same as the linear theory
term, h�1v1i. The terms from three-point correlations

D
�i� jv4�i� j

E

scale with b2, so their contribution will be larger for more highly
biased tracers. Note that these terms are exactly the ones evaluated
in Appendix B of Tang, Kayo, & Takada (2011). We provide ex-
plicit expressions for all of these terms in Appendix A. Finally, the
pair-weighting correction, 1/[1 + b2⇠r

m(r)], will be larger at a given
scale for more biased objects. The relative contribution for these
three corrections is shown in Fig. 8 for b = 2. At least for b = 2
of interest to BOSS, the two-point corrections from P�✓ never dom-
inates, so only including the two-point corrections (as in Eq. 24)
will be a poor model for the redshift space power spectrum; we
should expect important contributions from the bispectrum as well
(Scoccimarro 2004; Taruya, Nishimichi & Saito 2010; Tang, Kayo,
& Takada 2011).

In the left panel of Fig. 9 we compare the deviations from
linear theory infall velocity predictions measured from our simu-
lations to our perturbation theory calculation. The expected v12(r)
depends on the halo bias, and for this we use the first order bias de-
duced from fitting the real-space halo clustering to the LPT model
of Matsubara (2008b); Table 1 indicates that the best fit LPT bias
can differ at the few percent level from the best fit linear bias. At
the percent level, Fig. 9 shows that the LPT bias predicts the correct
infall velocity amplitude on the largest scales. This confirms the
common assumption in the literature that “velocity bias” is small,
at least for halos in the bias range we have studied. Perturbation
theory provides a relatively good description of the departure from
linear theory. The difference between the simulations and perturba-
tion theory depend on halo bias and agree best for the HOD halo
subsample, which Fig. 7 indicates is the sample with the smallest
second-order bias. We note that there is good theoretical motivation
to expect the bias relevant to the matter-velocity cross-correlation
to differ from the one inferred from clustering, and have scale-
dependence (Desjacques & Sheth 2010). While including a more
complicated biasing model may improve agreement with the pair-
wise velocity statistics of halos, our results suggest that these cor-
rections are small on the scales of interest here.

5.3 Halo velocity dispersions, �2
12(r, µ2)

Analogous to Eq. 27, we compute the pair-weighted velocity dis-
persion. The result depends only on µ2 = cos2(�`r), where �`r is
the angle between the LOS and the pair separation vector. As in
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Figure 7. Real space correlation functions for the halo samples in Table
1. The high (low) bias bins are offset by ±10 per cent for clarity. The solid
curve shows the prediction of Matsubara (2008b) when we fit for the large
scale bias as a free parameter. For the dashed-dot curves, we show the Mat-
subara (2008b) prediction when we artificially set b2 = 0, just to show the
order of magnitude of the contribution from non-linear halo bias. Using the
linear theory covariance matrix, we find a good fit for scales r > 25 h�1Mpc
to our simulation results, which total 67.5 h�3Gpc3. BAO scales are not
shown here, but the fit is good on those scales as well.

found that the Eulerian local biasing scheme is not very accurate,
and it is not equivalent to a Lagrangian biasing scheme (Matsubara
2011). For these reasons, we perform our velocity calculations for
the simplest model of linearly biased tracers with bias b, which we
identify with the large scale bias we fit to the real space correlation
function using LPT.

5.1 Halo real space correlation function, ⇠r
h(r)

The Lagrangian perturbation theory prescription of Matsubara
(2008b) for describing local Lagrangian biased objects includes
both first and second order bias terms, which are related by the
peak-background split to the halo mass function. This theory pro-
vides a good description (accurate at the 1 per cent level) on
scales r > 25 h�1Mpc. We show this explicitly for scales r <
80 h�1Mpc in Fig. 7, and note that the fit is good on the full range
of scales we study (r < 180 h�1Mpc). If we fit the LPT predic-
tion to ⇠r

h(r) for separations 30 h�1Mpc < r < 180 h�1Mpc, we
find �2 = 93, 104, 119 for 99 degrees of freedom and one free
parameter (the large-scale halo bias) for the high, low, and HOD
halo subsamples, respectively. Fitting instead to linear theory gives
�2 = 212, 274, 403. In both cases we use the standard linear theory
with the Poisson sampling assumption to derive the covariance ma-
trix
D
�⇠(ri)�⇠(r j)

E
. To illustrate the amplitude of the second order

bias corrections for the halos of interest, we also plot the LPT pre-
diction when b2 is artificially set to zero (dashed-dot curve) com-
pared with the LPT prediction including nonzero b2 (solid curve);
the second order bias contribution to ⇠r

h is quite small for the linear
halo bias values we consider.

5.2 Mean halo infall velocities, v12(r)

A mean (pairwise halo) velocity along the pair separation vector
arises from the correlation of the density field with the velocity
field:

v12(r)r̂ =
h[1 + b�(x)][1 + b�(x + r)][v(x + r) � v(x)]i

h[1 + b�(x)][1 + b�(x + r)]i (26)

where b is the linear halo bias. In perturbation theory, the density
and velocity fields are written as a sum of terms (� = �1 + �2 +

�3 + ...), with the subscript denoting the order of their dependence
on the linear density field, �1(k). Up to fourth order in �1(k), there
are three distinct corrections to the linear theory expectation v12(r)
given in Eq. 7, each with a different dependence on bias:

h
1 + b2⇠r

m(r)
i

vPT
12 (r)r̂ = 2b h�1(x)v1(x + r)i +

2b
X

i>0

h�i(x)v4�i(x + r)i + 2b2
X

i, j>0

D
�i(x)� j(x + r)v4�i� j(x + r)

E
. (27)

The three h�iv4�ii terms arise from the perturbation theory correc-
tions to P�✓, and the bias dependence is the same as the linear theory
term, h�1v1i. The terms from three-point correlations

D
�i� jv4�i� j

E

scale with b2, so their contribution will be larger for more highly
biased tracers. Note that these terms are exactly the ones evaluated
in Appendix B of Tang, Kayo, & Takada (2011). We provide ex-
plicit expressions for all of these terms in Appendix A. Finally, the
pair-weighting correction, 1/[1 + b2⇠r

m(r)], will be larger at a given
scale for more biased objects. The relative contribution for these
three corrections is shown in Fig. 8 for b = 2. At least for b = 2
of interest to BOSS, the two-point corrections from P�✓ never dom-
inates, so only including the two-point corrections (as in Eq. 24)
will be a poor model for the redshift space power spectrum; we
should expect important contributions from the bispectrum as well
(Scoccimarro 2004; Taruya, Nishimichi & Saito 2010; Tang, Kayo,
& Takada 2011).

In the left panel of Fig. 9 we compare the deviations from
linear theory infall velocity predictions measured from our simu-
lations to our perturbation theory calculation. The expected v12(r)
depends on the halo bias, and for this we use the first order bias de-
duced from fitting the real-space halo clustering to the LPT model
of Matsubara (2008b); Table 1 indicates that the best fit LPT bias
can differ at the few percent level from the best fit linear bias. At
the percent level, Fig. 9 shows that the LPT bias predicts the correct
infall velocity amplitude on the largest scales. This confirms the
common assumption in the literature that “velocity bias” is small,
at least for halos in the bias range we have studied. Perturbation
theory provides a relatively good description of the departure from
linear theory. The difference between the simulations and perturba-
tion theory depend on halo bias and agree best for the HOD halo
subsample, which Fig. 7 indicates is the sample with the smallest
second-order bias. We note that there is good theoretical motivation
to expect the bias relevant to the matter-velocity cross-correlation
to differ from the one inferred from clustering, and have scale-
dependence (Desjacques & Sheth 2010). While including a more
complicated biasing model may improve agreement with the pair-
wise velocity statistics of halos, our results suggest that these cor-
rections are small on the scales of interest here.

5.3 Halo velocity dispersions, �2
12(r, µ2)

Analogous to Eq. 27, we compute the pair-weighted velocity dis-
persion. The result depends only on µ2 = cos2(�`r), where �`r is
the angle between the LOS and the pair separation vector. As in
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Figure 11. To check the redshift dependence of our model, we show
⇠2/⇠2,lin at different simulation snapshots z = 1 (circles), z = 0.55 (tri-
angles), and z = 0 (diamonds). In the upper panel, we select all halos above
a fixed minimum halo mass Mmin = 1013.387 h�1 M�. In the lower panel, we
vary the minimum halo mass included in the sample such that the sample
bias remains fixed at 2.8; the z = 0.55 sample (the ‘high subsample’ in pre-
vious plots) is the same in both panels. The solid lines are the predictions
from the Gaussian scale-dependent streaming model with input real space
clustering and velocity statistics measured from the N-body simulations (as
in Fig. 6).

the non-linear mapping depends strongly on halo bias. To see this
explicitly, one can expand Eq. 25 by assuming that the pairwise ve-
locity PDF P(vz; r) is a smooth and slowly varying function of r;
this procedure will be more accurate at small µ, where a smaller
range of real space separations contribute pairs at a given redshift
space separation. Eq. 53 of Scoccimarro (2004) does this in the case
of the exact Gaussian result, and the same terms (along with many
others) appear when the expansion is performed on our Eq. 25. We
have verified that the dominant non-linear correction term for ⇠0,2
in our bias range comes from the term �d/dy[⇠v12]:

�⇠mapping(r) = (µ2 � 1)
⇠(r)v12(r)

r
� µ2 d[⇠(r)v12(r)]

dr
. (34)

The upper curves in Fig. 12 are the same as the lower ones, but with
this extra term included to approximate the non-linear mapping
step; these predictions are in reasonable agreement with Eq. 25,
but performing the full integral is a noticeably better fit to the sim-
ulation results. What we wish to emphasise is that the non-linear
mapping produces a term (Eq. 34) that contributes to ⇠0 and ⇠2
and scales like b3. This is in disagreement with the recent results
of Tang, Kayo, & Takada (2011), who use a non-linear correction
term equivalent to the

D
�i� jv4�i� j

E
contribution in our Eq. 27. We

can see why that term (the dotted curve in Figure 8) provides a rea-
sonable fit to their simulation results at one value of b: its shape
roughly mimics our non-linear mapping term that dominates on
small scales. However, our more detailed analysis demonstrates

Figure 12. The predictions for ⇠2 for halos (b=2.8, solid; b=1.9, dotted;
b=1.4, dashed) for two different mappings between real and redshift space
using the simulation results for the non-linear real space clustering and ve-
locity statistics. The first mapping (lower curves at s = 30 h�1Mpc) is equiv-
alent the mapping assumed in the Kaiser formula (our Equations 16 through
18), while the second includes the dominant correction term (Eq. 34) from
the non-linear mapping, which scales like b3.

that many other terms are of comparable size to the one considered
in Tang, Kayo, & Takada (2011).

Okumura & Jing (2011) find that the value of � recovered
from massive halos b & 1.5 is relatively close to the expected lin-
ear value, but lower mass halos recover a smaller value compared
with linear theory. Fig. 12 illustrates why: for our central galaxy
sample (dotted curves), the non-linear effects of velocity suppres-
sion and real-to-redshift space mapping approximately cancel for
s > 30 h�1Mpc; at low halo bias, we expect the non-linear mapping
corrections to be small, and the measured ⇠2 should be closer to the
lower curves. Of course, the bias where this near-cancellation oc-
curs will depend on redshift, and because of the b3 correction term,
it will only be true in a limited range of bias values.

To be more quantitative, for the halo bias range we have stud-
ied (b = 1.4 � 2.8), fitting the Kaiser formula to ⇠0 and ⇠2 to derive
constraints on b and f on scales r ⇠ 30 h�1Mpc will bias the con-
straints on f by +2, -6, and -10 per cent for blin = 2.67, 1.84, 1.41,
respectively, under the assumption that the smallest scales included
dominate the signal-to-noise. These biases are already at the level
of current statistical errors.

While our simulations cannot reach halos with b ⇠ 1, our
analysis can shed some light on what behaviour to expect for
b ⇡ 0.8 � 1.2 halos of relevance to the WiggleZ survey (Blake, et
al. 2011) and more closely related to the perturbation theory stud-
ies for matter. Fig. 4 shows that the non-linear mapping should be
a small correction for r & 30 h�1Mpc, but that it still amplifies ⇠2
on smaller scales. If we evaluate our perturbation theory predic-
tions for b = 1, we find that the total correction to v12(r) can be
well-approximated by only the P�✓ term; however, the higher or-
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Models summary 

Model Type Parameters Input Rel. accuracy 
Dispersion Linear theory + 

damping 
f, σv, b Pδδ(k) 10% for galaxies 

Scoccimarro 2004 Standard approach f, σv, b 
 

Pδδ(k), Pδθ(k), 
Pθθ(k) 

5-8% for galaxies 

Taruya et al. 2010 Standard approach + 
PT 

f, σv, b 
 

Pδδ(k), Pδθ(k), 
Pθθ(k), CA(k), CB(k) 

5% for galaxies 

Seljak & McDonald 
2011 

Distribution function 
+ PT 

f, σv, b 
 

Tij, ... ? 
Reid & White 2011, 
Wang et al. 2013 

Gaussian streaming 
model + PT 

f, b Pgg(k) Few percent for LRG 
? for other galaxies 

Kwan, Lewis & 
Linder 2012 

Empirical f, B, b Pδδ, A(k), (B(k)), 
C(k) 

5% for haloes 
? for galaxies 

Linder & Samsing 
2013 

Empirical f, A(k), B(k), C(k), b Pδδ Few percent for DM 
? for galaxies 

Zhang et al. 2013 Standard approach f, b W2(k)=Pθθ(k)/
Pδθ(k) ? 


