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Why long wavelength fluctuations?
J Observational cosmology

Important information to access the early universe

Scale-invariance/Gaussian/Adiabatic, ...

—— Inflation

. Infrared divergence (IR) problem
Break down of predictability?

J Inmitial states of our universe




IR divergence from interactions

Massless field ¢ with A¢*
(ex) Inflaton(~ Adiabatic perturbation), Spin-2 graviton

J Two-point function with loop corrections

* [eading order

k k! (PP ) o< k3 Scale-invariant
® ®

e Next to leading order (1loop)

= G T Momentum ( Loop )integral
d’k
k3

> Logarithmic divergence

k' <¢2>free e

o~




Origin of secular growth

Which modes participate in loop corrections?
log a4

e

horizon scale

e—z'k:n

Pk ~ Sk Oscaillation

log k
4 >

a )
/ As inflation goes on,

/ more and more modes participate.
\

aH
IR CutOff <¢2>free = / d3k/k3 X 10ga(t)/a(tz)
H;
4 Logarithmic corrections




Cosmological perturbations

Perturbation around FRW G = Gl 3 Ot

. “Massless” fields GR

- gravitational held 0g,,, {

Spin-2 transverse traceless e

Spin-0 longitudinal =
C = R == de‘

o

Adiabatic perturbation jo =

- Coupled to longitudinal mode
of gravitational field
- multi-scalar fields ¢’ : .

Entropy perturbations S e

= =i

- behaves like a test field at a fixed
background
5




Outline

v 1. Origin of Infrared(IR) divergence problem

2. Beginning with the free theory

3. Initial state with interaction




Gauge modes 1n local universe

Inflation driven by a scalar field O

J Gauge conditions
* Time slicing §¢ = 0
Uniform field slicing — Fix time slices
e Spatial coordinates
hy = @)X ] 80m5 = by = 0
Residual gauge DOFs el T b 0
t — GH = eregh & = (0, &)

Poisson eq. A¢*=...

DOFs in boundary conditions
<«—> DOFs in changing invisible region




Gauge invariance 1n local universe

Cosmological fluctuations we observe 3should be gauge invariant.

Important for IR 1ssues!!

Past light-cone

Definition of fluctuation
) Q = ¢, 07ij
Averaged value e AdSXQ(x)/ /Ad?’x
Without changing 0Q, we can shift
QoQ-=ft), Q@—-Q—fk)




Gauge modes 1n local universe

Boundary conditions

7

Fix the boundary conditions of the local universe

—— Quantization in the local universe
* Break the global translation symmetry
* Hilbert space??

{ 1. Quantization at the whole universe

2. Construction of the gauge-invariant quantity




Gauge-1invariant operator

3D scalar curvature °R

o 3 GH = elegt = e

~

hx shcing §¢p = 0 L FCosi: R = SR(G_LEQZ)

. Correlation fns. of °R in geodesic normal coordinates
Y.U. &5 T. Tanaka (2010)

(°R°R)(l)  [: Geodesic distance between Pj and P
spatial line element di2 = 25 [657] ” dz'dx?

/3

{a:’& : Global coordinates = (X) —— [6_57] ij

X*: Geodesic normal coordinates

Gauge-invariant operator IR(X) = *R(z"(X))




Quantum state?

d Gauge invariant n-point functions

at the end of inflation ¢t =1¢ f
(I R(ts, z7) R(ts,vo) B - =, )} S Gt (21, w3)

-local
” ;tﬁ Xa) Non-loca

Causally connected region

e mmmmEEE e NS, ... ..
- -
- ~

Conditions on 1nitial states

* We request the locality of the n-point tns.
= IR regularity of the n-point fns.

<€—>» C(Connection to gauge-invariance
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1. Origin of Infrared (IR) divergence problem

v 2. Beginning with the free theory

3. Initial state with interaction




Beginning with free theory

Hint =
li : . i End of inflation
Turn on interactions
Interaction picture
Expands Heisenberg field ¢ by free field ¢
CHEX =it =)
Wi e o
e Unitary boundary conditions
CEx U X ) U(t, t’) unitary operator
[C(t X)7 ¢ (ta Y)] == [w(ta X): TCa)y (ta Y)} == Z5(3) (X = Y)




Retarded Green function

Another expression of G Ut et DU o OE it
Heisenberg equation

=S |c B = =

e Solution with the retarded Green fn.

/ a / &' Gz, ') SnL[C(2)]
LGr(z, z') = 6B (z — )

n-point fun. from the solution with the retarded Green fun.
agree with n-point fun. in the in-in formalism.




IR regularity condition
(ex) 2-point fn. up to one loop (0|9R(x1)9R(z2)| 0)
Y.U. &5 1T Tanaka(2012)

d3k tk-x
Y(@) = /(2#)3/2 (vkaxe™™ + h.c.) vacuum state dicES=0

—— S= ...could be divergent
._Q_‘ 7= T
X1 X2 ® ®

IR regularity condition

(019R(z1)" R(22)] 0)1100p ~ (0[27]0) x F

k

2
Ok [cg}k2(a—H) = akk3/2] Up(t) =0

i

Retarded integral ﬁﬁ}kfk<t) 8 / dt’ vk (t)UZ(t’) = C-C-]fk(t’)

i




Connection to gauge invariance

Residual gauge DOFs 5 Scale transformation

e s =k

| IR regularity conditions
i = Invariance under the scale transformation




Dilatation symmetry

Symmetry of action for C o= e e

s: constant parameter (in X)

— / T / L e e
Tt — e °x
., because C appears in S only in the form of ¢¢dz’
i =

e Dilatation symmetry should be thought of as a gauge DOF

in the local universe.

e Non-perturbative argument without use of slow-roll approx.




Hamiltonian & dilatation symmetry

Canonical transformation

d Equivalence of two systems
e [agrangian density
from dilatation sym. Lt =5t ==

e Hamiltonian density

Key to IR 1ssues!!
Hlz; () — 5] = Hlz; ()],




Invariance of vacuum

Y.U. &5 1. Tanaka (2012)

n-point functions calculated before/after the canonical
transformation agree with each other

(QC(@E e=ah) - (e )| Q)epn = {2 ¢(21) - Clan )| D)z

Beginning with free theory

3 > 2 :
e — / ¢ X (viaxe™ ™ +h.c.) U / (er)lg/Q rare s =hc)

k

# [‘C}_{’l’“2<a—[—1)2 =k E=312]c. (9kk3/2] Vi (t) =—¢,

IR regularity condition!!




IR regular initial condition — failed

No function vk can satisty both of Y.U. &3 T Tanaka (2012)

=R regularity condition/ Scaling Invariance

2
[ﬁg}kQ(i) + k_3/2k . (91{]{3/2] ’Uk(t) —=()

aH

2. Wronskian condition

5 )
Rl e e 5

F dition 1 512(]“)2 G 8£12(k)2 0
rom condition 1, RE\ g (3 P =

——  k732k . k3 %0 (t) = K73 %k - Oh k3 205 (8) = O

Incompatible with k - 0x (Wronskian condition)




Connection to gauge invariance

Residual gauge DOFs 5 Scale transformation

s e

b IR regularity conditions
. = Invariance under the scale transformation

Begging with free theory

li

Turn on interactions

Breaking the scaling symmetry!!




Outline

1. Origin of Infrared (IR) divergence problem

2. Beginning with the free theory

v 3. Imitial state with interaction




L€ prescription

Sending t;— - 0 1n CTP, 15 b
—3¢> |

i
(€ prescription provides a convergent expression by shutting off

contributions of vertexes at distant past.

t€ prescription selects the ground state

Ulto, t; ZUto, )e) (] 0) ) lad(el =

a)

b=l )0 — Tt ZUtO, ) ) (|0) ~ |€2)

t;——oo(l—ie) t;——oo(l—ie)

For constant Hamiltonian Ulto, t;)|a) ~ e e

where | Q > is the ground state of this system




L€ prescription 2

H.

Sending t;— - 0 1n CTP, int
—3¢> |

i
(€ prescription provides a convergent expression by shutting off

contributions of vertexes at distant past.

d n-point functions from the in-in formalism

(2 |¢(x1) - C(2n)| ) n:conformal time
> [ anuemesmen)-+- [ dnuite oy
e e e el s o
n — -ioo(1+ig) n — -ioo(1-ig)

By rotating time paths, all vertex integrals can be convergent.




Def. of Euclidean vacuum

= n-point functions <C (ZU 1) e C (xn)> are convergent

| in the limit #; — -0o(+ig) .
Remark 1

In the de Sitter limit, this definition gives the original
Euclidean vacuum, which agrees with the adiabatic
vacuum.

Remark 2

Fuclidean vacuum 1s unique and irrelevant to choices of

canonical variables. (¢, 7), (¢, 7)

Invariance under the scale transformation

IR regularity

\ 4

\ 4




Technical details

n-point functions for Euclidean vacuum  Y.U. &' T Tanaka (2012) -
' ORGSR e TR O
"'. 1S IR regular up to all orders 1n perturbatlon

* To cure UV behavmr, Damw 65 %0961/‘9 ( ]992 )

Rts, zt) — —de= P ((ts, e x") ¢ :local spatial average

Key ingredient

(<7 77)7 Hint [C(Qf)]
— s e

IR regular

After quantization,

~ ~ ~ ~ ~

Hznt[g(x)] = C(ﬂ?) S5 é(t), aLC(x)a atC(x)




Technical details 2
n-point functions for Euclidean vacuum VA i T e D
(QPRG,z R, 50) - TR 2 )10

e [f we take the canonical variable of ¢ , vertex integrals include
¢ with differentiation or in the form of ( —(

- Spatial derivative 6’,,;5 () — k; CNk
- Time derivative (9,55(:16) == (k/aH)zék
- Subtraction of E o |k|L5k L: Scale of local region

These suppression makes n-point fns. IR regular and also
makes irrelevant to change of outside the local region.




Rewvisit of secular growth

Which modes participate in loop corrections?
log a4

e

horizon scale

log k
>

IR suppression appears !!

/ ~ O(aH)

Naive IR cutoff

28




Concluding remarks

e Observable fluctuation should be gauge-invariant in the local
universe.

J Strong restriction on mitial states

e As long as we consider a finite initial time, the manifestly
unitary time evolution is not compatible with IR regularity
and the consistency of the canonical system.

e Taking Euclidean vacuum with i¢ prescription can provide
an IR regular prescription which 1s independent of outside
the observable region.




