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The S-matrix

The S-matrix is an invaluable tool for QFT on Minkowski space
@ gauge invariant
@ invariant under field redefinitions

o admits powerful theorems which reveal structure of Minkowski QFT":
Coleman-Mandula, Haag-Lopuszanksi-Sohnius, Weinberg-Witten, . ..

At a more mundane level, the S-matrix:
o allows clean comparison of different approaches, choices of gauge, etc.

@ is useful for resolving controversies, hastening advances in knowledge

In cosmological setting:
@ lack of an S-matrix (or equivalent) has been sorely felt for decades

@ remain controversies over the interpretations simple self-interacting
theories on fixed backgrounds as well as the more complicated case of
gravitational theories
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Introduction

The de Sitter S-matrix

In this talk we introduce the S-matrix for weakly-coupled quantum theories on
non-dynamical global de Sitter that may be computed order-by-order in
perturbation theory.
For massive scalar fields, we can verify that the S-matrix is:

@ unitary

e dS-invariant

@ invariant under perturbative field redefinitions

o transforms appropriately under C'PT

reduces to the usual S-matrix in the flat-space limit

We will offer preliminary evidence that a perturbative S-matrix — or similar
structure — exists for gauge fields and gravity.

Explain why we expect an analogous construction for QFTs on a Poincaré
chart.
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Introduction

Bulk unitarity, the S-matrix, and dS/CFT

Further motivation: understand how bulk unitarity constrains the asymptotic
behavior of bulk fields.

The S-matrix is unitary map H > H; it is an ideal tool for studying the
implications of unitarity.
Strategy:

bulk S-matrix +— asympt. behavior of +— dS/CFT
bulk correlators

Concrete dS/CFT realizations:

o Vasiliev dSy/CFTs [Anninos et. al 2011, Ng Strominger 2011, Anninos et. al
2012]

@ dSs/conformal gravity, [Maldacenta 2011]

e common feature: Euclidean CFT duals are not reflection-positive
(“unitary”)

Key question: how is bulk unitarity encoded in the Euclidean CFT?
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Outline

@ Five objections to the dS S-matrix
© Preliminaries

© The global de Sitter S-matrix

@ A simple model

© A puzzle in renormalized asymptotics

© Conclusions
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Five objections to the dS S-matrix
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Five objections to the dS S-matrix

Five objections to the dS S-matrix

@ The Minkowski S-matrix is defined using in/out perturbation theory, but
in/out perturbation theory in dS suffers from IR divergences. So this
definition does not work in de Sitter space. [Polyakov 2007, 2009, Akhmedov
2008, 2009]

@ There is no positive-definite energy-like conserved quantity in (global or
Poincaré) de Sitter space. As a result, 1-particle states can decay and all
particles are unstable. So there should be no viable asymptotic states.
[E.g., Nachtmann 1968, Myhrvold 1983, Boyanovsky 1996, Boyanovsky 2011].

@ The causal structure of global de Sitter space prevents any one observer
from interacting with a complete set of ingoing/outgoing states. Therefore
that the S-matrix is not experimentally accessible to a single observer and
need not necessarily be a well-defined object in a fundamental theory.
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Five objections to the dS S-matrix

Five objections to the dS S-matrix

@ The contracting phase of global de Sitter space tends to blueshift particles
to high energies. In a theory with dynamical gravity, many states which
are weakly-coupled near past infinity induce large gravitational
back-reaction near the minimal-radius sphere. Semi-classically, this
should result in gravitational collapse to a cosmological singularity. There
is thus no reason to expect weakly-coupled asymptotic states near the
future de Sitter boundary.

@ At least in string theory, all known de Sitter vacuua are at best
meta-stable. So one expects that mere particle excitations of a de Sitter
background cannot provide a complete set of outgoing states.
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Five objections to the dS S-matrix

Five objections to the dS S-matrix

@ The contracting phase of global de Sitter space tends to blueshift particles
to high energies. In a theory with dynamical gravity, many states which
are weakly-coupled near past infinity induce large gravitational
back-reaction near the minimal-radius sphere. Semi-classically, this
should result in gravitational collapse to a cosmological singularity. There
is thus no reason to expect weakly-coupled asymptotic states near the
future de Sitter boundary.

@ At least in string theory, all known de Sitter vacuua are at best
meta-stable. So one expects that mere particle excitations of a de Sitter
background cannot provide a complete set of outgoing states.

Response:

e Issues 4-5 involve dynamical gravity and/or string theory, are
non-perturbative in nature, and are not the subject of this talk.
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Five objections to the dS S-matrix

Five objections to the dS S-matrix

@ The causal structure of global de Sitter space, prevents any one observer
from interacting with a complete set of ingoing/outgoing states. Therefore
the S-matrix is not experimentally accessible to a single observer and
need not necessarily be a well-defined object in a fundamental theory.

Response:

@ True! But we can nevertheless hope that a de Sitter S-matrix provides a
useful theoretical tool, even if not required to exist.
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Five objections to the dS S-matrix

Five objections to the dS S-matrix

There remain the two technical concerns:

@ The Minkowski S-matrix is defined using in/out perturbation theory, but
in/out perturbation theory in dS suffers from IR divergences. So this
definition does not work in de Sitter space. [Polyakov 2007, 2009, Akhmedov
2008, 2009]

Key technical differences for dS S-matrix:

o We use an appropriate Schwinger-Keldysh perturbation theory rather
than “in-out”.

o Construct vacuum correlators first, construct particle states at finite time,
take t — £oo limit

o Guarantees particle states are perturbatively connected to vacuum.
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Five objections to the dS S-matrix

Five objections to the dS S-matrix

There remain the two technical concerns:

@ There is no positive-definite energy-like conserved quantity in (global or
Poincaré) de Sitter space. As a result, 1-particle states can decay and all
particles are unstable. So there should be no viable asymptotic states.
[E.g., Nachtmann 1968, Myhrvold 1983, Boyanovsky 1996, Boyanovsky 2011].

Key technical differences for dS S-matrix:

o For heavy fields asympt. particle states will be “unstable,” just like
“unstable” particle state in Minkowski.

o For very light scalars M2¢? = O(1) and gauge fields, “stable” asympt.
particle states exist [cf. Bros et al 2006 2008].

@ Asympt. particle states do not remain orthogonal = must construct
orthonormal bases of initial/final states from initial/final particle states.

v

I. Morrison (DAMTP) dS S-matrix 12 / 43



Outline

9 Preliminaries
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global de Sitter space

D-dimensional de Sitter manifold dSp:
dSp ={X eRP' | X - X =¢}.

dS isometry group is SO(D, 1).

Two global charts

ds? 1 9 9\ 19
relation to g = —1 time: 1 = sinh(¢/?)

ds? 1
% =72 [—4d72 —|—df2] , TER.
T

relation to conformal time: 7= —1/A

’I+
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Prelimine

scalar dS QFTs

Fields on de Sitter form representations of SO(D, 1).

For instance, for a free scalar field ¢, (x)

1 M?
‘CO[QSU] = —§VH¢UV”¢J(37) - TQS%(QU)
Define the weight:

M?*(o)? = —o(c+D—1), = a::_(D;1)+[(D;1)2
Complex o plane:
’ e
N
R ’
AN, |
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Preliminarie

scalar dS QFTs

1-particle states form UIRs T of SO(D, 1):

' "
- s
'
]

—l. 19,
: |
[ ile
@ principal series: (solid green, I'))
(D —1)? (D-1)

§M2€2, = o=-

+ip, peR, p=0,

@ complementary series: (solid blue, negative real line)

_1)2 _
0<M2£2<%7 = oe(—(D2 1),0>,

@ discrete series:

M?** = —n(n+D—1)forneNy, =_o=n.
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Preliminarie

Klein-Gordon modes

A basis of solutions to EOM:  u_z(z) = (@=PV/2f, 1 (n)Y;(Z) .

Modes of the same weight form an complete orthonormal set:

Sp.p, = —i / 45" (@) [u,z, @)V, (2)]

n=const.

= —itP=2(1 +772)D/2/dQD71(f) [ugil (x)?nuj;gz(m)]

n=const.

Asymptotics: as || — oo,

for(nl > 1) ~ Ko ()" + K_(gyp_1yp(n) TP,

e complementary series: two real decays, o weaker decay

e principal series: two decays n*(D*I)/H“‘p, peR
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Preliminaries

Klein-Gordon fields

For Klein-Gordon fields quantization is straight-forward. May introduce
time-independent ladder operators

aZE = —i/dZ”(f) [UJE(Z‘)?V¢O’(.’E):|

Canonical commutation relations:

o= lat 4t .
(prsa,) =0=[al ol o] Japzial ] =92z

Trivial S-matrix:
S=5"=1

@ asymptotic particle states form orthonormal basis for Fock space

@ asymptotic particle states enjoy particle interpretation on entire manifold
@ can choose final states = initial states

@ no particle production in this basis
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Preliminarie

The Hartle-Hawking state |€2) in interacting theories

This talk will focus on the dense set of states constructed from the
Hartle-Hawking state |2) (a.k.a. Bunch-Davies, a.k.a. Euclidean state) of
interacting theories.

Many ways to construct local correlators of [Q2): [Higuchi Marolf IM 2011]
@ on SP*L: construct SO(D + 1)-invariant state, analytically continue in
position space

@ in Poincaré chart: “in-in” Schwinger-Keldysh contour with
“Bunch-Davies” boundary conditions

@ in Static chart: thermal Schwinger-Keldysh contour with relativistic KMS
boundary condition

@ in global de Sitter: suitable Schwinger-Keldysh contour described in this
talk

Not equivalent to constructing a state at global dS Cauchy surface ¥,,, then
taking 17 — Fo00. [Krotov Polyakov 2011 vs. Marolf IM 2011]
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Preliminarie

The Hartle-Hawking state |€2) in interacting theories

Why focus on this set of states?
Positivity

e Under criteria that is reasonable for scalar QFTs, QFTs on dSp and S?
are related via the dS version of the Osterwalder-Shrader thm
[Schlingemann 2009]

e In D = 2 can religiously verify the analytic continuation between
Euclidean and Lorentzian correlators as well as causality, regularity,
positivity conditions [Frélich < 1985].

Cluster decomposition [Marolf IM 2011, Hollands 2011]

o Correlators of |2) enjoy a version of cluster decomposition associated to
large distances (timelike & acausal). If all x; are taken to large
separations from all y;:

((z1)p(22) - d(y1)d(y2) - - g = (P(21)B(22) - ) (S(Y1)P(Y2) - - g -

v
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Preliminaries

The Hartle-Hawking state |€2) in interacting theories

Why focus on this set of states?

A curved space notion of quantum stability [Marolf IM 2011, Hollands 2011]

@ The set of normalized states of the form
0= [ [ o) o) 9.
v Yn

has |Q2) as an attractor state for local operators in the asymptotic regions
of de Sitter :

(O(x1) .- d(zm))y = (D(21) .- P(@m))q -

o The existence of an attractor state provides a strong notion of stability
for QFT in curved spacetime, where a “lowest energy eigenstate” is
unavailable.

e The Reeh-Schlieder thm of curved spacetime [Stromaier et al. 2002] proves
that this set of states is dense on the Hilbert space containing |(2).
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The global de Sitter S-matrix

Outline

© The global de Sitter S-matrix
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The global de Sitter S-matrix

Summary of differences between dS and Minkowski
S-matrix

In most respects construction of dS S-matrix is similar to that of Minkowski
space.

Three key differences:

@ Time-dependant background = use Schwinger-Keldysh perturbation
theory to construct HH correlators. (Do not use “in-out” pert. thy.)

@ Lack of conserved energy = particle states do not remain orthogonal. We
explicitly construct orthonormal initial/final states.

@ IR divergences in naive LSZ formulation = add a “projection operator”
R, in construction of asymptotic states.

May understand S-matrix as a matrix of amplitudes of quantum states
constructed explicitly in dS.

May also define S-matrix by residues of poles in a suitable complex weight (o)
plane.
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The global de Sitter S-matrix

Asymptotic particle states

Consider a field ¢, (z) with:

@ Bare mass M?(o) >0
© mass gap (determined by the Lehmann-Kéllen weight)

Properties of initial (final) states [1),/; satisfied as 7 — —oo (+00):

© normalizable: |i/f<a"b>i/f| < 00
@ definite particle content labelled by dS UIRs

=

|a>l/f = \nl,ng,...,nk>i/f, TL:(O',L)
@ states transform as direct products of UIRs under dS group

U<g>|nl7n27 LR 7nk>2/f = ‘gnlagn27 LR 7gnk>i/f7 an = (m27 E/)

@ desire flat-space limit = initial/final vacuua are Hartle-Hawking state |(2)
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The global de Sitter S-matrix

Asymptotic particle states

Construction

LSZ prescription with addition of a “projection operator” R,

In1,n2,....nk)ip = lim ol (n)al,(n)...al (n)|Q),

n—Foo

ol ) = =i [ 42" (@) [un(0) ¥ B4 (2)]

)

n

Projection operator R,

R, ensures that ;,¢(alb), /f s free of power-law IR divergences.
o selects the “mass pole” part of ¢, (x)

o free fields: Ry, (2) = ¢o(x)

o theories of heavy fields R, can generally be ignored

Preserves the logarithmic IR divergences expected in perturbation theory
(which encode perturbative renormalization, anomalies, ... ).
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The global de Sitter S-matrix

Schwinger-Keldysh perturbation theory

Correlation functions of the HH state may be constructed explicitly in
Lorentzian dS using an appropriate Schwinger-Keldysh contour.

In Minkowski “in-out” construction:

/L\‘ 72‘}- IT*
t ) .
/ N /Z.' -

In diagrammatic expansion there is one type of vertex.
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The global de Sitter S-matrix

Schwinger-Keldysh perturbation theory

Correlation functions of the HH state may be constructed explicitly in
Lorentzian dS using an appropriate Schwinger-Keldysh contour.

In Poincaré “in-in” construction:

.
/7N s

In diagrammatic expansion there are two types of vertices.

.nl”” ;

I_
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The global de Sitter S-matrix

Schwinger-Keldysh perturbation theory

Correlation functions of the HH state may be constructed explicitly in
Lorentzian dS using an appropriate Schwinger-Keldysh contour.

In global dS construction:

t N—
/7 N /s, ::'-'f:
—

In diagrammatic expansion there are three types of vertices.
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The global de Sitter S-matrix

Orthonormalization

There exist non-vanishing contributions to particle states in same basis ;(a|b),.
E.g.,

Tt T Lt

I_

I I

~ ~

Give to each initial particle state |a), an order I(a), letting the vacuum |)
have the lowest order. Orthonormal initial basis {|A),} may be constructed as
follows:

B) = 10); = > ray<i1() 14); (AlD); 1(B) = I(b).

1/2°
[ 618): = Yraycxcn (A, ]
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The global de Sitter S-matrix

The S-matrix

S-matrix:
§ = {;(AIB).) J

Properties
@ The vacuum-to-vacuum amplitude is unity.

@ Covariance under the dS group:
HAIB); = ((AL|B); = (AU (9)U(9) IB); = ;{gAlgB); -

@ Behavior under CPT: ©5 = S~10

@ Invariance under perturbative field-redefinitions:

bo(x) = ¢o(x) +90(2), 9| < 1.

@ Unitarity: STS =1 and SST = 1. Equivalently, for S = 1 447 have the
Optical theorem

oAm T =TT
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Outline

@ A simple model
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A simple model

Model theory
Consider a theory of three massive scalars ¢;(x), i =1,2,3, on dSp:
L) = Lolgi] + Lint[¢] + Lo [0],

3 - —1)M?
£enld = Y [FE v 0w - DT D )] 4 o),

[Marolf IM 2010, Bros et. al 2006, 2008, Jatkar et. al 2011]
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A simple model

O(g) transition amplitude

At O(g) only tree-level amplitudes: L
When R, projectors may be ignored: \\{Vé
§(NsNa| N = (nmafnn)(? = ig / i (y) ‘
Y
T

e happens to agree with naive use of
LSZ

o Im as req. by Optical theorem 0zl

03

@ non-vanishing except possibly for
discrete configurations ;

i

L
0 2 4 6 8

Plot: (amplitude/ig) as a function of o0
M} with M3 3 =2, 1.25in D = 3.

My

Amplitude peaked “off-shell” at o1 = o9 + 03, M?(09 + 03) € C.
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O(g?) transition amplitudes

Optical theorem requires

ARl L |=Ey ‘fj

L &

2
2 2 2 1
ANIND P = ) = )P = 373" | (ngnafn)
Ly Lo
e contains 18 1-loop Schwinger-Keldysh diagrams
o Re part independent of UV counterterms

For generic configurations the 1-1 scattering amplitude contains an imaginary
part. = In Minkowski space, this indicates unstable particles.
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A puzzle in renormalized asymptotics

Outline

© A puzzle in renormalized asymptotics
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A puzzle in renormalized asymptotics

Asymptotic behavior of 2-pt. functions
For |mmn2| > 1, a free field 2-pt. function has asympt. behaviors:

Wo (21, 22) = (0] ¢ (21)ds(22) |0)
~ co(mn2)’(1 =21 - 22)°
e (oqp-1)(mme) TP = & - )~ (7P

Define fast/slow decays AL:

A= _—+D-1), AD =0
In interacting theory:
(0o (71) Do (72))g ~ ca, (Mmm2)+ (1 — Ty - Tp) ™+
+CA_ (Th’l?g)A7 (1 — fl . fg)A7 =+ ...
Expect

e new decay channels due to interactions, “intermediate states”

e A_ receives quantum corrections Ay = ano Ag? )
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A puzzle in renormalized asymptotics

Lehmann-Kallen form of the 2-pt. function

Write as contour integral in complex o plane: [Marolf & IM 2010, Hollands 2011]
(Ga(e0)n(w2)) = [ o)W, (a1, 22).
i

E.g., for a free theory in the principal series:

W, (21, 22) = Wy (z1, 22).

N

G

)

_' ______ | H
N\
‘ I
| e
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A puzzle in renormalized asymptotics

Lehmann-Kallen form of the 2-pt. function

Write as contour integral in complex o plane: [Marolf & IM 2010, Hollands 2011]
(Ga(e0)n(w2)) = [ o)W, (a1, 22).
i
E.g., for a free theory in the complementary series:

2u+D-1)
(h=0o)(p+o+D—1)

(0] 6o (1) (22) [0) = / W, 25) = Wy (21, 23).

: [ o
A\ o,

[}
I
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A puzzle in renormalized asymptotics

Lehmann-Kallen form of the 2-pt. function

Write as contour integral in complex o plane: [Marolf & IM 2010, Hollands 2011]

(60 (@1)60 (22)) = / )W (z1, 22).

m

E.g., at 1-loop:

(2p+ D — DII(p)

1-loop __
<¢0($1>¢0($2)> = /p‘ (,LL*O')Z(,LL+O'+Df I)ZWM(ml,xg).
[} N
X x li-
—elx ok - Q)

- %
x
— -

R
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A puzzle in renormalized asymptotics

Lehmann-Kallen form of the 2-pt. function

Write as contour integral in complex ¢ plane: [Marolf & IM 2010, Hollands 2011]

(60 (1) (2)) = / ()Wl 7).

E.g., after 1PI sum:

' "
X x lg-
|
]
—x-:-x--x-x-- Q)
' ]
A ox ox
| e
(2u+D —1)

<¢U(xl)¢a x2 hl(;op /
u

I. Morrison (DAMTP)
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W, (1, 22).
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A puzzle in renormalized asymptotics

Asymptotics again
May obtain asymptotic behavior (|n;72| > 1) from Lehmann-Kéllen
representation. Separate decays:
Wo (21, 72) = Ho (21, 72) + H (54 p—1)(71,72), |mme| > 1,
Hoy(21,29) = ¢o (mm2)” (1 = Z1 - #2)7 [L+ O((mm2) )],
e For H_(,1 p_1) may close integration contour to RHS = 0.

e For H,, may deform integration contour to LHS = obtain asymptotic
expansion from residues of poles.

' n
X x lg-
[}
1

—K—-IX- - %=X - Q)
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A puzzle in renormalized asymptotics

Asymptotics again
May obtain asymptotic behavior (|n;72| > 1) from Lehmann-Kéllen
representation. Separate decays:
Wo (21, 72) = Ho (21, 72) + H (54 p—1)(71,72), |mme| > 1,
Hoy(21,29) = ¢o (mm2)” (1 = Z1 - #2)7 [L+ O((mm2) )],
e For H_(,1 p_1) may close integration contour to RHS = 0.

e For H,, may deform integration contour to LHS = obtain asymptotic
expansion from residues of poles.
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A puzzle in renormalized asymptotics

Mass poles

Focusing only on the “mass poles” at y =0 and p = —(c + D — 1):
1

(20 +D —1)

—H(—(O’ +D — 1))80H_(J+D_1)($1, (EQ)

<¢0($1)¢0($2)>1_100p = H(U)aaHa(xlv -732) + H/(J)Ha(afla 1'2)

+II'(—(0 + D — 1))H_ (s p—1)(®1,%2) |,

determine pert. correction to weights AL ; equiv., shift in mass poles [Marolf IM
2010, Jatkar et al 2011, LeBlond in prep]

A+:U+(2(J’—I|—I—(_g)—]_)7 A_:—(U+D—1)—

(—(oc+ D —1))
(20+D—-1) ~

The self-energy II(1) depends on UV counterterms (a.k.a. renormalization
scheme), so let us seek a renormalization independent statement.

I. Morrison (DAMTP) dS S-matrix 36 / 43



A puzzle in renormalized asymptotics

Mass poles

Focusing only on the “mass poles” at =0 and p=—(c + D — 1):

-loo 1 !
(b0 (1) b0 (2)) P = Go+D-1) () 0s Wo (21, 2) + IT'(0)Wo (21, 22)
+ (o) —I(—(0c + D = 1)) 0 H_ (51 p—1) (1, T2)
—[Il'(o) = '(—(0c + D —1))] H_(U+D_1)(x17m2) + ...
o first two terms constitute mass and field renormalization.

II(p), IT' (1) depend on mass and field renormalization counterterms

o coefficients of third & forth independent of UV counterterms

these terms represent an additional, distinct renormalization of the fast
decay A_

(0) — II(— (o + D — 1))

Ay +A_=—-(D-1
++ ( )+ (20 +D —1)
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A puzzle in renormalized asymptotics

Puzzle

In all cases analysed, the perturbative correction to asymptotic behavior
satisfies

o) Mo+ D=1) _

Ar+A-=-(D-1)+ (20 +D—1) =

@ massive scalars, computed many ways [Marolf IM 2010, Jatkar et al 2011]
© massive fermions [LeBlond in prep]
@ Yang-Mills coupled to scalar

Since this appears generic it should be a consequence of some basic ingredient
in the QFT. What is this ingredient?

n (DAMTP) dS S-matrix 38 / 43



A puzzle in renormalized asymptotics

Effect on asymptotics (1PI summed correlators)

Renormalization of weights:

(o) —II(—(oc + D — 1))
(204+D—-1)

Af)+A(_2)=[ }so, =A_+A <—(D-1).
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A puzzle in renormalized asymptotics

Effect on asymptotics (1PI summed correlators)

Renormalization of weights:

(o) —II(—(oc + D — 1))
(204+D—-1)

Af)th(f)—{ }go, LA +A Z-(D-1).

[} N
Principal series fields: ! e
)
e renormalized A4 do not correspond to A Q¥
UIRs —- 10,
@ renormalized masses (self-energy) have QO *
imaginary part ! !
] ife
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A puzzle in renormalized asymptotics

Effect on asymptotics (1PI summed correlators)
Renormalization of weights:

(o) — I(—(o + D — 1))

Af)th(f)—{ }go, LA +A Z-(D-1).

(204+D—-1)
[} N
Principal series fields: ! e
)
e renormalized A4 do not correspond to A Q¥
UIRs —- 10,
@ renormalized masses (self-energy) have QO *
imaginary part ! !
] ife
N

'
Complementary series fields: :
]

e renormalized Ay remains in
complementary series

e renormalized mass M?(A ) real
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A puzzle in renormalized asymptotics

Back to S: O(g?) transition amplitudes

Can relate 1 — 1 scattering amplitude to self-energy II(x) (or Lehmann-Kéllen
weight): [Marolf IM 2010, Bros et. al 2006, 2008, Jatkar et. al 2011]

//ul T)u1 (2)(Os — ME) (O — M) (66 () o ()

B —I(—(c+D —1)) )
= — [ CEE ] (2log H + finite)

B [H’(a)—i—H’(—(a—i—D—l
(204+D —1)

—2Re ;(N;|Np){?

))] (finite),
with spacetime integrals regulated |7, |n| < H.

Coefficients are those of the renormalization-independent corrections to
asymptotics.

Optical theorem requires:

(o) —II(—(c + D — 1))
(20 +D —1) -

I. Morrison (DAMTP) dS S-matrix 40 / 43



A puzzle in renormalized asymptotics

Consequences of unitarity

Renormalization of weights:

(o) —II(—(c + D —1))
AP L AD = <0, =A_+A, <—(D-1
+ - (20 +D —1) = +s=( )
Principal series fields: ' n =
e renormalized A4 do not correspond to e
UIRs ' o
— B 9 AN
e renormalized masses (self-energy) have ] !
imaginary part : Xe—x
e “unstable” asymptotic particle states I :‘I';
. ' N
Complementary series fields: ) lo
e renormalized Ay remains in :
complementary series _:_,«_x_ -] .,__)O
e renormalized mass M?(A ) real ' .
e “stable” asymptotic particle states : :‘r‘
ile
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Conclusions

Review

The global dS S-matrix for massive fields at weak coupling:
@ unitary
o dS-invariant
@ invariant under perturbative field redefinitions
e transforms appropriately under C PT

@ reduces to the usual S-matrix in the flat-space limit

Construction has many subtle features:
e requires Schwinger-Keldysh correlators in Lorentz signature
e asymptotic states must be re-orthonormalized

e extract only mass pole part — involved for light fields (R,)

A detailed scalar model

e verified all properties to O(g?) which includes both tree and loop
interactions
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Review

Resolved a puzzle in renormalized asympt.

e district renormalization of fast- and slow- decays is a renormalization
scheme-independent consequence of bulk unitarity

e generic for any matter coupled to massive fields

Conjecture 1:

Distinct renormalization of fast- and slow- decays is generic, occurs in gauge
fields and gravity.

Conjecture 2:
There should exist an S-matrix for the Poincaré chart.

o from global perspective this is just a change of basis: initial states
described at .~ — initial states described on a cosmological horizon.

e construction explicitly in Poincaré could be delicate (UV subtleties)

on (DAMTP) dS S-matrix 43 / 43



Conclusions

Review

dS/CFT

@ hope: these results useful for understanding dS/CFT interpretation of
bulk states connected to the HH state

e advocate the strategy:

bulk S-matrix <— asympt. behavior of +— dS/CFT
bulk correlators
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