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Introduction

The S-matrix

The S-matrix is an invaluable tool for QFT on Minkowski space

gauge invariant

invariant under field redefinitions

admits powerful theorems which reveal structure of Minkowski QFT:
Coleman-Mandula, Haag-Lopuszanksi-Sohnius, Weinberg-Witten, . . .

At a more mundane level, the S-matrix:

allows clean comparison of different approaches, choices of gauge, etc.

is useful for resolving controversies, hastening advances in knowledge

In cosmological setting:

lack of an S-matrix (or equivalent) has been sorely felt for decades

remain controversies over the interpretations simple self-interacting
theories on fixed backgrounds as well as the more complicated case of
gravitational theories
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Introduction

The de Sitter S-matrix

In this talk we introduce the S-matrix for weakly-coupled quantum theories on
non-dynamical global de Sitter that may be computed order-by-order in
perturbation theory.

For massive scalar fields, we can verify that the S-matrix is:

unitary

dS-invariant

invariant under perturbative field redefinitions

transforms appropriately under CPT

reduces to the usual S-matrix in the flat-space limit

We will offer preliminary evidence that a perturbative S-matrix – or similar
structure – exists for gauge fields and gravity.

Explain why we expect an analogous construction for QFTs on a Poincaré
chart.
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Introduction

Bulk unitarity, the S-matrix, and dS/CFT

Further motivation: understand how bulk unitarity constrains the asymptotic
behavior of bulk fields.

The S-matrix is unitary map H 7→ H; it is an ideal tool for studying the
implications of unitarity.

Strategy:

bulk S-matrix ←→ asympt. behavior of ←→ dS/CFT
bulk correlators

Concrete dS/CFT realizations:

Vasiliev dS4/CFT3 [Anninos et. al 2011, Ng Strominger 2011, Anninos et. al

2012]

dS5/conformal gravity4 [Maldacenta 2011]

common feature: Euclidean CFT duals are not reflection-positive
(“unitary”)

Key question: how is bulk unitarity encoded in the Euclidean CFT?
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Five objections to the dS S-matrix

Five objections to the dS S-matrix

1 The Minkowski S-matrix is defined using in/out perturbation theory, but
in/out perturbation theory in dS suffers from IR divergences. So this
definition does not work in de Sitter space. [Polyakov 2007, 2009, Akhmedov

2008, 2009]

2 There is no positive-definite energy-like conserved quantity in (global or
Poincaré) de Sitter space. As a result, 1-particle states can decay and all
particles are unstable. So there should be no viable asymptotic states.
[E.g., Nachtmann 1968, Myhrvold 1983, Boyanovsky 1996, Boyanovsky 2011].

3 The causal structure of global de Sitter space prevents any one observer
from interacting with a complete set of ingoing/outgoing states. Therefore
that the S-matrix is not experimentally accessible to a single observer and
need not necessarily be a well-defined object in a fundamental theory.
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Five objections to the dS S-matrix

Five objections to the dS S-matrix

4 The contracting phase of global de Sitter space tends to blueshift particles
to high energies. In a theory with dynamical gravity, many states which
are weakly-coupled near past infinity induce large gravitational
back-reaction near the minimal-radius sphere. Semi-classically, this
should result in gravitational collapse to a cosmological singularity. There
is thus no reason to expect weakly-coupled asymptotic states near the
future de Sitter boundary.

5 At least in string theory, all known de Sitter vacuua are at best
meta-stable. So one expects that mere particle excitations of a de Sitter
background cannot provide a complete set of outgoing states.
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Five objections to the dS S-matrix

Five objections to the dS S-matrix

4 The contracting phase of global de Sitter space tends to blueshift particles
to high energies. In a theory with dynamical gravity, many states which
are weakly-coupled near past infinity induce large gravitational
back-reaction near the minimal-radius sphere. Semi-classically, this
should result in gravitational collapse to a cosmological singularity. There
is thus no reason to expect weakly-coupled asymptotic states near the
future de Sitter boundary.

5 At least in string theory, all known de Sitter vacuua are at best
meta-stable. So one expects that mere particle excitations of a de Sitter
background cannot provide a complete set of outgoing states.

Response:

Issues 4-5 involve dynamical gravity and/or string theory, are
non-perturbative in nature, and are not the subject of this talk.
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Five objections to the dS S-matrix

Five objections to the dS S-matrix

3 The causal structure of global de Sitter space, prevents any one observer
from interacting with a complete set of ingoing/outgoing states. Therefore
the S-matrix is not experimentally accessible to a single observer and
need not necessarily be a well-defined object in a fundamental theory.

Response:

True! But we can nevertheless hope that a de Sitter S-matrix provides a
useful theoretical tool, even if not required to exist.

I. Morrison (DAMTP) dS S-matrix 10 / 43



Five objections to the dS S-matrix

Five objections to the dS S-matrix

There remain the two technical concerns:

1 The Minkowski S-matrix is defined using in/out perturbation theory, but
in/out perturbation theory in dS suffers from IR divergences. So this
definition does not work in de Sitter space. [Polyakov 2007, 2009, Akhmedov

2008, 2009]

Key technical differences for dS S-matrix:

We use an appropriate Schwinger-Keldysh perturbation theory rather
than “in-out”.

Construct vacuum correlators first, construct particle states at finite time,
take t→ ±∞ limit

Guarantees particle states are perturbatively connected to vacuum.
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Five objections to the dS S-matrix

Five objections to the dS S-matrix

There remain the two technical concerns:

2 There is no positive-definite energy-like conserved quantity in (global or
Poincaré) de Sitter space. As a result, 1-particle states can decay and all
particles are unstable. So there should be no viable asymptotic states.
[E.g., Nachtmann 1968, Myhrvold 1983, Boyanovsky 1996, Boyanovsky 2011].

Key technical differences for dS S-matrix:

For heavy fields asympt. particle states will be “unstable,” just like
“unstable” particle state in Minkowski.

For very light scalars M2`2 = O(1) and gauge fields, “stable” asympt.
particle states exist [cf. Bros et al 2006 2008].

Asympt. particle states do not remain orthogonal ⇒ must construct
orthonormal bases of initial/final states from initial/final particle states.

I. Morrison (DAMTP) dS S-matrix 12 / 43



Preliminaries
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Preliminaries

global de Sitter space

D-dimensional de Sitter manifold dSD:

dSD =
{
X ∈ RD,1 | X ·X = `2

}
.

dS isometry group is SO(D, 1).

Two global charts

ds2

`2
=

[
− 1

1 + η2
dη2 + (1 + η2)dΩ2

D−1

]
, η ∈ R.

relation to gtt = −1 time: η = sinh(t/`)

ds2

`2
= τ2

[
− 1

τ4
dτ2 + d~x2

]
, τ ∈ R.

relation to conformal time: τ = −1/λ

!

!
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Preliminaries

scalar dS QFTs

Fields on de Sitter form representations of SO(D, 1).

For instance, for a free scalar field φσ(x)

L0[φσ] = −1

2
∇µφσ∇µφσ(x)− M2

2
φ2
σ(x)

Define the weight:

M2(σ)`2 = −σ(σ +D − 1), ⇒ σ := − (D − 1)

2
+

[
(D − 1)2

4
−M2`2

]1/2

.

Complex σ plane:
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Preliminaries

scalar dS QFTs

1-particle states form UIRs Tσ of SO(D, 1): 

1 principal series: (solid green, Γp)

(D − 1)2

4
≤M2`2, ⇒ σ = − (D − 1)

2
+ iρ, ρ ∈ R, ρ ≥ 0,

2 complementary series: (solid blue, negative real line)

0 < M2`2 <
(D − 1)2

4
, ⇒ σ ∈

(
− (D − 1)

2
, 0

)
,

3 discrete series:

M2`2 = −n(n+D − 1) for n ∈ N0, ⇒ σ = n.
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Preliminaries

Klein-Gordon modes

A basis of solutions to EOM: uσ~L(x) = `(2−D)/2fσL(η)Y~L(~x) .

Modes of the same weight form an complete orthonormal set:

δ~L1
~L2

= −i
∫
dΣν(x)

[
uσ~L1

(x)
←→
∇ νu

∗
σ~L2

(x)
] ∣∣∣∣
η=const.

= −i`D−2(1 + η2)D/2
∫
dΩD−1(~x)

[
uσ~L1

(x)
←→
∂ ηu

∗
σ~L2

(x)
] ∣∣∣∣
η=const.

.

Asymptotics: as |η| → ∞,

fσL(|η| � 1) ∼ KσL(η)σ +K−(σ+D−1)L(η)−(σ+D−1).

complementary series: two real decays, σ weaker decay

principal series: two decays η−(D−1)/2±iρ, ρ ∈ R
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Preliminaries

Klein-Gordon fields

For Klein-Gordon fields quantization is straight-forward. May introduce
time-independent ladder operators

a†
σ~L

:= −i
∫
dΣν(~x)

[
uσ~L(x)

←→
∇ νφσ(x)

] ∣∣∣∣
η=const

, aσ~L := h.c.

Canonical commutation relations:[
aσ~L, aσ ~K

]
= 0 =

[
a†
σ~L
, a†
σ ~K

]
,
[
aσ~L, a

†
σ ~K

]
= δ~L ~K .

Trivial S-matrix:

S = S† = 1

1 asymptotic particle states form orthonormal basis for Fock space

2 asymptotic particle states enjoy particle interpretation on entire manifold

3 can choose final states = initial states

4 no particle production in this basis
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Preliminaries

The Hartle-Hawking state |Ω〉 in interacting theories

This talk will focus on the dense set of states constructed from the
Hartle-Hawking state |Ω〉 (a.k.a. Bunch-Davies, a.k.a. Euclidean state) of
interacting theories.

Many ways to construct local correlators of |Ω〉: [Higuchi Marolf IM 2011]

1 on SD+1: construct SO(D + 1)-invariant state, analytically continue in
position space

2 in Poincaré chart: “in-in” Schwinger-Keldysh contour with
“Bunch-Davies” boundary conditions

3 in Static chart: thermal Schwinger-Keldysh contour with relativistic KMS
boundary condition

4 in global de Sitter: suitable Schwinger-Keldysh contour described in this
talk

Not equivalent to constructing a state at global dS Cauchy surface Ση, then
taking η → ±∞. [Krotov Polyakov 2011 vs. Marolf IM 2011]
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Preliminaries

The Hartle-Hawking state |Ω〉 in interacting theories

Why focus on this set of states?

Positivity

Under criteria that is reasonable for scalar QFTs, QFTs on dSD and SD

are related via the dS version of the Osterwalder-Shrader thm
[Schlingemann 2009]

In D = 2 can religiously verify the analytic continuation between
Euclidean and Lorentzian correlators as well as causality, regularity,
positivity conditions [Frölich < 1985].

Cluster decomposition [Marolf IM 2011, Hollands 2011]

Correlators of |Ω〉 enjoy a version of cluster decomposition associated to
large distances (timelike & acausal). If all xi are taken to large
separations from all yj :

〈φ(x1)φ(x2) . . . φ(y1)φ(y2) . . .〉Ω → 〈φ(x1)φ(x2) . . .〉Ω 〈φ(y1)φ(y2) . . .〉Ω .
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Preliminaries

The Hartle-Hawking state |Ω〉 in interacting theories

Why focus on this set of states?

A curved space notion of quantum stability [Marolf IM 2011, Hollands 2011]

The set of normalized states of the form

|Ψ〉 =

∫
y1

. . .

∫
yn

f(y1, . . . , yn)φ(y1) . . . , φ(yn) |Ω〉 ,

has |Ω〉 as an attractor state for local operators in the asymptotic regions
of de Sitter :

〈φ(x1) . . . φ(xm)〉Ψ → 〈φ(x1) . . . φ(xm)〉Ω .

The existence of an attractor state provides a strong notion of stability
for QFT in curved spacetime, where a “lowest energy eigenstate” is
unavailable.

The Reeh-Schlieder thm of curved spacetime [Stromaier et al. 2002] proves
that this set of states is dense on the Hilbert space containing |Ω〉.
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The global de Sitter S-matrix

Summary of differences between dS and Minkowski
S-matrix

In most respects construction of dS S-matrix is similar to that of Minkowski
space.

Three key differences:

1 Time-dependant background ⇒ use Schwinger-Keldysh perturbation
theory to construct HH correlators. (Do not use “in-out” pert. thy.)

2 Lack of conserved energy ⇒ particle states do not remain orthogonal. We
explicitly construct orthonormal initial/final states.

3 IR divergences in naive LSZ formulation ⇒ add a “projection operator”
Rσ in construction of asymptotic states.

May understand S-matrix as a matrix of amplitudes of quantum states
constructed explicitly in dS.

May also define S-matrix by residues of poles in a suitable complex weight (σ)
plane.
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The global de Sitter S-matrix

Asymptotic particle states

Consider a field φσ(x) with:

1 Bare mass M2(σ) > 0

2 mass gap (determined by the Lehmann-Källen weight)

Properties of initial (final) states |ψ〉i/f satisfied as η → −∞ (+∞):

1 normalizable: |i/f〈a|b〉i/f | <∞
2 definite particle content labelled by dS UIRs

|a〉i/f := |n1, n2, . . . , nk〉i/f , n = (σ, ~L)

3 states transform as direct products of UIRs under dS group

U(g)|n1, n2, . . . , nk〉i/f = |gn1, gn2, . . . , gnk〉i/f , gn = (m2, ~L′)

4 desire flat-space limit ⇒ initial/final vacuua are Hartle-Hawking state |Ω〉
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The global de Sitter S-matrix

Asymptotic particle states

Construction

LSZ prescription with addition of a “projection operator” Rσ

|n1, n2, . . . , nk〉i/f = lim
η→∓∞

a†n1
(η)a†n2

(η) . . . a†nk
(η)|Ω〉,

a†n(η) = −i
∫
dΣν(~x)

[
un(x)

←→
∇ νRσφσ(x)

] ∣∣∣∣
η

,

Projection operator Rσ

Rσ ensures that i/f〈a|b〉i/f is free of power-law IR divergences.

selects the “mass pole” part of φσ(x)

free fields: Rσφσ(x) = φσ(x)

theories of heavy fields Rσ can generally be ignored

Preserves the logarithmic IR divergences expected in perturbation theory
(which encode perturbative renormalization, anomalies, . . . ).
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The global de Sitter S-matrix

Schwinger-Keldysh perturbation theory

Correlation functions of the HH state may be constructed explicitly in
Lorentzian dS using an appropriate Schwinger-Keldysh contour.

In Minkowski “in-out” construction: 

In diagrammatic expansion there is one type of vertex.
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The global de Sitter S-matrix

Schwinger-Keldysh perturbation theory

Correlation functions of the HH state may be constructed explicitly in
Lorentzian dS using an appropriate Schwinger-Keldysh contour.

In Poincaré “in-in” construction:

In diagrammatic expansion there are two types of vertices.
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The global de Sitter S-matrix

Schwinger-Keldysh perturbation theory

Correlation functions of the HH state may be constructed explicitly in
Lorentzian dS using an appropriate Schwinger-Keldysh contour.

In global dS construction:

In diagrammatic expansion there are three types of vertices.
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The global de Sitter S-matrix

Orthonormalization

There exist non-vanishing contributions to particle states in same basis i〈a|b〉i.
E.g.,

Give to each initial particle state |a〉i an order I(a), letting the vacuum |Ω〉
have the lowest order. Orthonormal initial basis {|A〉i} may be constructed as
follows:

|B〉i =
|b〉i −

∑
I(A)<I(b) |A〉i i〈A|b〉i[

i〈b|b〉i −
∑
I(A)<I(b) |i〈A|b〉i |2

]1/2 , I(B) = I(b).
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The global de Sitter S-matrix

The S-matrix

S-matrix:

S := {f 〈A|B〉i}

Properties

1 The vacuum-to-vacuum amplitude is unity.

2 Covariance under the dS group:

f〈A|B〉i = f〈A|1 |B〉i = f〈A|U
−1(g)U(g) |B〉i = f〈gA|gB〉i .

3 Behavior under CPT: ΘS = S−1Θ

4 Invariance under perturbative field-redefinitions:

φσ(x)→ φσ(x) + gO(x), |g| � 1.

5 Unitarity: S†S = 1 and SS† = 1. Equivalently, for S = 1 + iT have the
Optical theorem

2Im T = T †T
6 (Free of unphysical power-law IR divergences.) [Akhmedov 2008, 2009,

Higuchi 2009, . . . ]
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A simple model

Model theory

Consider a theory of three massive scalars φi(x), i = 1, 2, 3, on dSD:

L[~φ] =

3∑
i=1

L0[φi] + Lint[~φ] + Lc.t.[~φ],

Lint[~φ] = gφ3φ2φ1(x),

Lc.t.[~φ] =

3∑
i=1

[
− (Zφi

− 1)

2
∇µφi∇µφi(x)− (ZMi

− 1)M2
i

2
φ2
i (x)

]
+O(g3).

[Marolf IM 2010, Bros et. al 2006, 2008, Jatkar et. al 2011]
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A simple model

O(g) transition amplitude

At O(g) only tree-level amplitudes:

When Rσ projectors may be ignored:

f〈N3N2|N1〉(1)
i = f〈n3n2|n1〉(1)

i = ig

∫
y

u∗3u
∗
2u1(y)

happens to agree with naive use of
LSZ

Im as req. by Optical theorem

non-vanishing except possibly for
discrete configurations

Plot: (amplitude/ig) as a function of
M2

1 with M2
2,3 = 2, 1.25 in D = 3.

0 2 4 6 8

0.0

0.1

0.2

0.3

M1
2

I 1

Amplitude peaked “off-shell” at σ1 = σ2 + σ3, M2(σ2 + σ3) ∈ C.
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A simple model

O(g2) transition amplitudes

Optical theorem requires

f〈N1|N1〉(2)
i = f〈n1|n1〉(2)

i − i〈n1|n1〉(2)
i =

∑
~L2

∑
~L2

∣∣∣f〈n3n2|n1〉(1)
i

∣∣∣2
contains 18 1-loop Schwinger-Keldysh diagrams

Re part independent of UV counterterms

For generic configurations the 1-1 scattering amplitude contains an imaginary
part. ⇒ In Minkowski space, this indicates unstable particles.
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A puzzle in renormalized asymptotics

Asymptotic behavior of 2-pt. functions

For |η1η2| � 1, a free field 2-pt. function has asympt. behaviors:

Wσ(x1, x2) := 〈0|φσ(x1)φσ(x2) |0〉
∼ cσ(η1η2)σ(1− ~x1 · ~x2)σ

+c−(σ+D−1)(η1η2)−(σ+D−1)(1− ~x1 · ~x2)−(σ+D−1)

Define fast/slow decays ∆±:

∆
(0)
− := −(σ +D − 1), ∆

(0)
+ := σ.

In interacting theory:

〈φσ(x1)φσ(x2)〉Ω ∼ c∆+(η1η2)∆+(1− ~x1 · ~x2)∆+

+c∆−(η1η2)∆−(1− ~x1 · ~x2)∆− + . . .

Expect

new decay channels due to interactions, “intermediate states”

∆± receives quantum corrections ∆± =
∑
n=0 ∆

(n)
±
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A puzzle in renormalized asymptotics

Lehmann-Källen form of the 2-pt. function

Write as contour integral in complex σ plane: [Marolf & IM 2010, Hollands 2011]

〈φσ(x1)φσ(x2)〉 =

∫
µ

ρ(µ)Wµ(x1, x2).

E.g., for a free theory in the principal series:

〈0|φσ(x1)φσ(x2) |0〉 =

∫
µ

(2µ+D − 1)

(µ− σ)(µ+ σ +D − 1)
Wµ(x1, x2) = Wσ(x1, x2).
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A puzzle in renormalized asymptotics

Lehmann-Källen form of the 2-pt. function

Write as contour integral in complex σ plane: [Marolf & IM 2010, Hollands 2011]

〈φσ(x1)φσ(x2)〉 =

∫
µ

ρ(µ)Wµ(x1, x2).

E.g., for a free theory in the complementary series:

〈0|φσ(x1)φσ(x2) |0〉 =

∫
µ

(2µ+D − 1)

(µ− σ)(µ+ σ +D − 1)
Wµ(x1, x2) = Wσ(x1, x2).
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A puzzle in renormalized asymptotics

Lehmann-Källen form of the 2-pt. function

Write as contour integral in complex σ plane: [Marolf & IM 2010, Hollands 2011]

〈φσ(x1)φσ(x2)〉 =

∫
µ

ρ(µ)Wµ(x1, x2).

E.g., at 1-loop:

〈φσ(x1)φσ(x2)〉1-loop
=

∫
µ

(2µ+D − 1)Π(µ)

(µ− σ)2(µ+ σ +D − 1)2
Wµ(x1, x2).
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A puzzle in renormalized asymptotics

Lehmann-Källen form of the 2-pt. function

Write as contour integral in complex σ plane: [Marolf & IM 2010, Hollands 2011]

〈φσ(x1)φσ(x2)〉 =

∫
µ

ρ(µ)Wµ(x1, x2).

E.g., after 1PI sum:
 

〈φσ(x1)φσ(x2)〉1-loop
1PI =

∫
µ

(2µ+D − 1)

(µ− σ)(µ+ σ +D − 1)−Π(µ)
Wµ(x1, x2).
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A puzzle in renormalized asymptotics

Asymptotics again

May obtain asymptotic behavior (|η1η2| � 1) from Lehmann-Källen
representation. Separate decays:

Wσ(x1, x2) = Hσ(x1, x2) +H−(σ+D−1)(x1, x2), |η1η2| � 1,

Hσ(x1, x2) = cσ(η1η2)σ(1− ~x1 · ~x2)σ
[
1 +O((η1η2)−4)

]
,

For H−(µ+D−1) may close integration contour to RHS ⇒ 0.
For Hµ may deform integration contour to LHS ⇒ obtain asymptotic
expansion from residues of poles.

 

I. Morrison (DAMTP) dS S-matrix 35 / 43



A puzzle in renormalized asymptotics

Asymptotics again

May obtain asymptotic behavior (|η1η2| � 1) from Lehmann-Källen
representation. Separate decays:

Wσ(x1, x2) = Hσ(x1, x2) +H−(σ+D−1)(x1, x2), |η1η2| � 1,

Hσ(x1, x2) = cσ(η1η2)σ(1− ~x1 · ~x2)σ
[
1 +O((η1η2)−4)

]
,

For H−(µ+D−1) may close integration contour to RHS ⇒ 0.
For Hµ may deform integration contour to LHS ⇒ obtain asymptotic
expansion from residues of poles.
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A puzzle in renormalized asymptotics

Mass poles

Focusing only on the “mass poles” at µ = σ and µ = −(σ +D − 1):

〈φσ(x1)φσ(x2)〉1-loop
=

1

(2σ +D − 1)

[
Π(σ)∂σHσ(x1, x2) + Π′(σ)Hσ(x1, x2)

−Π(−(σ +D − 1))∂σH−(σ+D−1)(x1, x2)

+Π′(−(σ +D − 1))H−(σ+D−1)(x1, x2)

]
,

determine pert. correction to weights ∆±; equiv., shift in mass poles [Marolf IM

2010, Jatkar et al 2011, LeBlond in prep]

∆+ = σ +
Π(σ)

(2σ +D − 1)
, ∆− = −(σ +D − 1)− Π(−(σ +D − 1))

(2σ +D − 1)
,

The self-energy Π(µ) depends on UV counterterms (a.k.a. renormalization
scheme), so let us seek a renormalization independent statement.
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A puzzle in renormalized asymptotics

Mass poles

Focusing only on the “mass poles” at µ = σ and µ = −(σ +D − 1):

〈φσ(x1)φσ(x2)〉1-loop
=

1

(2σ +D − 1)

[
Π(σ)∂σWσ(x1, x2) + Π′(σ)Wσ(x1, x2)

+ [Π(σ)−Π(−(σ +D − 1))] ∂σH−(σ+D−1)(x1, x2)

− [Π′(σ)−Π′(−(σ +D − 1))]H−(σ+D−1)(x1, x2)

]
+ . . .

first two terms constitute mass and field renormalization.

Π(µ), Π′(µ) depend on mass and field renormalization counterterms

coefficients of third & forth independent of UV counterterms

these terms represent an additional, distinct renormalization of the fast
decay ∆−

∆+ + ∆− = −(D − 1) +
Π(σ)−Π(−(σ +D − 1))

(2σ +D − 1)
.
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A puzzle in renormalized asymptotics

Puzzle

In all cases analysed, the perturbative correction to asymptotic behavior
satisfies

∆+ + ∆− = −(D − 1) +
Π(σ)−Π(−(σ +D − 1))

(2σ +D − 1)
≤ −(D − 1)

1 massive scalars, computed many ways [Marolf IM 2010, Jatkar et al 2011]

2 massive fermions [LeBlond in prep]

3 Yang-Mills coupled to scalar

Since this appears generic it should be a consequence of some basic ingredient
in the QFT. What is this ingredient?
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A puzzle in renormalized asymptotics

Effect on asymptotics (1PI summed correlators)

Renormalization of weights:

∆
(2)
+ + ∆

(2)
− =

[
Π(σ)−Π(−(σ +D − 1))

(2σ +D − 1)

]
≤ 0, ⇒ ∆− + ∆+ ≤ −(D − 1).

Principal series fields:

renormalized ∆± do not correspond to
UIRs

renormalized masses (self-energy) have
imaginary part

Complementary series fields:

renormalized ∆+ remains in
complementary series

renormalized mass M2(∆+) real
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A puzzle in renormalized asymptotics

Back to S: O(g2) transition amplitudes

Can relate 1→ 1 scattering amplitude to self-energy Π(µ) (or Lehmann-Källen
weight): [Marolf IM 2010, Bros et. al 2006, 2008, Jatkar et. al 2011]

−2Re f〈N1|N1〉(2)
i =

∫
x

∫
x

u∗1(x)u1(x)(�x −M2
1 )(�x −M2

1 ) 〈φσ(x)φσ(x)〉(2)

= −
[

Π(σ)−Π(−(σ +D − 1))

(2σ +D − 1)

]
(2 logH + finite)

−
[

Π′(σ) + Π′(−(σ +D − 1))

(2σ +D − 1)

]
(finite),

with spacetime integrals regulated |η|, |η| < H.

Coefficients are those of the renormalization-independent corrections to
asymptotics.

Optical theorem requires:[
Π(σ)−Π(−(σ +D − 1))

(2σ +D − 1)

]
≤ 0
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A puzzle in renormalized asymptotics

Consequences of unitarity

Renormalization of weights:

∆
(2)
+ + ∆

(2)
− =

[
Π(σ)−Π(−(σ +D − 1))

(2σ +D − 1)

]
≤ 0, ⇒ ∆− + ∆+ ≤ −(D − 1).

Principal series fields:

renormalized ∆± do not correspond to
UIRs

renormalized masses (self-energy) have
imaginary part

“unstable” asymptotic particle states

Complementary series fields:

renormalized ∆+ remains in
complementary series

renormalized mass M2(∆+) real

“stable” asymptotic particle states
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Conclusions

Review

The global dS S-matrix for massive fields at weak coupling:

unitary

dS-invariant

invariant under perturbative field redefinitions

transforms appropriately under CPT

reduces to the usual S-matrix in the flat-space limit

Construction has many subtle features:

requires Schwinger-Keldysh correlators in Lorentz signature

asymptotic states must be re-orthonormalized

extract only mass pole part – involved for light fields (Rσ)

A detailed scalar model

verified all properties to O(g2) which includes both tree and loop
interactions
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Conclusions

Review

Resolved a puzzle in renormalized asympt.

district renormalization of fast- and slow- decays is a renormalization
scheme-independent consequence of bulk unitarity

generic for any matter coupled to massive fields

Conjecture 1:

Distinct renormalization of fast- and slow- decays is generic, occurs in gauge
fields and gravity.

Conjecture 2:

There should exist an S-matrix for the Poincaré chart.

from global perspective this is just a change of basis: initial states
described at I − → initial states described on a cosmological horizon.

construction explicitly in Poincaré could be delicate (UV subtleties)
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Conclusions

Review

dS/CFT

hope: these results useful for understanding dS/CFT interpretation of
bulk states connected to the HH state

advocate the strategy:

bulk S-matrix ←→ asympt. behavior of ←→ dS/CFT
bulk correlators
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