Gravitational Effects on Massive Fermions during Inflation

S. P. Miao (ITF, University of Utrecht) Sep. 12th, 2012 Hannover, Germany

Conventions for the Background

- Homogeneous, isotropic and spatial flat:
 - $ds^2 = -dt^2 + a^2(t)d\vec{x} \cdot d\vec{x}$
- Physical distance: a(t)dx
 Physical momentum: ^k/_{a(t)}
- Max. accelerated: $H(t) = H = \frac{a}{a} \rightarrow a(t) \sim e^{Ht}$
- ► $GH^2 < 10^{-10} \rightarrow H < 10^{14} Gev$
 - QG still perturbative, not negligible
 - Particles almost effectively massless
- Locally de Sitter Background

What We Look for

I-loop fermion self energy from QG

- Use dimensional regularization and renormalize it with BPHZ
- Quantum correct Dirac eqn.

 $\sqrt{-g}\,i\mathcal{P}_{ij}\psi_j(x) - \int d^4x' \left[i\Sigma_j\right](x;x')\,\psi_j(x') = 0$

Strength of Quantum Loops

- Classical response to virtual particles
- TWO FACTORS gives density of virtuals
 - 1. Time virtuals persist (controlled by Energy–Time Uncertainty Principle)
 - 2. Rate at which they emerge (controlled by kinetic term in Lagrangian)

E-Time Unc. Principle

- $\Delta t \Delta E > 1$ to resolve ΔE ,
- Hence $\Delta t \Delta E < 1$ to NOT resolve
- Flat Space: Virtual pair has $\Delta E = 2(m^2+k^2)^{1/2}$
- Hence can last $\Delta t < \frac{1}{2}$ $(m^2 + k^2)^{-1/2}$
- Eg: Vacuum polarization
 - Most for e[±] because smallest m
 - Smallest k's live longest → EM stronger at shorter distance (less polarization)
- FRW: $E(t) = [m^2 + k^2/a^2(t)]^{1/2}$
- $\Delta t \Delta E \Rightarrow \int_t^{t+\Delta t} dt' E(t') < 1$
- $m=0 \rightarrow \int_t^{t+\Delta t} dt'/a(t') < 1$
- Any m=0 virtual with k<Ha(t) live forever

Killer Symmetry Suppresses Emergence Rate

Conformal invariance

 $\mathcal{L} \ g'_{\mu\nu} = \Omega^2 g_{\mu\nu} \ \mathcal{L}' \ field \ redefinition \ \mathcal{L}$

- EM in 4D: $\mathcal{L}' = -1/4 F_{\mu\rho} F_{\nu\sigma} g^{\mu\nu} g^{\rho\sigma} g^{1/2} \Omega^{D-4}$, $F'_{\mu\rho} = F_{\mu\rho}$
- ► $-dt^2 + a^2 dx^2 = a^2(-d\eta^2 + dx^2)$ → $ad\eta = dt$
- Conformal invariance → same locally (in conformal coordinates) as flat
 - Hence $dN/d\eta = \Gamma_{flat}$
 - Hence $dN/dt = \Gamma_{flat}/a(t)$
- Any m=0, conformal virtuals that emerge Do live forever, but few emerge

Maximum IR Enhancements

- Requirements:
 - PERSISTENCE TIME \rightarrow m=0 + inflation
 - EMERGENCE RATE \rightarrow no conformal invariance
- Realized by
 - Massless, minimally coupled scalars
 - Gravitons
- Eg: Massless Fermions (conf.) + gravitons
 - Field strength ~ #GH²ln[a(t)], at 1-loop
 - Perturbation breaks down at $ln[a(t)] \sim 1/GH^2$

Two Competing Effects

- Now: Light Fermions (no conf.) + gravitons
 - Suppress: how fermions propagate
 - $u(t,k) \sim f(\omega/H) e^{i\omega t}$, $\omega = [m^2 + k^2/a^2(t)]^{1/2}$
 - u oscillates \rightarrow interactions at different times cancel
 - Enhance: how they interact with gravity
 - New (mass) interaction does not fall off
- Expected for $[\Sigma_j](x;x')$ from $mh\overline{\psi}\psi$
 - a(t)ln[a(t)] relative to classical Kinetic term
 - In[a(t)] relative to classical mass term
- Expected dividing line: fermions mass ~ H
 - m_{cl} big wrt H \rightarrow small enhancement in Ψ
 - m_{cl} small (cl. kinetic term dominated) \rightarrow big in Ψ

Feynman Rules for Massive Dirac

- ▶ Time translation broken in de Sitter
 → Feynman rules simpler in position space
- Eg: $\mathcal{L}_{\text{Dirac}} \equiv \overline{\psi} e^{\mu}_{b} \gamma^{b} i \mathcal{D}_{\mu} \psi \sqrt{-g} m \overline{\psi} \psi \sqrt{-g}$ $\mathcal{D}_{\mu} \equiv \partial_{\mu} + \frac{i}{2} A_{\mu c d} J^{c d}$ • Re-scale metric & fermions: $g_{\mu\nu} = a^{2} \widetilde{g}_{\mu\nu}$ $\Psi \equiv a^{\frac{D-1}{2}} \psi$ • Impose symmetric gauge: $e_{\beta b} = e_{b\beta}$ • Solve vierbein:

 $\tilde{e}[\tilde{g}]_{\beta b} \equiv \left(\sqrt{\tilde{g}\eta^{-1}}\right)_{\beta}^{\gamma} \eta_{\gamma b} = \eta_{\beta b} + \frac{1}{2}\kappa h_{\beta b} - \frac{1}{8}\kappa^2 h_{\beta}^{\gamma} h_{\gamma b} + \dots \qquad \tilde{g}_{\mu\nu} \equiv \eta_{\mu\nu} + \kappa h_{\mu\nu}$

- Perturbed massive Dirac
 - $\circ \mathcal{L}_{\text{Dirac}} = \overline{\Psi} \Big[i\partial \!\!\!/ am \Big] \Psi + \frac{\kappa}{2} \overline{\Psi} \Big[hi\partial \!\!\!/ h^{\mu\nu} \gamma_{\mu} i\partial_{\nu} h_{\mu\rho,\sigma} \gamma^{\mu} J^{\rho\sigma} amh \Big] \Psi$

 $+\kappa^2$ [10 terms]+...

PS: 1-loop $[_i\Sigma_j](x;x')$: only multiplication of

vertices, propagators and derivatives

Feynman Rules for Massive Dirac

From the solutions of Candelas and Raine \rightarrow $iS[m](x;x')_{C.R.} = (aa')^{-\frac{D-1}{2}}iS[m](x;x')$

$$\begin{split} S[m](x;x') &= \frac{\Gamma(\frac{D}{2}-1)}{4\pi^{\frac{D}{2}}} \Big[i \partial \!\!\!/ + a \, m \Big] \frac{1}{\Delta x^{D-2}} + \frac{(H^2 a a')^{\frac{D}{2}-1}}{(4\pi)^{\frac{D}{2}}} \frac{\Gamma(\frac{D}{2}-1)\Gamma(2-\frac{D}{2})(i\frac{m}{H})}{\Gamma(1+i\frac{m}{H})\Gamma(1-i\frac{m}{H})} \\ & \left[i \partial \!\!\!/ + \left(\frac{D}{2}-1\right) i H a \gamma^0 + a \, m \right] \times \sum_{n=0}^{\infty} \left\{ \frac{\Gamma(n+\frac{D}{2}-1+i\frac{m}{H})\Gamma(n+\frac{D}{2}-1-i\frac{m}{H})}{\Gamma(n+\frac{D}{2}-1)\Gamma(n+1)} \\ & \left[\frac{i\frac{m}{H}}{(n+\frac{D}{2}-1)} + \gamma^0 \right] \left(\frac{y}{4}\right)^n - \frac{\Gamma(n+1+i\frac{m}{H})\Gamma(n+1-i\frac{m}{H})}{\Gamma(n+1)\Gamma(n+3-\frac{D}{2})} \left[\frac{i\frac{m}{H}}{(n+1)} + \gamma^0 \right] \left(\frac{y}{4}\right)^{n+2-\frac{D}{2}} \right] \end{split}$$

• Here $y(x;x') = aa'H^2(\|\vec{x} - \vec{x}'\|^2 - (|\eta - \eta'| - i\delta)^2)$

1

1. The infinite series \Rightarrow any elementary funs. 2. Finite from the infinite series even in D=4

- In D=4, the two series tend to cancel
- But they both are multiplied by $\Gamma(D/2 1)$

Fermion & Graviton Prop.

- $\mathbf{m} \ll \mathbf{H}:$ $i \Big[{}_{i}S_{j} \Big](x;x') = \frac{\Gamma(\frac{D}{2}-1)}{4\pi^{\frac{D}{2}}} \Big[i \partial \!\!\!/ + ma \Big] \frac{1}{\Delta x^{D-2}} \Big(\frac{m}{H}\Big) \frac{(H^{2}aa')^{\frac{D}{2}-1}}{(4\pi)^{\frac{D}{2}}} \frac{\Gamma(\frac{D}{2}-1)\Gamma(3-\frac{D}{2})}{(2-\frac{D}{2})} \Big[\partial \!\!/ \gamma^{0} + \Big(\frac{D}{2}-1\Big) Ha \Big]$ $\sum_{n=0}^{\infty} \left\{ \frac{\Gamma(n+\frac{D}{2}-1)}{\Gamma(n+1)} \Big(\frac{y}{4}\Big)^{n} \frac{\Gamma(n+1)}{\Gamma(n+3-\frac{D}{2})} \Big(\frac{y}{4}\Big)^{n+2-\frac{D}{2}} \right\} + \mathcal{O}([\frac{m}{H}]^{2})$
- Graviton prop:
 - $$\begin{split} i \Big[\mu \nu \Delta_{\rho\sigma} \Big] (x; x') &= \sum_{I=A,B,C} \Big[\mu \nu T_{\rho\sigma}^{I} \Big] i \Delta_{I} (x; x') \\ \mathbf{i.e.} \quad \Big[\mu \nu T_{\rho\sigma}^{A} \Big] &= 2 \,\overline{\eta}_{\mu(\rho} \overline{\eta}_{\sigma)\nu} \frac{2}{D-3} \overline{\eta}_{\mu\nu} \overline{\eta}_{\rho\sigma} \\ i \Delta_{A} (x; x') &= i \Delta_{cf} (x; x') + \frac{H^{D-2}}{(4\pi)^{\frac{D}{2}}} \frac{\Gamma(D-1)}{\Gamma(\frac{D}{2})} \left\{ \frac{D}{D-4} \frac{\Gamma^{2}(\frac{D}{2})}{\Gamma(D-1)} \Big(\frac{4}{y} \Big)^{\frac{D}{2}-2} \pi \cot\left(\frac{\pi}{2}D\right) + \ln(aa') \right\} \\ &+ \frac{H^{D-2}}{(4\pi)^{\frac{D}{2}}} \sum_{n=1}^{\infty} \left\{ \frac{1}{n} \frac{\Gamma(n+D-1)}{\Gamma(n+\frac{D}{2})} \Big(\frac{4}{y} \Big)^{n} \frac{1}{n-\frac{D}{2}+2} \frac{\Gamma(n+\frac{D}{2}+1)}{\Gamma(n+2)} \Big(\frac{4}{y} \Big)^{n-\frac{D}{2}+2} \right\} \\ &\quad i \Delta_{cf} (x; x') = \frac{H^{D-2}}{(4\pi)^{\frac{D}{2}}} \Gamma \Big(\frac{D}{2} 1 \Big) \Big(\frac{4}{y} \Big)^{\frac{D}{2}-1} \end{split}$$
 - Infinite series only contributes when it times 1/(D–4)

Counterterms

- S.S.D. = 3 at 1-100p in D=4
- Dimensional regularization respects diffeo.
- Graviton prop. Gauge fixing: de Sitter inv.
 - \rightarrow invariant one can found by dimensional analysis
 - $\circ\,$ allow non-invariant one But $\infty\,$ possibilities
 - restrain # of non-(dS) invariant counterterms
 - Residual de Sitter symmetry
 - Spatial translation, rotation & dilatation
 - Even # of γ 's at order m
 - Poincare invariance at H \rightarrow 0 limit
- All counterterms at order m for 1-loop

 $\alpha_1 \kappa^2 \frac{m}{a} \partial^2$, $\alpha_4 \kappa^2 H^2 ma$, $\alpha_2 \kappa^2 m H \partial_0$, $\alpha_3 \kappa^2 m H \gamma^0 \overline{\partial}$

Counterterms Analysis

- Invariant one: $\Delta \mathcal{L}_{inv} = \lambda_1 \kappa^2 m \overline{\psi} (i \mathcal{D})^2 \psi \sqrt{-g} + \lambda_2 \kappa^2 m R \overline{\psi} \psi \sqrt{-g}$
 - $\lambda_1 \kappa^2 \left(\frac{m}{a} \partial^2 + m H \gamma^0 \partial \right) = \lambda_1 \kappa^2 m \partial a^{-1} \partial$ $\lambda_2 D (D-1) \kappa^2 H^2 m a$
- Non-invariant: $\Delta \mathcal{L}_{non} = \kappa^2 H^2 m a \overline{\Psi} \mathcal{S} ((Ha)^{-1} \gamma^0 \partial_0, (Ha)^{-1} \gamma^i \partial_i) \Psi$
 - •Spatial translation, rotation $\rightarrow (\gamma^{i}\partial_{i})^{2} = -\nabla^{2}$ •Dilatation $(\eta = c\eta, x^{i} = cx^{i}) \rightarrow a^{-1}\partial_{\mu}$ •Even # of $\gamma' s \rightarrow \underline{\kappa^{2}ma} \left\{ \beta_{1}(a^{-1}\gamma^{0}\partial_{0})^{2} + \beta_{2} \left[(a^{-1}\gamma^{0}\partial_{0})(a^{-1}\gamma^{i}\partial_{i}) \right] + \beta_{3}(a^{-1}\gamma^{i}\partial_{i})^{2} + H\gamma^{0} \left(\beta_{4}(a^{-1}\gamma^{0}\partial_{0}) + \beta_{5}(a^{-1}\gamma^{i}\partial_{i}) \right) + H^{2}\beta_{6} \right\}$
 - $\circ \mathsf{H} \rightarrow 0 \rightarrow \kappa^2 m a \Big\{ (a^{-1} \gamma^0 \partial_0)^2 + 2 \big[(a^{-1} \gamma^0 \partial_0) (a^{-1} \gamma^i \partial_i) \big] + (a^{-1} \gamma^i \partial_i)^2 \Big\} = \underline{\kappa^2 m \partial a^{-1} \partial a^{-1}}$ $\circ \mathsf{Non-invariant \ ones \ left:}$
 - $\kappa^2 mH\gamma^0 \partial_0$, $\kappa^2 mH\gamma^i \partial_1$ not independent of $\kappa^2 mH\gamma^0
 otin$

 $- \alpha_1 \kappa^2 \frac{m}{c} \partial^2 \ , \ \alpha_4 \kappa^2 H^2 m a \ , \quad \alpha_2 \kappa^2 m H \partial_0 \ , \ \alpha_3 \kappa^2 m H \gamma^0 \overline{\partial}$

Gauge Issue of GR. Prop.

- Faddeev–Popov in flat R⁴ ⇒ general geometry
- \blacktriangleright Covariant gauge fixing term to \mathcal{L} \clubsuit
 - 1. Divergent response for a point source (GR)
 - On-shell singularity for M²[x;x'] of SQED in the de Sitter invariant analogue of Feynman gauge
- Inearization instability
 - Gauge theory, background isometries, spatial Tⁿ
 - Fix:
 - Non de Sitter invariant gauge
 - imposing exact gauge condition
 - The same ln[a(t)] behavior in the exact de Donder
 gauge

Massive $_i\Sigma_j[x;x']$ at 1–loop

$$\begin{split} -i \left[\Sigma^{\text{ren}} \right] & (x; x') = \frac{i\kappa^2}{16\pi^2} \Big\{ \left[3\ln a + \frac{1}{8} \right] \frac{m}{a} \partial^2 + \left[\frac{97}{16} \ln a - \frac{39}{16} \right] mH \partial_0 + \left[\frac{9}{16} \ln a + \frac{5}{16} \right] mH \gamma^0 \overline{\not{\theta}} \\ & + \left[\frac{95}{8} \ln a - \frac{29}{32} - \frac{85}{16} \psi(1) + \frac{5}{8} \ln \frac{H^2}{4\mu^2} \right] H^2 m a \Big\} \delta^4 (x - x') + \frac{\kappa^2}{64\pi^4} \Big\{ \left[\frac{3}{2} \frac{m}{a'} \partial^2 + \left(\frac{7}{8} \frac{a}{a'} - \frac{27}{32} \right) mH \partial_0 \\ & + \left(\frac{9}{16} \frac{a}{a'} - \frac{9}{32} \right) mH \gamma^0 \overline{\not{\theta}} + H^2 m \left(\frac{215}{32} a + \frac{9}{32} a' \right) \Big] \partial^2 + H^2 m a \left[\nabla^2 + 6H a \partial_0 + 4H a \gamma^0 \overline{\not{\theta}} \right] \Big\} \left[\frac{\ln(\mu^2 \Delta x^2)}{\Delta x^2} \right] \\ & + \frac{\kappa^2 H^2}{64\pi^4} \Big\{ \frac{9}{16} ma' \partial_0^2 + \left[\frac{-53}{16} ma + \frac{3}{16} ma' \right] \gamma^0 \partial_0 \overline{\not{\theta}} + \left[\frac{-49}{16} + \ln \frac{H^2}{4\mu^2} \right] ma \nabla^2 + \left[\frac{9}{2} + 6 \ln \frac{H^2}{4\mu^2} \right] H ma^2 \partial_0 \\ & + \left[\frac{35}{8} - \frac{11}{8} \ln \frac{y}{4} + 4 \ln \frac{H^2}{4\mu^2} \right] H ma^2 \gamma^0 \overline{\not{\theta}} + \left[\frac{-5}{8} - \frac{3}{8} \ln \frac{y}{4} \right] H maa' \gamma^0 \overline{\not{\theta}} \Big\} \frac{1}{\Delta x^2} \\ & + \frac{\kappa^2 mH}{64\pi^4} \Big\{ 8 \frac{\gamma^0 \gamma^k \Delta x_k}{\Delta x^6} \left[\frac{(-Y^2 + 7Y)}{(1 - Y)^3} + \frac{(Y^3 + 6Y^2 - Y)}{(1 - Y)^4} \ln(Y) \right] & \text{Here } Y \text{ stands for } \frac{y}{4} \\ & + \left[5 \frac{Ha^{\gamma 0} \Delta m^k \Delta x_k}{\Delta x^6} - 3 \frac{Ha \Delta \pi^2}{\Delta x^6} - 3 \frac{Ha^{\Delta \pi^2}}{\Delta x^6} \right] \left[\frac{-3Y^3 + 26Y^2 + Y}{2(1 - Y)^3} + \frac{3Y^3 + 22Y^2 - 3Y}{2(1 - Y)^4} \ln(Y) \right] \\ & + \left[\frac{Ha}{\Delta x^4} + \frac{Ha'}{\Delta x^4} \right] \left[\frac{-12(Y^2 + 2Y)}{(1 - Y)^3} + \frac{-3(3Y^4 - 12Y^3 + 23Y^2 + 10Y)}{(1 - Y)^4} \ln(Y) \right] \\ & + \frac{H^2 a^2 \gamma^0 \gamma^k \Delta x_k}{\Delta x^4} \left[\frac{-3(Y^2 - 6Y + 29)}{4(1 - Y)^3} + \frac{-3(3Y^4 - 12Y^3 + 23Y^2 + 10Y)}{4(1 - Y)^4} \ln(Y) \right] \\ & + \frac{H^2 a' \gamma^0 \gamma^0 \kappa^k \Delta x_k}{\Delta x^4} \left[\frac{(5Y^3 - 14Y^2 - 15Y)}{4(1 - Y)^3} + \frac{(-3Y^4 + 14Y^3 - 35Y^2)}{4(1 - Y)^4} \ln(Y) \right] \Big\} + \end{split}$$

	$\ln \frac{H^2 \Delta x^2}{4}$	1
$\frac{\Delta \eta^3}{\Delta x^6}$	$-20f_1(Y) - 20f_2(Y)\ln Y$	$-5g_1(Y) - 5g_2(Y)\ln Y$
$\frac{\gamma^0 \Delta \eta^2 \gamma^k \Delta x_k}{\Delta x^6}$	$12f_1(Y) + 12f_2(Y)\ln Y$	$3g_1(Y) + 3g_2(Y)\ln Y$
$\frac{\Delta \eta}{\Delta x^4}$	$2f_3(Y) + 2f_4(Y)\ln Y$	$g_3(Y) + g_4(Y) \ln Y$
$rac{\gamma^0 \gamma^k \Delta x_k}{\Delta x^4}$	$-6f_5(Y) - 6f_6(Y)\ln Y$	$-g_5(Y) - g_6(Y) \ln Y$
$\frac{Ha\Delta\eta^2}{\Delta x^4}$	$6f_7(Y) + 6f_8(Y)\ln Y$	$5g_7(Y) + 5g_8(Y) \ln Y$
$\frac{Ha'\Delta\eta^2}{\Delta x^4}$	$-4f_9(Y) - 4f_{10}(Y)\ln Y$	$-2g_9(Y) - 2g_{10}(Y) \ln Y$
$\frac{Ha\gamma^0\!\Delta\eta\gamma^k\!\Delta x_k}{\Delta x^4}$	$-4f_{11}(Y) - 4f_{12}(Y)\ln Y$	$-2g_{11}(Y) - 2g_{12}(Y)\ln Y$
$\frac{Ha^{i}\!\gamma^{0}\!\Delta\eta\gamma^{k}\!\Delta x_{k}}{\Delta x^{4}}$	$4f_9(Y) + 4f_{10}(Y)\ln Y$	$2g_9(Y) + 2g_{10}(Y) \ln Y$
$\frac{Ha}{\Delta x^2}$	$9f_{13}(Y) + 9f_{14}(Y)\ln Y$	$g_{13}(Y) + g_{14}(Y) \ln Y$
$\frac{Ha'}{\Delta x^2}$	$-2f_{15}(Y) - 2f_{16}(Y)\ln Y$	$-g_{15}(Y) - g_{16}(Y) \ln Y$
$\frac{H^2a^2\Delta\eta}{\Delta x^2}$	$-6f_{17}(Y) - 6f_{18}(Y)\ln Y$	$-3g_{17}(Y) - 3g_{18}(Y)\ln Y$
$\frac{H^2\!a^2\gamma^0\gamma^k\Delta x_k}{\Delta x^2}$	$4f_{17}(Y) + 4f_{18}(Y)\ln Y$	$2g_{19}(Y) + 2g_{20}(Y)\ln Y$
$\frac{H^2\!aa'\gamma^0\gamma^k\Delta x_k}{\Delta x^2}$	$-2f_{19}(Y) - 2f_{20}(Y)\ln Y$	$-g_{21}(Y) - g_{22}(Y) \ln Y$
H^3a^2a'	$-3f_{21}(Y) - 3f_{22}(Y)\ln Y$	$-\frac{3}{2}g_{19}(Y) - \frac{3}{2}g_{20}(Y)\ln Y$

Table 32: The total result for $i\delta\Delta_A \times i[S]_{n\geq 0}$. The factor $\frac{i\kappa^2 H^2}{2^6\pi^4} \frac{mHaa'}{2}$ multiplies all contributions. Here $Y = \frac{y}{4}$; $\ln \frac{H^2 \Delta x^2}{4}$ and 1 are the multiplicative factors for the each individual column. The various functions $f_i(Y)$ and $g_i(Y)$ are presented in Table 33

$f_i(Y)$		$g_i(Y)$	
$f_1(Y)$	$\frac{Y(2Y^2+5Y-1)}{(1-Y)^3}+2$	$g_1(Y)$	$\frac{-Y(Y^2-12Y-1)}{(1-Y)^3}-1$
$f_2(Y)$	$\frac{6Y^3}{(1-Y)^4}$	$g_2(Y)$	$\frac{Y(3Y^2+10Y-1)}{(1-Y)^4}$
$f_3(Y)$	$\frac{Y(7Y^2-86Y+91)}{(1-Y)^3}+7$	$g_3(Y)$	$\frac{Y(49Y^2-282Y+257)}{2(1-Y)^3}+\frac{49}{2}$
$f_4(Y)$	$\frac{-6Y(5Y^2+Y-8)}{(1-Y)^4}$	$g_4(Y)$	$\frac{Y(-45Y^2-82Y+151)}{2(1-Y)^4}$
$f_5(Y)$	$\frac{Y(5Y^2-22Y+29)}{(1-Y)^3}+5$	$g_5(Y)$	$\frac{Y(37Y^2 - 194Y + 229)}{2(1 - Y)^3} + \frac{37}{2}$
$f_6(Y)$	$\frac{2Y(-Y^2-Y+8)}{(1-Y)^4}$	$g_6(Y)$	$\frac{Y(-29Y^2-26Y+127)}{2(1-Y)^4}$
$f_7(Y)$	$\frac{Y(3Y^2-7Y+34)}{(1-Y)^3}+3$	$g_7(Y)$	$\frac{Y(13Y^2-48Y+71)}{2(1-Y)^3}+\frac{13}{2}$
$f_8(Y)$	$\frac{2Y(7Y+8)}{(1-Y)^4}$	$g_8(Y)$	$\frac{Y(Y^3-4Y^2+Y+38)}{2(1-Y)^4}-\frac{1}{2}$
$f_9(Y)$	$\frac{Y(-Y^2+5Y+2)}{(1-Y)^3}-1$	$g_9(Y)$	$\frac{Y(Y+5)}{(1-Y)^3}$
$f_{10}(Y)$	$\frac{6Y^2}{(1-Y)^4}$	$g_{10}(Y)$	$\frac{2Y(2Y+1)}{(1-Y)^4}$
$f_{11}(Y)$	$\frac{Y(7Y^2-23Y+46)}{(1-Y)^3}+7$	$g_{11}(Y)$	$\frac{Y(12Y^2-43Y+61)}{(1-Y)^3}+12$
$f_{12}(Y)$	$\frac{6Y(Y+4)}{(1-Y)^4}$	$g_{12}(Y)$	$\frac{-2Y(2Y-17)}{(1-Y)^4}$
$f_{13}(Y)$	$\frac{Y(3Y^2-10Y+19)}{(1-Y)^3}+3$	$g_{13}(Y)$	$\frac{Y(79Y^2 - 270Y + 407)}{4(1 - Y)^3} + \frac{79}{4}$
$f_{14}(Y)$	$\frac{2Y(Y+5)}{(1-Y)^4}$	$g_{14}(Y)$	$\frac{Y(-5Y^3+20Y^2-29Y+230)}{4(1-Y)^4}+\frac{5}{4}$
$f_{15}(Y)$	$\frac{Y(Y^2-2Y+13)}{(1-Y)^3}+1$	$g_{15}(Y)$	$\frac{Y(3Y^2-4Y+13)}{(1-Y)^3}+3$
$f_{16}(Y)$	$\frac{6Y(Y+1)}{(1-Y)^4}$	$g_{16}(Y)$	$\frac{Y(-3Y^3+12Y^2-7Y+10)}{(1-Y)^4}+3$
$f_{17}(Y)$	$\frac{Y(2Y^2-7Y+11)}{(1-Y)^3}+2$	$g_{17}(Y)$	$\frac{Y(13Y^2-38Y+37)}{2(1-Y)^3}+\frac{13}{2}$
$f_{18}(Y)$	$\frac{6Y}{(1-Y)^4}$	$g_{18}(Y)$	$\frac{3Y(-Y^3+4Y^2-6Y+5)}{(1-Y)^4}+3$
$f_{19}(Y)$	$\frac{Y(Y^2-3Y+8)}{(1-Y)^3}+1$	$g_{19}(Y)$	$\frac{Y(5Y^2-15Y+16)}{(1-Y)^3}+5$
$f_{20}(Y)$	$\frac{2Y(Y+2)}{(1-Y)^4}$	$g_{20}(Y)$	$\frac{-2Y(Y^3 - 4Y^2 + 6Y - 6)}{(1 - Y)^4} + 2$
$f_{21}(Y)$	$\frac{Y(5Y^2-15Y+16)}{(1-Y)^3}+5$	$g_{21}(Y)$	$\frac{-3Y^2(Y-3)}{(1-Y)^3} - 3$
$f_{22}(Y)$	$\frac{-2Y(Y^3-4Y^2+6Y-6)}{(1-Y)^4}+2$	$g_{22}(Y)$	$\frac{2Y(Y^3-4Y^2+8Y-2)}{(1-Y)^4}-2$
and the second second second second	and the second sec		

Table 33: The coefficient functions for the table 32

Why QG Results are Reliable

- » QG not renomalizable
 - No physical principle fixes the finite part $i\kappa^{2}\left\{\Delta\alpha_{1}\frac{m}{a}\partial^{2}+\Delta\alpha_{2}mH\partial_{0}+\Delta\alpha_{3}mH\gamma^{0}\bar{\partial}+\Delta\alpha_{4}H^{2}ma\right\}\delta^{4}(x-x')$
 - But loops of massless → non-analytical contri.
 Can't be affected by local counterterms
 - Nonlocal terms dominated over $\Delta \alpha$ at late time $\frac{i\kappa^2}{16\pi^2} \left\{ 3\ln a \frac{m}{a} \partial^2 + \frac{97\ln a}{16} mH \partial_0 + \frac{9\ln a}{16} mH \gamma^0 \bar{\not{\partial}} + \frac{95\ln a}{8} H^2 ma \right\} \delta^4(x-x')$
- Low energy effective theory
 - Fermi theory versus Standard Model etc.
 - The UV completion of QG cannot
 - Add new massless particles

Same IR behavior

Change the behavior of long range forces

Physical Pictures & Consequence

- Inflation creates the sea of IR gravitons & mmc, we study how particles get affected
 - Massless fermions due to IR MMC \rightarrow growing mass
 - Massless fermions due to IR gravitons → field strength growing with time
 - mmc due to IR gravitons \rightarrow no significant change
 - IR gravitons only couple to mmc through red-shift K.E.
 - But fermions has extra SPIN in addition (0803.2377)
 - Expected: light fermions propagating through this also causes field strength to grow with time
 - Spin & mass interaction term both do not red shift-just like inflaton power spectrum

Physical Pictures & Consequence

- Also change the energy of Universe
- Fermion production during inflation
 - B-mode of polarization
 - Possibility for the inflationary baryogenesis
- perturbation eventually breaks down need re-summation technique
 - Starobinsky's formalism for a scalar model
 - Actives: produce IR Log
 - Passives: propagate through IR Log
 - Each and only scalars produces IR Log (no derivative)
 - Truncate scalars & set in D=4 (UV div. at leading log)

Non-Pertuabative technique for general models

- ▶ actives + passives (∂'s passives)
 - integrate out passives & evaluate the effective action with const. actives (effective [potential)
 - UV div. at leading Log → turn D on
 - Eg: Yukawa, SQED
- ∂ 's actives + passives or ∂ 's passives
 - No systematic way
 - Massless Dirac + GR (we have the exact result)
 - Can't either ignore ∂ 's actives or integrate out fields
 - Keep dimensional regulation on
 - Potential: nonlinear sigma model (Kitazawa, Kitamoto)