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Introduction

Time dependent quantum effects in de Sitter space

In investigating them, the important issue is whether there is
a mechanism to break the dS symmetry

Propagator for a massless and minimally coupled field breaks
the dS symmetry

In some models with massless and minimally coupled fields,
physical quantities acquire time dependences



Scalar field in dS space
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Propagator for a massless and minimally coupled field

contains a scale inv. spectrum
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dS symmetry breaking
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If massless, the IR divergence takes place also in D-dimension

If massive, the IR divergence does not take place
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Dirac, Gauge fields

Since the actions of Dirac and gauge fields are conformal invariant,
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the corresponding wave function is
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These fields do not induce the dS symmetry breaking



Why such IR effects are important?

e.g. V(p) = 8%,
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Not suppressed by A

Even if A < 1, perturbation is broken after Alog” a(7) ~ 1

In models with V' (¢), we can evaluate the IR effects nonperturbatively
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The resummation formula for a general model with derivative interactions

has not been known

We should evaluate differetiated field components exactly

e.g. dS inv. x dS broken = dS broken

(D (2)0up()) X (()pw)) = — 2 g x g logalr)
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* In ageneral scalar field theory, we need to fine-tune the mass
term to obtain such IR effects

Nonlinear sigma model consists of massless and minimally
coupled scalar fields for its global symmetry

There, the leading IR effects to the cosmological constant

cancel out each other at all orders
’11,’12 H. K., Y. Kitazawa

* Dirac, Gauge fields do not induce the dS symmetry breaking



Gravitational field in dS space

Gravitational field contains massless and minimally coupled
modes without the fine-tuning

Gravitational effects seem to be suppressed by GH? <1 , but
there are associated enhancement factors: (GH?loga(7))"

Such gravitational IR effects have not investigated enough due
to some difficulties: gauge invariance, derivative interaction

Semiclassical approach

’10 S. B. Giddings, M. S. Sloth
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Soft gravitational effects on

. . ’12 H. K., Y. Kitazawa
local dynamics of matter fields

Although we can not observe the super-horizon modes directly

since the commutator of them is zero

it is possible that virtual gravitons at the super-horizon scale
affect the local dynamics of matter fields at the sub-horizon scale

Our investigation is up to the one-loop level: loga(r) > 1,
k*H?loga(r) < 1



Investigations of soft graviton effects
on matter fields

S. B. Giddings, R. P. Woodard, | " H. K., Y. Kitazawa
M. S. Sloth +E. O. Kahya, S. P. Miao !
Parametri L g = a2 (M + Kl G = (a€") (") .
zation ds? = —dt? + a?(e"™); datda?, | i ht =0
= pd = 1
hz 0; 8J hz 0 : F,LL — aph)up _ _a,u,hpp !
Gauge : 2 ! do.
E +2h,L0,loga E
External | | |
e d P < H ! ! P < H ! P > H
momentum E \ ( ) E
Matter fields m.m.c. scalar E m.1m.c. E massless Dirac i m.c.c. fields with
. scalar 1 (massive) i dimensionless couplings



Effective equation of motion

In investigating interactions on a time dependent background like dS space,
we need to adopt the Schwinger-Keldysh formalism
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0 — @+, @: classical field, ¢: quantum fluctuation

Effective e.o.m.:
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How the soft graviton contributes
to the local dynamics?
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Free scalar field theory
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Free Dirac field theory
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Soft graviton effects on the kinetic terms can be absorbed by the wave

function renormalizations

On the other hand, soft gravitons contribute to interacting field theories




»* interaction
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Yukawa interaction

v/—g is absorbed by
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Gauge interactions

Effective e.o.m.:
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Jest decreases with cosmic evolution

The behavior is independent of a gauge group



Gauge dependence

We introduce the gauge parmeter 3 as

1,
— _ = Iz
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For a continuous 3 (|3% — 1] < 1), soft graviton effects do not spoil Lorentz

invariance and can be absorbed by the wave function renormalizations
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Although each coupling is gauge dependent,
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We interpret this result as follows

* Each coupling is gauge dependent because there is no unique
way to specify the time as it depends on an observer

* Asensible strategy is to pick a certain coupling and use its time
evolution as a physical time



Scheme dependence

Soft graviton effects depend on the parametrization of the metric

and the Lorentz inv. is broken in a general case

Guv = 22"V (e") htt =0 0urs

= a* (N + 2680 + K£¥p) TS =0 : Woodards’
The difference between them starts at the non-linear level
rw = k® + O(K2D?, K2 V?),
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and so it contributes only to the tadpole diagrams at 1-loop

Such effects can be eliminated by shifting the background metric
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The choice of the matter field redefinition contributes to soft graviton effects

3 3 —
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The Lorentz inv. is broken in a general choice and it can be compensated

by shifting the background metric only when oy, = ap

A sensible setting may be that dimensionless couplings are scale independent

at the calassical level: o, = ap =0
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Summary

We have investigated soft gravitational effects on local dynamics
of matter fields at the sub-horizon scale

The IR effects on the kinetic terms do not spoil Lorentz invariance
and can be absorbed by wave function renormalizations

Soft gravitons dynamically screen dimensionless couplings whose
relative scaling exponents are gauge invariant



Future works

* Lorentz, Gauge invariance are preserved at higher loop
levels, against large deformations of a gauge parameter?

* Against large deformations of a gauge parameter, the
screening of couplings do not turn to the enhancement?

* In addition to pure matter and pure gravity contributions,
the mixed contribution from matter and gravity makes the
cosmological constant time dependent



