The Effective Theory of Inflation, Cosmological Observations Contrasted with Quantum Fields in (Quasi)-De Sitter Spacetime

H. J. de Vega

LPTHE, CNRS/Université P & M Curie (Paris VI).

THE PHYSICS OF DE SITTER SPACETIME

ALBERT EINSTEIN INSTITUT HANNOVER, GERMANY SEPTEMBER 11-14, 2012

$\mathbf{DM} + \Lambda + \mathbf{Baryons} + \mathbf{Radiation}$

The Standard Cosmological Model = Concordance Model

- Begins by the inflationary era. Slow-Roll inflation explains horizon and flatness.
- Gravity is described by Einstein's General Relativity.
- Particle Physics described by the Standard Model of Particle Physics: $SU(3) \otimes SU(2) \otimes U(1) =$ qcd+electroweak model.
- Dark matter is non-relativistic during the matter dominated era where structure formation happens. DM is outside the SM of particle physics. CDM \implies WDM.
- Dark energy described by the cosmological constant Λ .

Standard Model of the Universe: Concordance Model

 $-ds^2 = dt^2 - a^2(t) d\vec{x}^2$: spatially flat geometry.

The Universe starts by an INFLATIONARY ERA.

Inflation = Accelerated Expansion: $\frac{d^2a}{dt^2} > 0$.

During inflation the universe expands by at least sixty or so efolds: $e^{66} \simeq 10^{29}$. Inflation lasts $\simeq 10^{-36}$ sec and ends by $z \sim 10^{27}$ followed by a radiation dominated era.

Matter can be effectively described during inflation by a single Scalar Field $\phi(t, x)$: the Inflaton.

Lagrangean: $\mathcal{L} = a^3(t) \left[\frac{\phi^2}{2} - \frac{(\nabla \phi)^2}{2 a^2(t)} - V(\phi) \right].$ Friedmann eq.: $H^2(t) = \frac{1}{3 M_{Pl}^2} \left[\frac{\dot{\phi}^2}{2} + V(\phi) \right], H(t) \equiv \dot{a}(t)/a(t).$ Slow-roll \Longrightarrow quasi-de Sitter space-time. If $\dot{\phi}^2 \ll V(\phi) \simeq \bar{V} \Longrightarrow a(t) = \bar{a} e^{\bar{H} t}, \ \bar{H} = \sqrt{\bar{V}}/[\sqrt{3} M_{Pl}]$

The Theory of Inflation

We describe inflation as an effective field in the Ginsburg-Landau sense.

D. Boyanovsky, C. Destri, H. J. de Vega, N. G. Sánchez, (review article),

arXiv:0901.0549, Int. J. Mod.Phys. A 24, 3669-3864 (2009). Relevant effective theories in physics:

- Ginsburg-Landau theory of superconductivity. It is an effective theory for Cooper pairs in the microscopic BCS theory of superconductivity.
- The O(4) sigma model for pions, the sigma and photons at energies ≤ 1 GeV. The microscopic theory is QCD: quarks and gluons. $\pi \simeq \bar{q}q$, $\sigma \simeq \bar{q}q$.
- The theory of second order phase transitions à la Landau-Kadanoff-Wilson... (ferromagnetic, antiferromagnetic, liquid-gas, Helium 3 and 4, ...)

Slow-roll evolution of the Inflaton

During slow-roll the inflaton derivatives are small and the evolution equations can be approximated by:

$$3 H(t) \dot{\phi} + V'(\phi) = 0$$
 , $H^2(t) = \frac{V(\phi)}{3M_{Pl}^2}$

These first order equations can be solved in closed from as:

 $M_{Pl}^2 N[\phi] = -\int_{\phi}^{\phi_{end}} V(\varphi) \frac{d\varphi}{dV} d\varphi , \quad e^{N[\phi]} = a(\phi_{end})/a(\phi) ,$

 $N[\phi]$ = the number of e-folds since the field ϕ exits the horizon till the end of inflation. $N \sim 60$. ϕ_{end} = absolute minimum of $V(\phi)$.

Therefore, $\phi^2 =$ scales as $N M_{Pl}^2$. We define:

 $\chi \equiv \frac{\phi}{\sqrt{N} M_{Pl}} =$ is a dimensionless and slow field. Universal form of the slow-roll inflaton potential: $V(\phi) = N M^4 w(\chi), M =$ energy scale of inflation

SLOW and Dimensionless Variables

$$\begin{aligned} &\overline{\chi} = \frac{\phi}{\sqrt{N} M_{Pl}} \quad , \quad \tau = \frac{m t}{\sqrt{N}} \quad , \quad \mathcal{H}(\tau) = \frac{H(t)}{m \sqrt{N}} \quad , \\ &m \equiv \frac{M^2}{M_{Pl}} \quad , \quad |V''(0)| = m^2 = \text{inflaton mass, } (|w''(0)| = 1) \end{aligned}$$

slow inflaton, slow time, slow Hubble.

 χ and $w(\chi)$ are of order one.

Evolution Equations:

$$\mathcal{H}^{2}(\tau) = \frac{1}{3} \left[\frac{1}{2N} \left(\frac{d\chi}{d\tau} \right)^{2} + w(\chi) \right] ,$$
$$\frac{1}{N} \frac{d^{2}\chi}{d\tau^{2}} + 3 \mathcal{H} \frac{d\chi}{d\tau} + w'(\chi) = 0 .$$

1/N terms: corrections to slow-roll

Higher orders in slow-roll are obtained systematically by expanding the solutions in 1/N.

Exact Inflaton Dynamics: $w(\chi) = \frac{y}{32}(\chi^2 - \frac{8}{y})^2$

Slow-roll Inflaton Dynamics

Integrating the inflaton evolution eqs. to the order 1/N:

$$\log \frac{a(t)}{a(0)} = \sqrt{\frac{2N}{3y}} \ m \ t - \frac{1}{8} \ \frac{\varphi^2(0)}{M_{Pl}^2} \left[e^{\sqrt{\frac{2y}{3N}} \ m \ t} - 1 \right]$$
$$H(t) = m \ \sqrt{\frac{2N}{3y}} \left[1 - \frac{y}{8N} \ \frac{\varphi^2(0)}{M_{Pl}^2} \ e^{\sqrt{\frac{2y}{3N}} \ m \ t} \right]$$

Hubble H(t) slowly decreases during slow-roll. De Sitter universe plus 1/N corrections: During slow-roll the universe is quasi-De Sitter. $H(\text{end slow} - \text{roll}) \simeq H(\text{slow} - \text{roll beginning})/\sqrt{N}$ $\sqrt{N} \simeq 8$

$$m t_{end \ slow-roll} = \sqrt{\frac{3 N}{2 y}} \log\left[\frac{8 N M_{Pl}^2}{y \varphi^2(0)}\right]$$

The Slow-roll regime is an attractor (Belinsky-Grishchuk-Zeldovich-Khalatnikov, 1985)

Primordial Power Spectrum

Adiabatic Scalar Perturbations: $P(k) = |\Delta_{k ad}^{(S)}|^2 k^{n_s-1}$. To dominant order in slow-roll:

$$|\Delta_{k ad}^{(S)}|^2 = \frac{N^2}{12 \pi^2} \left(\frac{M}{M_{Pl}}\right)^4 \frac{w^3(\chi)}{w'^2(\chi)}.$$

Hence, for all slow-roll inflation models:

$$|\Delta_{k \ ad}^{(S)}| \sim \frac{N}{2 \pi \sqrt{3}} \left(\frac{M}{M_{Pl}}\right)^2$$

The WMAP result: $|\Delta_{k ad}^{(S)}| = (0.494 \pm 0.1) \times 10^{-4}$ determines the scale of inflation *M* (using $N \simeq 60$)

$$\left(\frac{M}{M_{Pl}}\right)^2 = 0.85 \times 10^{-5} \longrightarrow M = 0.70 \times 10^{16} \text{ GeV}$$

The inflation energy scale turns to be the grand unification energy scale !! We find the scale of inflation without knowing the tensor/scalar ratio r !! The scale M is independent of the shape of $w(\chi)$.

spectral index n_s , the ratio r and the running of n_s

 $r \equiv$ ratio of tensor to scalar fluctuations. tensor fluctuations = primordial gravitons.

$$n_{s} - 1 = -\frac{3}{N} \left[\frac{w'(\chi)}{w(\chi)} \right]^{2} + \frac{2}{N} \frac{w''(\chi)}{w(\chi)} , \quad r = \frac{8}{N} \left[\frac{w'(\chi)}{w(\chi)} \right]^{2} \frac{dn_{s}}{d\ln k} = -\frac{2}{N^{2}} \frac{w'(\chi) w'''(\chi)}{w^{2}(\chi)} - \frac{6}{N^{2}} \frac{[w'(\chi)]^{4}}{w^{4}(\chi)} + \frac{8}{N^{2}} \frac{[w'(\chi)]^{2} w''(\chi)}{w^{3}(\chi)} ,$$

 χ is the inflaton field at horizon exit. $n_s - 1$ and r are always of order $1/N \sim 0.02$ (model indep.) Running of n_s of order $1/N^2 \sim 0.0003$ (model independent). Primordial Non-gaussianity $f_{NL} = \text{order } 1/N$

D. Boyanovsky, H. J. de Vega, N. G. Sanchez, Phys. Rev. D 73, 023008 (2006), astro-ph/0507595.

Ginsburg-Landau Approach

Ginsburg-Landau potentials:

polynomials in the field starting by a constant term.

Linear terms can always be eliminated by a constant shift of the inflaton field.

The quadratic term can have a positive or a negative sign:

 $\begin{cases} w''(0) > 0 \to \text{single well potential} \to \text{large field (chaotic) inflation} \\ w''(0) < 0 \to \text{double well potential} \to \text{small field (new) inflation} \end{cases}$

The inflaton potential must be bounded from below \implies highest order term must be even with a positive coefficient.

Renormalizability \implies degree of the inflaton potential ≤ 4 . The theory of inflation is an effective theory \implies higher degree potentials are acceptable

Stability under the addition of terms of higher order. Otherwise, the description obtained could not be trusted.

Fourth order Ginsburg-Landau inflationary models

$$\overline{w}(\chi) = w_o \pm \frac{\chi^2}{2} + G_3 \ \chi^3 + G_4 \ \chi^4 \quad , \quad G_3 = \mathcal{O}(1) = G_4$$
$$V(\phi) = N \ M^4 \ w \left(\frac{\phi}{\sqrt{N} \ M_{Pl}}\right) = V_o \pm \frac{m^2}{2} \ \phi^2 + g \ \phi^3 + \lambda \ \phi^4 \ .$$
$$m = \frac{M^2}{M_{Pl}} \quad , \quad g = \frac{m}{\sqrt{N}} \left(\frac{M}{M_{Pl}}\right)^2 \ G_3 \quad , \quad \lambda = \frac{G_4}{N} \ \left(\frac{M}{M_{Pl}}\right)^4$$

Notice that

$$\left(\frac{M}{M_{Pl}}\right)^2 \simeq 10^{-5}$$
, $\left(\frac{M}{M_{Pl}}\right)^4 \simeq 10^{-10}$, $N \simeq 60$.

- Small couplings arise naturally as ratio of two energy scales: inflation and Planck.
- The inflaton is a light particle: $m = \frac{M^2}{M_{Pl}} \simeq 0.003 \ M$, $m = 2.5 \times 10^{13} \ \text{GeV}$ $H \sim \sqrt{N} \ m \simeq 2 \times 10^{14} \ \text{GeV}$.

MCMC Results for double-well inflaton potential

Bounds: r > 0.023 (95% CL), r > 0.046 (68% CL)

Most probable values: $n_s \simeq 0.964$, $r \simeq 0.051 \Leftrightarrow$ measurable!! The most probable double-well inflaton potential has a moderate nonlinearity with the quartic coupling $y \simeq 1.26...$

The $\chi \rightarrow -\chi$ symmetry is here spontaneously broken since the absolute minimum of the potential is at $\chi \neq 0$

$$w(\chi) = \frac{y}{32} \left(\chi^2 - \frac{8}{y}\right)^2$$

MCMC analysis calls for $w''(\chi) < 0$ at horizon exit \implies double well potential favoured.

C. Destri, H. J. de Vega, N. Sanchez, MCMC analysis of WMAP data points to broken symmetry inflaton potentials and provides a lower bound on the tensor to scalar ratio, Phys. Rev. D77, 043509 (2008), astro-ph/0703417.

MCMC Results for the double-well inflaton potential

Solid line for N = 50 and dashed line for N = 60White dots: z = 0.01 + 0.11 * n, n = 0, 1, ..., 9, y increases from the uppermost dot y = 0, z = 1.

The universal banana region

We find that all $r = r(n_s)$ curves for double–well inflaton potentials in the Ginsburg-Landau spirit fall inside the universal banana region \mathcal{B} .

The lower border of \mathcal{B} corresponds to the limiting potential:

$$w(\chi) = \frac{4}{y} - \frac{1}{2}\chi^2$$
 for $\chi < \sqrt{\frac{8}{y}}$, $w(\chi) = +\infty$ for $\chi > \sqrt{\frac{8}{y}}$
This gives a lower bound for r for all potentials in the Ginsburg-Landau class: $r > 0.021$ for the current best value of the spectral index $n_s = 0.964$.

Loop Quantum Corrections to Slow-Roll Inflation

$$\begin{split} \phi(\vec{x},t) &= \Phi_0(t) + \varphi(\vec{x},t), \quad \Phi_0(t) \equiv <\phi(\vec{x},t)>, \quad <\varphi(\vec{x},t)>=0\\ \varphi(\vec{x},t) &= \frac{1}{a(\eta)} \int \frac{d^3k}{(2\pi)^3} \left[a_{\vec{k}} \ \chi_k(\eta) \ e^{i\vec{k}\cdot\vec{x}} + \text{h.c.} \right], \end{split}$$

 $a_{\vec{k}}^{\dagger}$, $a_{\vec{k}}$ are creation/annihilation operators, $\chi_k(\eta)$ are mode functions. $\eta = \text{conformal time.}$ To one loop order the equation of motion for the inflaton is $\ddot{\Phi}_0(t) + 3 H \dot{\Phi}_0(t) + V'(\Phi_0) + g(\Phi_0) \langle [\varphi(\boldsymbol{x}, t)]^2 \rangle = 0$ where $g(\Phi_0) = \frac{1}{2} V'''(\Phi_0)$. The mode functions obey:

$$\chi_k''(\eta) + \left[k^2 + M^2(\Phi_0) \ a^2(\eta) - \frac{a''(\eta)}{a(\eta)}\right] \chi_k(\eta) = 0$$

where $M^2(\Phi_0) = V''(\Phi_0) = 3 H_0^2 \eta_V + \mathcal{O}(1/N^2)$

Quantum Corrections to the Friedmann Equation

The mode functions equations for slow-roll become,

 $\chi_k''(\eta) + \left[k^2 - \frac{\nu^2 - \frac{1}{4}}{\eta^2}\right] \chi_k(\eta) = 0 \quad , \quad \nu = \frac{3}{2} + \epsilon_V - \eta_V + \mathcal{O}(1/N^2).$

The scale factor during slow roll is $a(\eta) = -\frac{1}{H_0 \eta (1-\epsilon_V)}$.

Slow-roll parameters of order 1/N:

$$\epsilon_V = \frac{1}{2} M_{Pl}^2 \left(\frac{V'(\Phi_0)}{V(\Phi_0)} \right)^2 \quad , \quad \eta_V = M_{Pl}^2 \frac{V''(\Phi_0)}{V(\Phi_0)}$$

D. Boyanovsky, H. J. de Vega, N. G. Sanchez,

Quantum corrections to slow roll inflation and new scaling of superhorizon fluctuations. Nucl. Phys. B 747, 25 (2006), astro-ph/0503669.

Quantum corrections to the inflaton potential and the power spectra from superhorizon modes and trace anomalies, Phys. Rev. D 72, 103006 (2005), astro-ph/0507596.

Quantum Corrections in slow-roll

Scale invariant case: $\nu = \frac{3}{2}$. $\Delta \equiv \frac{3}{2} - \nu = \eta_V - \epsilon_V$ controls the departure from scale invariance.

Explicit solutions in slow-roll: $\chi_{k}(\eta) = \frac{1}{2} \sqrt{-\pi\eta} i^{\nu+\frac{1}{2}} H_{\nu}^{(1)}(-k\eta), \quad H_{\nu}^{(1)}(z) = \text{Hankel function}$ Quantum fluctuations: $\langle [\varphi(\boldsymbol{x},t)]^{2} \rangle = \frac{1}{a^{2}(\eta)} \int \frac{d^{3}k}{(2\pi)^{3}} |\chi_{k}(\eta)|^{2}$ $\frac{1}{2} \langle [\varphi(\boldsymbol{x},t)]^{2} \rangle = \left(\frac{H_{0}}{4\pi}\right)^{2} \left[\Lambda_{p}^{2} + \ln\Lambda_{p}^{2} + \frac{1}{\Delta} + 2\gamma - 4 + \mathcal{O}(\Delta)\right]$ UV cutoff Λ_{p} = physical cutoff/H, $\frac{1}{\Delta}$ = infrared pole. $\langle \dot{\varphi}^{2} \rangle$, $\langle (\nabla \varphi)^{2} \rangle$ are infrared finite

Quantum Corrections to the Inflaton Potential

Upon UV renormalization the Friedmann equation results

$$H^{2} = \frac{1}{3M_{Pl}^{2}} \left[\frac{1}{2} \dot{\Phi_{0}}^{2} + V_{R}(\Phi_{0}) + \left(\frac{H_{0}}{4\pi}\right)^{2} \frac{V_{R}^{''}(\Phi_{0})}{\Delta} + \mathcal{O}\left(\frac{1}{N}\right) \right]$$
Quantum corrections are proportional to $\left(\frac{H}{M_{Pl}}\right)^{2} \sim 10^{-9}$!!

The Friedmann equation gives for the effective potential:

$$V_{eff}(\Phi_0) = V_R(\Phi_0) + \left(\frac{H_0}{4\pi}\right)^2 \frac{V_R''(\Phi_0)}{\Delta}$$
$$V_{eff}(\Phi_0) = V_R(\Phi_0) \left[1 + \left(\frac{H_0}{4\pi M_{Pl}}\right)^2 \frac{\eta_V}{\eta_V - \epsilon_V}\right]$$

in terms of slow-roll parameters

Very DIFFERENT from the one-loop effective potential in Minkowski space-time:

$$V_{eff}(\Phi_0) = V_R(\Phi_0) + \frac{[V_R''(\Phi_0)]^2}{64\pi^2} \ln \frac{V_R''(\Phi_0)}{M^2}$$

Quantum Fluctuations:

Scalar Curvature, Tensor, Fermion, Light Scalar. All these quantum fluctuations contribute to the inflaton potential and to the primordial power spectra.

In de Sitter space-time:
$$< T_{\mu\nu} > = \frac{1}{4} g_{\mu\nu} < T_{\alpha}^{\alpha} >$$

Hence, $V_{eff} = V_R + < T_0^0 > = V_R + \frac{1}{4} < T_{\alpha}^{\alpha} >$

Sub-horizon (Ultraviolet) contributions appear through the trace anomaly and only depend on the spin of the particle. Superhorizon (Infrared) contributions are of the order N^0 and can be expressed in terms of the slow-roll parameters.

$$\begin{split} V_{eff}(\Phi_0) &= V(\Phi_0) \left[1 + \frac{H_0^2}{3 \ (4\pi)^2 \ M_{Pl}^2} \left(\frac{\eta_v - 4 \ \epsilon_v}{\eta_v - 3 \ \epsilon_v} + \frac{3 \ \eta_\sigma}{\eta_\sigma - \epsilon_v} + \mathcal{T} \right) \right] \\ \mathcal{T} &= \mathcal{T}_{\Phi} + \mathcal{T}_s + \mathcal{T}_t + \mathcal{T}_F = -\frac{2903}{20} \text{ is the total trace anomaly.} \\ \mathcal{T}_{\Phi} &= \mathcal{T}_s = -\frac{29}{30}, \ \mathcal{T}_t = -\frac{717}{5}, \ \mathcal{T}_F = \frac{11}{60} \\ _ \rightarrow \text{ the graviton (t) dominates.} \end{split}$$

Corrections to the Primordial Scalar and Tensor Power

$$\begin{split} & -\left|\Delta_{k,eff}^{(S)}|^{2} = |\Delta_{k}^{(S)}|^{2} \left\{1 + \frac{3}{8} \frac{r (n_{s}-1) + 2}{(n_{s}-1)^{2}} \frac{dn_{s}}{d\ln k}}{d\ln k} + \frac{2903}{40}\right]\right\} \\ & + \frac{2}{3} \left(\frac{H_{0}}{4 \pi M_{Pl}}\right)^{2} \left[1 + \frac{3}{8} \frac{r (n_{s}-1) + 2}{(n_{s}-1)^{2}} + \frac{2903}{40}\right]\right\} \\ & + \left|\Delta_{k,eff}^{(T)}|^{2} = |\Delta_{k}^{(T)}|^{2} \left\{1 - \frac{1}{3} \left(\frac{H_{0}}{4 \pi M_{Pl}}\right)^{2} \left[-1 + \frac{1}{8} \frac{r}{n_{s}-1} + \frac{2903}{20}\right]\right\}. \end{split}$$

The anomaly contribution $-\frac{2903}{20} = -145.15$ DOMINATES as long as the number of fermions less than 783.

The scalar curvature fluctuations $|\Delta_k^{(S)}|^2$ are ENHANCED and the tensor fluctuations $|\Delta_k^{(T)}|^2$ REDUCED.

However,
$$\left(\frac{H}{M_{Pl}}\right)^2 \sim 10^{-9}$$
.
D. Boyanovsky, H. J. de Vega, N. G. Sanchez, Phys. Rev. D
72, 103006 (2005), astro-ph/0507596.

The Energy Scale of Inflation

Grand Unification Idea (GUT)

- Renormalization group running of electromagnetic, weak and strong couplings shows that they all meet at $E_{GUT} \simeq 2 \times 10^{16} \text{ GeV}$
- Neutrino masses are explained by the see-saw mechanism: $m_{\nu} \sim \frac{M_{\rm Fermi}^2}{M_R}$ with $M_R \sim 10^{16}$ GeV.
- Inflation energy scale: $M \simeq 10^{16}$ GeV.

Conclusion: the GUT energy scale appears in at least three independent ways.

Moreover, moduli potentials: $V_{moduli} = M_{SUSY}^4 v \left(\frac{\phi}{M_{Pl}}\right)$

ressemble inflation potentials provided $M_{SUSY} \sim 10^{16}$ GeV. First observation of SUSY in nature??

De Sitter Geometry and Scale Invariance

The De Sitter metric is scale invariant:

 $ds^2 = \frac{1}{(H \eta)^2} \left[(d\eta)^2 - (d\vec{x})^2 \right] \quad , \quad \eta = \text{conformal time.}$

But inflation only lasts for N efolds !

Corrections to scale invariance:

 $|n_s - 1|$ as well as the ratio r are of order $\sim 1/N$, The Harrison-Zeldovich point $n_s = 1$ and r = 0 corresponds to a critical point.

It is a gaussian fixed point around which the inflation model hovers in the renormalization group (RG) sense with an almost scale invariant spectrum during the slow roll stage.

The quartic coupling:

$$\lambda = \frac{G_4}{N} \left(\frac{M}{M_{Pl}}\right)^4$$
, $N = \log \frac{a(\text{inflation end})}{a(\text{horizon exit})}$
runs like in four dimensional RG in flat euclidean space.

Summary and Conclusions

- Solution We formulate inflation as an effective field theory in the Ginsburg-Landau spirit and obtain $M \sim M_{GUT} \sim 10^{16}$ GeV as inflation energy scale.
- This effective theory is consistent because: $H \ll M \ll M_{Pl}$. Inflaton mass turns to be small: $m \sim H/\sqrt{N}$. Infrared regime !!
- The slow-roll approximation is a 1/N expansion, $N \sim 60$. For all slow-roll models $n_s - 1$ and r are $\sim 1/N$. Running: $dn_s/d \ln k \sim 1/N^2$.
- MCMC analysis of WMAP+LSS data plus this theory input indicates a spontaneously symmetry breaking inflaton potential: $w(\chi) = \frac{y}{32} \left(\chi^2 \frac{8}{y}\right)^2$, $y \simeq 1.26$.
- Lower Bound: $r > 0.023 \ (95\% \text{ CL})$. Most probable values: $r \simeq 0.051 (\Leftarrow \text{measurable }!!)$ $n_s \simeq 0.964$.

Summary and Conclusions 2

- Primordial Non-gaussianity $f_{NL} = \text{order } 1/N$. Too smallto be detected.
- Quantum (loop) corrections in the effective theory are of the order $(H/M_{Pl})^2 \sim 10^{-8}$. Same order of magnitude as loop graviton corrections.

Preinflationary and inflationary fast-roll eras and their signatures in the low CMB multipoles, C. Destri, H. J. de Vega, N. G. Sanchez, arXiv:0912.2994, Phys. Rev. **D 81**, 063520 (2010).

Higher order terms in the inflaton potential and the lower bound on the tensor to scalar ratio r. C. Destri, H. J. de Vega, N. G. Sanchez, arXiv:0906.4102, Annals of Physics, **326**, 578 (2011).

The Universe is our ultimate physics laboratory

THANK YOU VERY MUCH FOR YOUR ATTENTION!!

The Effective Theory of Inflation, Cosmological Observations Contrasted with Quantum Fields in (Quasi)-De Sitter Spacetime - p. 26/