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DM + Λ + Baryons + Radiation

The Standard Cosmological Model = Concordance Model

Begins by the inflationary era. Slow-Roll inflation
explains horizon and flatness.

Gravity is described by Einstein’s General Relativity.

Particle Physics described by the Standard Model of
Particle Physics: SU(3) ⊗ SU(2) ⊗ U(1) =
qcd+electroweak model.

Dark matter is non-relativistic during the matter
dominated era where structure formation happens. DM
is outside the SM of particle physics. CDM =⇒ WDM.

Dark energy described by the cosmological constant Λ.

The Effective Theory of Inflation, Cosmological Observations Contrasted with Quantum Fields in (Quasi)-De Sitter Spacetime – p. 2/26



Standard Model of the Universe: Concordance Model
ds2 = dt2 − a2(t) d~x 2 : spatially flat geometry.

The Universe starts by an INFLATIONARY ERA .

Inflation = Accelerated Expansion: d2a
dt2 > 0.

During inflation the universe expands by at least sixty or so
efolds: e66 ≃ 1029 . Inflation lasts ≃ 10−36 sec and ends by
z ∼ 1027 followed by a radiation dominated era.

Matter can be effectively described during inflation by a
single Scalar Field φ(t,x) : the Inflaton.

Lagrangean: L = a3(t)
[

φ̇2

2 − (∇φ)2

2 a2(t) − V (φ)
]

.

Friedmann eq.: H2(t) = 1
3 M2

Pl

[

φ̇2

2 + V (φ)
]

, H(t) ≡ ȧ(t)/a(t).

Slow-roll =⇒ quasi-de Sitter space-time.
If φ̇2 ≪ V (φ) ≃ V̄ =⇒ a(t) = ā eH̄ t , H̄ =

√
V̄ /[

√
3 MPl]
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The Theory of Inflation
We describe inflation as an effective field in the
Ginsburg-Landau sense.
D. Boyanovsky, C. Destri, H. J. de Vega, N. G. Sánchez,
(review article),
arXiv:0901.0549, Int. J. Mod.Phys. A 24, 3669-3864 (2009).
Relevant effective theories in physics:

Ginsburg-Landau theory of superconductivity. It is an
effective theory for Cooper pairs in the microscopic
BCS theory of superconductivity.

The O(4) sigma model for pions, the sigma and photons
at energies . 1 GeV. The microscopic theory is QCD:
quarks and gluons. π ≃ q̄q , σ ≃ q̄q .

The theory of second order phase transitions à la
Landau-Kadanoff-Wilson... (ferromagnetic,
antiferromagnetic, liquid-gas, Helium 3 and 4, ...)

....
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Slow-roll evolution of the Inflaton
During slow-roll the inflaton derivatives are small and the
evolution equations can be approximated by:

3 H(t) φ̇ + V ′(φ) = 0 , H2(t) = V (φ)
3M2

Pl

These first order equations can be solved in closed from as:

M2
Pl N [φ] = −

∫ φend

φ V (ϕ) dϕ
dV dϕ , eN [φ] = a(φend)/a(φ) ,

N [φ] = the number of e-folds since the field φ exits the
horizon till the end of inflation. N ∼ 60.
φend = absolute minimum of V (φ).

Therefore, φ2 = scales as N M2
Pl. We define:

χ ≡ φ√
N MPl

= is a dimensionless and slow field.

Universal form of the slow-roll inflaton potential:
V (φ) = N M4 w(χ), M = energy scale of inflation
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SLOW and Dimensionless Variables

χ = φ√
N MPl

, τ = m t√
N

, H(τ) = H(t)

m
√

N
,

m ≡ M2

MPl
, |V ′′(0)| = m2 = inflaton mass, (|w′′(0)| = 1)

slow inflaton, slow time, slow Hubble.

χ and w(χ) are of order one.

Evolution Equations:

H2(τ) = 1
3

[

1
2 N

(

dχ

dτ

)2

+ w(χ)

]

,

1
N

d2χ

dτ2
+ 3 H dχ

dτ
+ w′(χ) = 0 .

1/N terms: corrections to slow-roll

Higher orders in slow-roll are obtained systematically by
expanding the solutions in 1/N .
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Exact Inflaton Dynamics: w(χ) = y

32
(χ2 − 8

y
)2
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Slow-roll Inflaton Dynamics
Integrating the inflaton evolution eqs. to the order 1/N :

log a(t)
a(0) =

√

2 N
3 y m t − 1

8
ϕ2(0)
M2

Pl

[

e
√

2 y

3 N
m t − 1

]

H(t) = m
√

2 N
3 y

[

1 − y
8 N

ϕ2(0)
M2

Pl

e
√

2 y

3 N
m t

]

Hubble H(t) slowly decreases during slow-roll.

De Sitter universe plus 1/N corrections:
During slow-roll the universe is quasi-De Sitter.

H(end slow − roll) ≃ H(slow − roll beginning)/
√

N√
N ≃ 8

m tend slow−roll =
√

3 N
2 y log

[

8 N M2

Pl

y ϕ2(0)

]

The Slow-roll regime is an attractor
(Belinsky-Grishchuk-Zeldovich-Khalatnikov, 1985)
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Primordial Power Spectrum

Adiabatic Scalar Perturbations: P (k) = |∆(S)
k ad|2 kns−1 .

To dominant order in slow-roll:

|∆(S)
k ad|2 = N2

12 π2

(

M
MPl

)4
w3(χ)
w′2(χ) .

Hence, for all slow-roll inflation models:

|∆(S)
k ad| ∼ N

2 π
√

3

(

M
MPl

)2

The WMAP result: |∆(S)
k ad| = (0.494 ± 0.1) × 10−4

determines the scale of inflation M (using N ≃ 60)
(

M
MPl

)2
= 0.85 × 10−5 −→ M = 0.70 × 1016 GeV

The inflation energy scale turns to be the grand unification
energy scale !! We find the scale of inflation without
knowing the tensor/scalar ratio r !!
The scale M is independent of the shape of w(χ).
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spectral indexns, the ratio r and the running of ns

r ≡ ratio of tensor to scalar fluctuations.
tensor fluctuations = primordial gravitons.

ns − 1 = − 3

N

[

w′(χ)

w(χ)

]2

+
2

N

w′′(χ)

w(χ)
, r =

8

N

[

w′(χ)

w(χ)

]2

dns

d ln k
= − 2

N2

w′(χ) w′′′(χ)

w2(χ)
− 6

N2

[w′(χ)]4

w4(χ)
+

8

N2

[w′(χ)]2 w′′(χ)

w3(χ)
,

χ is the inflaton field at horizon exit.
ns−1 and r are always of order 1/N ∼ 0.02 (model indep.)

Running of ns of order 1/N2 ∼ 0.0003 (model independent).
Primordial Non-gaussianity fNL = order 1/N

D. Boyanovsky, H. J. de Vega, N. G. Sanchez,
Phys. Rev. D 73, 023008 (2006), astro-ph/0507595.
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Ginsburg-Landau Approach
Ginsburg-Landau potentials:
polynomials in the field starting by a constant term.
Linear terms can always be eliminated by a constant shift of
the inflaton field.
The quadratic term can have a positive or a negative sign:
{

w′′(0) > 0 → single well potential → large field (chaotic) inflation

w′′(0) < 0 → double well potential → small field (new) inflation

The inflaton potential must be bounded from below =⇒
highest order term must be even with a positive coefficient.

Renormalizability =⇒ degree of the inflaton potential ≤ 4.
The theory of inflation is an effective theory =⇒
higher degree potentials are acceptable

Stability under the addition of terms of higher order.
Otherwise, the description obtained could not be trusted.
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Fourth order Ginsburg-Landau inflationary models

w(χ) = wo ± χ2

2 + G3 χ3 + G4 χ4 , G3 = O(1) = G4

V (φ) = N M4 w
(

φ√
N MPl

)

= Vo ± m2

2 φ2 + g φ3 + λ φ4 .

m = M2

MPl
, g = m√

N

(

M
MPl

)2
G3 , λ = G4

N

(

M
MPl

)4

Notice that
(

M
MPl

)2
≃ 10−5 ,

(

M
MPl

)4
≃ 10−10 , N ≃ 60 .

Small couplings arise naturally as ratio of two energy
scales: inflation and Planck.

The inflaton is a light particle:
m = M2

MPl
≃ 0.003 M , m = 2.5 × 1013 GeV

H ∼
√

N m ≃ 2 × 1014 GeV.
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MCMC Results for double–well inflaton potential
Bounds: r > 0.023 (95% CL) , r > 0.046 (68% CL)

Most probable values: ns ≃ 0.964, r ≃ 0.051 ⇐measurable!!
The most probable double–well inflaton potential has a
moderate nonlinearity with the quartic coupling y ≃ 1.26 . . ..

The χ → −χ symmetry is here spontaneously broken
since the absolute minimum of the potential is at χ 6= 0

w(χ) = y
32

(

χ2 − 8
y

)2

MCMC analysis calls for w′′(χ) < 0 at horizon exit
=⇒ double well potential favoured.

C. Destri, H. J. de Vega, N. Sanchez, MCMC analysis of
WMAP data points to broken symmetry inflaton potentials
and provides a lower bound on the tensor to scalar ratio,
Phys. Rev. D77, 043509 (2008), astro-ph/0703417.
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MCMC Results for the double–well inflaton potential
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The universal banana region
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We find that all r = r(ns) curves for double–well inflaton
potentials in the Ginsburg-Landau spirit fall inside the
universal banana region B.
The lower border of B corresponds to the limiting potential:

w(χ) = 4
y − 1

2 χ2 for χ <
√

8
y , w(χ) = +∞ for χ >

√

8
y

This gives a lower bound for r for all potentials in the
Ginsburg-Landau class: r > 0.021 for the current best value
of the spectral index ns = 0.964.
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Loop Quantum Corrections to Slow-Roll Inflation

φ(~x, t) = Φ0(t)+ϕ(~x, t), Φ0(t) ≡< φ(~x, t) >, < ϕ(~x, t) >= 0

ϕ(~x, t) = 1
a(η)

∫

d3k
(2 π)3

[

a~k
χk(η) ei~k·~x + h.c.

]

,

a†
~k
, a~k

are creation/annihilation operators,

χk(η) are mode functions. η = conformal time.
To one loop order the equation of motion for the inflaton is

Φ̈0(t) + 3 H Φ̇0(t) + V ′(Φ0) + g(Φ0) 〈[ϕ(x, t)]2〉 = 0

where g(Φ0) = 1
2 V

′′′

(Φ0).
The mode functions obey:

χ
′′

k(η) +

[

k2 + M2(Φ0) a2(η) − a
′′

(η)
a(η)

]

χk(η) = 0

where M2(Φ0) = V ′′(Φ0) = 3 H2
0 ηV + O(1/N2)
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Quantum Corrections to the Friedmann Equation
The mode functions equations for slow-roll become,

χ
′′

k(η)+
[

k2 − ν2− 1

4

η2

]

χk(η) = 0 , ν = 3
2 + ǫV −ηV +O(1/N2).

The scale factor during slow roll is a(η) = − 1
H0 η (1−ǫV ) .

Slow-roll parameters of order 1/N :

ǫV = 1
2 M2

Pl

(

V ′(Φ0)
V (Φ0)

)2
, ηV = M2

Pl
V ′′(Φ0)
V (Φ0)

D. Boyanovsky, H. J. de Vega, N. G. Sanchez,

Quantum corrections to slow roll inflation and new scaling
of superhorizon fluctuations. Nucl. Phys. B 747, 25 (2006),
astro-ph/0503669.

Quantum corrections to the inflaton potential and the power
spectra from superhorizon modes and trace anomalies,
Phys. Rev. D 72, 103006 (2005), astro-ph/0507596.
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Quantum Corrections in slow-roll

Scale invariant case: ν = 3
2 . ∆ ≡ 3

2 − ν = ηV − ǫV controls
the departure from scale invariance.

Explicit solutions in slow-roll:

χk(η) = 1
2

√−πη iν+ 1

2 H
(1)
ν (−kη), H

(1)
ν (z) = Hankel function

Quantum fluctuations: 〈[ϕ(x, t)]2〉 = 1
a2(η)

∫

d3k
(2π)3 |χk(η)|2

1
2〈[ϕ(x, t)]2〉 =

(

H0

4 π

)2 [

Λp
2 + ln Λ2

p + 1
∆ + 2 γ − 4 + O(∆)

]

UV cutoff Λp = physical cutoff/H, 1
∆ = infrared pole.

〈

ϕ̇2
〉

,
〈

(∇ϕ)2
〉

are infrared finite
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Quantum Corrections to the Inflaton Potential

Upon UV renormalization the Friedmann equation results

H2 = 1
3 M2

Pl

[

1
2 Φ̇0

2
+ VR(Φ0) +

(

H0

4 π

)2 V
′′

R (Φ0)
∆ + O

(

1
N

)

]

Quantum corrections are proportional to
(

H
MPl

)2
∼ 10−9 !!

The Friedmann equation gives for the effective potential:

Veff (Φ0) = VR(Φ0) +
(

H0

4 π

)2 V
′′

R (Φ0)
∆

Veff (Φ0) = VR(Φ0)

[

1 +
(

H0

4 π MPl

)2
ηV

ηV −ǫV

]

in terms of slow-roll parameters

Very DIFFERENT from the one-loop effective potential in
Minkowski space-time:

Veff (Φ0) = VR(Φ0) + [V
′′

R (Φ0)]
2

64 π2 ln V
′′

R (Φ0)
M2
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Quantum Fluctuations:
Scalar Curvature, Tensor, Fermion, Light Scalar.
All these quantum fluctuations contribute to the inflaton
potential and to the primordial power spectra.

In de Sitter space-time: < Tµ ν >= 1
4 gµ ν < Tα

α >

Hence, Veff = VR+ < T 0
0 >= VR + 1

4 < Tα
α >

Sub-horizon (Ultraviolet) contributions appear through the
trace anomaly and only depend on the spin of the particle.
Superhorizon (Infrared) contributions are of the order N0

and can be expressed in terms of the slow-roll parameters.

Veff (Φ0) = V (Φ0)

[

1 + H2

0

3 (4π)2 M2

Pl

(

ηv−4 ǫv

ηv−3 ǫv
+ 3 ησ

ησ−ǫv
+ T

)]

T = TΦ + Ts + Tt + TF = −2903
20 is the total trace anomaly.

TΦ = Ts = −29
30 , Tt = −717

5 , TF = 11
60

−→ the graviton (t) dominates.
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Corrections to the Primordial Scalar and Tensor Power

|∆(S)
k,eff |2 = |∆(S)

k |2 {1+

+2
3

(

H0

4 π MPl

)2 [

1 +
3

8
r (ns−1)+2 dns

d ln k

(ns−1)2 + 2903
40

]

}

|∆(T )
k,eff |2 = |∆(T )

k |2
{

1 − 1
3

(

H0

4 π MPl

)2 [

−1 + 1
8

r
ns−1 + 2903

20

]

}

.

The anomaly contribution −2903
20 = −145.15 DOMINATES

as long as the number of fermions less than 783.

The scalar curvature fluctuations |∆(S)
k |2 are ENHANCED

and the tensor fluctuations |∆(T )
k |2 REDUCED.

However,
(

H
MPl

)2
∼ 10−9.

D. Boyanovsky, H. J. de Vega, N. G. Sanchez, Phys. Rev. D
72, 103006 (2005), astro-ph/0507596.
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The Energy Scale of Inflation

Grand Unification Idea (GUT)

Renormalization group running of electromagnetic,
weak and strong couplings shows that they all meet at
EGUT ≃ 2 × 1016 GeV

Neutrino masses are explained by the see-saw

mechanism: mν ∼ M2

Fermi

MR
with MR ∼ 1016 GeV.

Inflation energy scale: M ≃ 1016 GeV.

Conclusion: the GUT energy scale appears in at least three
independent ways.

Moreover, moduli potentials: Vmoduli = M4
SUSY v

(

φ
MPl

)

ressemble inflation potentials provided MSUSY ∼ 1016GeV.
First observation of SUSY in nature??
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De Sitter Geometry and Scale Invariance
The De Sitter metric is scale invariant:

ds2 = 1
(H η)2

[

(dη)2 − (d~x)2
]

, η = conformal time.

But inflation only lasts for N efolds !

Corrections to scale invariance:

|ns − 1| as well as the ratio r are of order ∼ 1/N ,
The Harrison-Zeldovich point ns = 1 and r = 0 corresponds
to a critical point.

It is a gaussian fixed point around which the inflation model
hovers in the renormalization group (RG) sense with an
almost scale invariant spectrum during the slow roll stage.

The quartic coupling:

λ = G4

N

(

M
MPl

)4
, N = log a(inflation end)

a(horizon exit)

runs like in four dimensional RG in flat euclidean space.
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Summary and Conclusions
We formulate inflation as an effective field theory in the
Ginsburg-Landau spirit and obtain M ∼ MGUT ∼ 1016

GeV as inflation energy scale.

This effective theory is consistent because:
H ≪ M ≪ MPl. Inflaton mass turns to be small:
m ∼ H/

√
N . Infrared regime !!

The slow-roll approximation is a 1/N expansion,
N ∼ 60. For all slow-roll models ns − 1 and r are ∼ 1/N .
Running: dns/d ln k ∼ 1/N2.

MCMC analysis of WMAP+LSS data plus this theory
input indicates a spontaneously symmetry breaking

inflaton potential: w(χ) = y
32

(

χ2 − 8
y

)2
, y ≃ 1.26.

Lower Bound: r > 0.023 (95% CL). Most probable
values: r ≃ 0.051(⇐ measurable !!) ns ≃ 0.964 .
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Summary and Conclusions 2
Primordial Non-gaussianity fNL = order 1/N . Too small
to be detected.

Quantum (loop) corrections in the effective theory are of
the order (H/MPl)

2 ∼ 10−8. Same order of magnitude
as loop graviton corrections.

Preinflationary and inflationary fast-roll eras and their
signatures in the low CMB multipoles,
C. Destri, H. J. de Vega, N. G. Sanchez, arXiv:0912.2994,
Phys. Rev. D 81, 063520 (2010).

Higher order terms in the inflaton potential and the lower
bound on the tensor to scalar ratio r.
C. Destri, H. J. de Vega, N. G. Sanchez, arXiv:0906.4102,
Annals of Physics, 326, 578 (2011).
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The Universe is our ultimate physics laboratory

THANK YOU VERY MUCH

FOR YOUR ATTENTION!!
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