F-theory Model Building

Jonathan J. Heckman

Review: arXiv:1001.0577 [hep-th]

arXiv:1005.3033 [hep-th] w/ H. Verlinde

arXiv:1006.5459 [hep-th] w/ C. Vafa

Based On...

This talk is based on the work of several groups

For brevity I will focus on only a few themes

and some potentially interesting future directions

Plan of the Talk

- Bottom up Stringy Standard Models
- Unification in F-theory
- Extra Sectors
- Fuzzy Local Models
- Conclusions

SM / MSSM

Gauge Group: $SU(3)_C \times SU(2)_L \times U(1)_Y$

.....

Quarks: $3 \times (Q \oplus U \oplus D)$

Matter: Leptons: $3 \times (L \oplus E)$

Higgs: $H_u \oplus H_d$

Interactions: $W = H_uQU + H_dQD + H_dLE + \cdots$

Some Questions

Q1: Standard Model (SM) from Strings?

Q2: Stringy ingredients of the SM?

Q3: Given a stringy SM, what does it predict?

Top Down Perspective

Compactify: $\mathcal{M}_{10} \simeq \mathcal{M}_4^{us} \times \mathcal{M}_6^{internal}$

+ Branes + Fluxes + Moduli $+ \cdots$

⇒ Many moving parts interacting non-trivially

Where to Look First?

Bottom Up Perspective

SM is well-tested. Planck scale less clear

Focus on gauge sector, defer gravity

$$M_{pl} \sim 10^{19} \; {\rm GeV} \gg M_{weak} \sim 10^2 \; {\rm GeV}$$

$$M_{pl} \sim 10^{19} \text{ GeV} \gg M_{GUT} \sim 10^{16} \text{ GeV}$$

Local Models

Build up in steps:

Antoniadis, Kiritsis, Tomaras '00 Aldazabel, Ibanez, Quevedo, Uranga '00 Verlinde Wijnholt '05,...

- 1) Decouple Gravity
- 2) Realize SM in IR
- 3) Extend SM (e.g. SUSY, unification, ...)
- 4) Recouple to gravity

Won't discuss much about this

Strategy:

Closed strings for gravity

Open strings for particle physics

String ends on a brane

⇒ Put SM on a spacetime filling brane

Perturbative Building Blocks

Gauge groups: U, SO, USp but no $E_{6,7,8}$

$$Matter: \quad \square \otimes \square \qquad \qquad \square$$

Yukawas:
$$\# \square = \# \square \quad e.g. \quad \square \times \square \times \square$$

but not
$$\square \times \square \times \square$$

SM is Like This!

Too Flexible?

Encourages building big quivers:

Is SM completely arbitrary?

Unification

But quivers also discourage unification

Circumstantial evidence for unification:

- 1) MSSM gauge coup.'s unify @ $\sim 10^{16}$ GeV
- 2) Matter in irreps of SU(5), SO(10), E_6 ,...
- 3) $m_{neutrino} \sim m_{weak}^2/M_{GUT}$

• • •

SU(5) GUT

$$SU(5) \supset SU(3)_C \times SU(2)_L \times U(1)_Y$$

$$10_M \to Q \oplus U \oplus E$$

Matter:

$$\overline{5}_M \to D \oplus L$$

$$5_H \rightarrow \mathcal{Z}_u \oplus H_u$$

$$\overline{5}_H \to \mathbb{Z}_d \oplus H_d$$

Interactions: $W = 5_H 10_M 10_M + \overline{5}_H \overline{5}_M 10_M + \cdots$ \Rightarrow t mass \Rightarrow b and τ masses

More GUT Structures

Matter:
$$5_H$$
, $\overline{5}_H$, $\overline{5}_M$, 10_M

SU(5):

$$W_{SU(5)} \supset 5_H 10_M 10_M + \overline{5}_H \overline{5}_M 10_M$$

Matter: 10_H , 16_M

SO(10):

$$W_{SO(10)} \supset 16_M 16_M 10_H$$

In 4D, stop after E_6 (need chirality)

Open Strings & GUTs

GUTs problematic with open strings at $g_s \ll 1$

No 16_M for SO(10) GUTs

No $5_H 10_M 10_M$ for SU(5) GUTs

 $\square \times \square \times \square = \#\square$

Main Issue: No E-type structures

Main Point:

Perturbative open strings obstruct unification

New ingredients as $g_s \to O(1)$

Roadmap

Bottom up Stringy Standard Models

Unification in F-theory

F-theory Review

Vafa '96

Strongly coupled IIB string theory = F-theory

$$\tau_{IIB} = C_0 + \frac{i}{g_s} \sim O(1)$$

Interpret τ_{IIB} as τ of a T^2

Allow $\tau_{IIB}(y)$ non-trivial position dependence

Geometric Formulation

$$F / CY_4 \Rightarrow 4D \mathcal{N} = 1 SUSY$$

$$y^{2} = x^{3} + f(\overrightarrow{z})x + g(\overrightarrow{z})$$
7-brane.

Geometry \Rightarrow Gauge Theory

Locally, $CY_4 \simeq ADE \to \mathcal{M}_4$

 \Rightarrow 7-brane on $R^{3,1} \times \mathcal{M}_4$ with ADE gauge gp.

$$\frac{4\pi}{g_{GUT}^2} = \frac{1}{g_s} \frac{\text{Vol}(\mathcal{M}_4)_{\text{open}}}{l_*^4} \Rightarrow \begin{array}{l} \text{Weakly coupled when} \\ \text{Vol}(\mathcal{M}_4)_{\text{open}} \gg l_*^4 \\ (\alpha_{GUT} \sim 1/25) \end{array}$$

Expansion Parameters

 $g_s \sim \mathcal{O}(1) \Rightarrow \text{no expansion in } g_s$

Instead, perform expansion in: $\frac{1}{\text{Vol}(\mathcal{M}_4)_{\text{open}}}$

$$\frac{1}{\text{Vol}(\mathcal{M}_4)_{\text{open}}} \sim M_{GUT}^4 \Rightarrow \text{Expand in } \frac{M_{GUT}}{M_{pl}}$$

Intersecting 7-Branes I

Each 7-brane fills out 4 directions in \mathcal{M}_6

 \Rightarrow Generically expect intersections

⇒ Further jumps in ADE type of singularity

 $\dim = 4:7_{\mathrm{GUT}} \Rightarrow \mathrm{Gauge} \ \mathrm{group}$

 $\dim = 2: 7 \cap 7' \Rightarrow Matter (non-chiral)$

 $\dim = 0: 7 \cap 7' \cap 7'' \Rightarrow \text{Cubic Couplings}$

Intersecting 7-Branes II

Locally model as $G_{7\cap 7'\cap 7''}$ 7-Brane which is tilted:

Gauge Theory Perspective

Model as 8D $G_{7\cap 7'\cap 7''}$ gauge theory

Katz Vafa '96 Beasley JJH Vafa '08 Donagi Wijnholt '08

$$F^{(0,2)} = F^{(2,0)} = \overline{\partial}_A \Phi = 0$$

8D EOMs:

$$\omega \wedge F_{(1,1)} + \frac{i}{2} \left[\Phi, \Phi^{\dagger} \right] = 0$$

6D Matter: Fluctuations δA and $\delta \Phi$

4D Yukawas: $\int \delta A \wedge \delta A \wedge \delta \Phi$

Example: $5_H 10_M 10_M$ Yukawa

Locally describe as Higgsing E_6 gauge theory

$$E_6 \to SU(5) \times SU(2) \times U(1) \to SU(5)$$

$$\langle \Phi \rangle \neq 0$$

Locally Unfolding E_8

Eigenvalues($\Phi(Z_1, Z_2)$) = 7-Brane "Positions"

$$E_8 \to SU(5)_{GUT} \times SU(5)_{\perp} \qquad \Phi \in SU(5)_{\perp}$$

$$b_0\Phi^5 + b_2(Z_1,Z_2)\Phi^3 + \cdots + b_5(Z_1,Z_2) = 0$$
Hayashi et al. '09
Donagi Wijnholt '09

$$y^2 = x^3 + b_0 z^5 + b_2 x z^3 + b_3 y z^2 + b_4 x^2 z + b_5 x y$$
valid in a local patch

Hayashi et al. '09

Generically: Eigen($\Phi(Z_1, Z_2)$) has branch cuts

Example: Unfolding $E_6 \to SU(5) \times SU(2) \times U(1)$

$$\Phi = \# \left[egin{array}{ccc} z_1 & & & & \\ & -z_1 & & & \\ \end{array}
ight] \oplus z_2 \qquad \Phi = \# \left[egin{array}{ccc} & 1 & \\ z_1 & & \\ \end{array}
ight] \oplus z_2$$

 \Rightarrow 2 or more heavy gens.

$$\Phi=\#\left[egin{array}{cc} 1\ z_1 \end{array}
ight]\oplus z_2$$

 \Rightarrow 1 heavy gen.

Monodromy II

$$P(\Phi) = \Phi^5 + b_2(Z_1, Z_2)\Phi^3 + \dots + b_5(Z_1, Z_2) = 0$$

Mono. group for $P(\Phi)$ affects pheno of model $\mathbf{\dot{\dot{v}}} \equiv \text{Galois group of } P(\Phi) = \prod (\Phi - \lambda_i); \text{ acts on } \lambda_i \text{'s}$

 S_5 Mono: 1 5-curve and 1 10-curve (not viable)

No Mono: Trouble with flavor (not viable)

Viable Cases: G_{mono} non-triv. proper s/gp of S_5

+ Flux

Flux through 7-brane \Rightarrow 4D chiral matter

$$\frac{1}{2\pi} \int_{\Sigma} F_{7'} = N_{\text{generations}}$$

+ Hyperflux

Can also turn on "hyperflux" F_Y in $U(1)_Y$

Breaks
$$SU(5) oup SU(3) imes SU(2) imes U(1)_Y$$
 Beasley JJH Vafa '08, Donagi Wijnholt '08

Distinguishes Higgs and Matter Fields:

$$\int F_Y \neq 0 \qquad \int F_Y = 0$$
Higgs Matter

Flux and Unification

 F_Y splits gauge couplings at GUT scale

Donagi Wijnholt '08 Blumenhagen '08 Conlon Palti '09

$$\alpha_i^{-1} \to \alpha_{GUT}^{-1} + k_i + \text{other corrections}$$
 $k_i \propto \int F_Y \wedge F_Y \sim \mathcal{O}(1)$

Same as $\mathcal{O}(KK \text{ thresholds})$ and $\mathcal{O}(2\text{-loop MSSM})$ corrections

Donagi Wijnholt '08

F-theory GUT Ingredients

Beasley JJH Vafa '08 Donagi Wijnholt '08 Hayashi et al. '08

Matter Curves for 5_H , $\overline{5}_H$, $\overline{5}_M$, 10_M

Yukawa Points for $5_H 10_M 10_M$, $\overline{5}_H \overline{5}_M 10_M$

+ 7'-Brane Flux + Hyperflux + Monodromy

Rough Picture

Geometric Unification?

Aesthetic: This does not look very unified

Practical: Also has problematic phenomenology:

CKM Matrix measures wave function alignment

If no alignment, predict $\mathcal{O}(1)$ mixing

The Point of E_8

Flavor hierarchy \Rightarrow keep Ψ 's overlaps aligned

To keep Yukawas aligned, unify Yukawa points

K. Vonnegut '73 $10_{M} \frac{1}{5_{H}} \frac{1}{5_{H}}$

JJH Vafa '08 Bouchard, JJH, Seo, Vafa '09 JJH, Tavanfar Vafa '09

Nowhere to go beyond E_8

 \Rightarrow far less flexible than generic quiver

Fitting More In E_8

 $E_8 \supset SU(5)_{GUT} \times SU(5)_{\perp}$ can accommodate:

$$248 \rightarrow (24,1) + (1,24) + (5,10) + (10,\overline{5}) + c.c.$$

Monodromy $G_{mono} \subset S_5$ removes some irreps

SUSY sector

Can also include: Minimal gauge mediation

Dynamically generated μ -term

• • •

Not Flexible Enough?

When E_8 gauge theory description extends

over compact \mathcal{M}_4 , find tight restrictions

If no special factorization, generically "exotics" Marsano, Saulina, Schafer-Nameki '09

But, can lift these from low energy spectrum

Important to stress that no global E_8 may exist

No known obstruction in general

Roadmap

Unification in F-theory

Extra Sectors

Extra Stuff?

Intuition from quivers: Keep adding nodes

Where are these extra sectors?

A Hint From Global Models

No D3 Tadpole:
$$\frac{\chi(CY_4)}{24} = \int_{\mathcal{M}_6} H_{RR} \wedge H_{NS} + N_{D3}$$

Bulk Fluxes and D3-Branes

Flux deforms D3-brane superpotential Martucci '06; Cecotti, Cheng, JJH, Vafa '09

Flavor Physics \Rightarrow Attraction to Yukawa points

JJH, Vafa '10

Generically \exists other minima

D3-Branes Probing F-theory

Fluxes attract D3-branes to Yukawa points

$$\tau_{D3} = \tau_{IIB} \sim O(1)$$
 at E-points

 \Rightarrow Strongly coupled sector nearby SM?

What is the probe theory?

Probing an E-point

$$\mathcal{N} = 2 \text{ SCFT}$$

$$\mathcal{N} = 1 \text{ Deform}^n$$

Warmup: $\mathcal{N} = 2$ Probes

D3-brane probing parallel stack of 7-branes

Banks Douglas Seiberg '96, Douglas Lowe Schwarz '96, ...

7-brane gauge group = G_{flavor}

3-7 string composite operators $\mathcal{O}_{\mathrm{adj}}$

(analogue at weak coupling: $\mathcal{O} \sim QQ$)

$\mathcal{N}=2$ Moduli Space

Coulomb Branch:

Move D3-brane off of 7-brane

$$\langle Z \rangle \neq 0$$

Higgs Branch:

Operators \mathcal{O} adj. of G_{flavor}

Dissolve D3-brane as flux

$$\langle \mathcal{O} \rangle \neq 0$$

$\mathcal{N}=2$ E_n Probes

Minahan-Nemeschansky: Introduce $\mathcal{N}=2$ SCFT

Minahan Nemeschansky '96

$$E_8: y^2 = x^3 + z^5$$

Seiberg Witten Curves: $E_7: y^2 = x^3 + xz^3$

$$E_6: y^2 = x^3 + z^4$$

 $\mathcal{N} = 2$ Seiberg-Witten Curve = F-th geometry!

$$\mathcal{N} = 2 \text{ D3-probe} = \text{MN}_{\mathcal{N}=2} \oplus (Z_1 \oplus Z_2)$$

$\mathcal{N}=2$ Deformations

Deformations: $\delta \mathcal{L} = \int d^2\theta \operatorname{Tr}_{E_n}(\Phi \cdot \mathcal{O}_{adj}) + \text{h.c.}$

 Φ constant and $[\Phi, \Phi^{\dagger}] = 0$

$$\mathcal{N}=2 \rightarrow \mathcal{N}=1$$

$$\delta \mathcal{L} = \int d^2\theta \operatorname{Tr}_{E_n}(\Phi(Z_1, Z_2) \cdot \mathcal{O}_{adj}) + \text{h.c.}$$

JJH Vafa '10 (see also Aharony Kachru Silverstein '96)

Monodromy
$$\Rightarrow [\Phi, \Phi^{\dagger}] \neq 0$$

With Monodromy, Eigen(Φ) has branch cuts

No Branch Cuts: Flows back to $\mathcal{N}=2$ theory Follows from Green et al. '10

Branch Cuts: Can flow to new $\mathcal{N}=1$ SCFTs

JJH Tachikawa Vafa Wecht '10

Visible Sector Couplings

∃ CFT states charged under SM gauge group

 \Rightarrow CFT must be broken at scale $M_{\text{CFT}} > M_{\text{weak}}$

Coupling to matter: $\int d^2\theta \ \Psi_R \mathcal{O}_{R^*}$

Also couples to gauge fields

 $irrat^l # of "particles"$

 $\sim \text{two } 5 \oplus \overline{5}$'s

Applications?

Phenomenology looks quite rich (and unexplored)

As an inflaton?

SUSY? Dark Matter?

Collider Signatures?

A Broader Question

D3-Brane sensitive to $\Phi(Z_1, Z_2)$, not Eigen $(\Phi(Z_1, Z_2))$

Locally construct CY_4 from Eigen $(\Phi(Z_1, Z_2))$

Need to keep track of non-commutativity: $[\Phi, \Phi^{\dagger}] \neq 0$

What is the global description of this extra data?

Roadmap

Extra Sectors

• Fuzzy Local Models

More Non-Commutativity

Monodromy suggests a natural role

for non-commutativity: $[\Phi, \Phi^{\dagger}] \neq 0$

Even defining a 4D decoupling limit

with 7-branes requires $[Z_i, Z_i^{\dagger}] \neq 0$

JJH Verlinde '10

Revisiting Local Models

Main Premise: Geometry \rightarrow 4D Field Theory

Works well for D3-brane probes (it's 4D)

But 7-Brane is 8D Theory $\Rightarrow \infty$ KK Modes?

Local Models and 7-Branes

- Decoupling Limit: i) $Vol(\mathcal{M}_4)_{closed} \to 0$ (4D theory) ii) $Vol(\mathcal{M}_4)_{open} \gg l_*^4$ (weak coupling)

Condition i)
$$\Rightarrow$$
 $\mathcal{M}_4 = \text{del Pezzo surface } (\mathcal{R}_{\mathcal{M}_4} > 0)$
Also requires \mathcal{M}_6 non-Fano $(\mathcal{R}_{\mathcal{M}_6} \not \triangleright 0)$
Cordova '09, see also Donagi Wijnholt '09; Grimm, Krause, Weigand '09

Conditions i) + ii?

Decoupling Limit

Seiberg-Witten limit:

Seiberg Witten '99

$$g_{ij}^{\mathrm{closed}} \to 0$$

Large
$$\mathcal{B} = F + B$$

B-flux spreads out string ends

Open string geometry non-commutative:

$$[Z_i, Z_i^{\dagger}] = \hbar_{NC}$$

c.f. Connes...

Non-Commutative Geometry

$$[Z_i, Z_i^{\dagger}] = \hbar_{NC}$$

Comm. Theory

Points:

$$p \in \mathcal{M}_4$$

Curves:

$$f(z_i) = 0$$

KK Modes: Infinite

Fuzzy Theory

$$|p\rangle \in \mathcal{H}(\mathcal{M}_4) \blacktriangleleft \dots$$
Hilbert space of pts.

$$f(Z_i)|p\rangle = 0$$

JJH Verlinde '10

 $N \times N'$ matrices

Non-Comm

Quantize Coordinates: $[Z_i, Z_i^{\dagger}] = \hbar_{NC}$

Matter Curve inside $\mathcal{H}(\mathcal{M}_4): \Delta_{7'}|p\rangle = 0$

4D Theory

JJH Verlinde '10

 CY_4 provides template for defining 4D theories

Retains holom. data, modifies non-holom.

$$\phi(x_{\mu}, z, \overline{z}) \to \phi(x_{\mu}, Z^{\dagger}, Z)$$

Theory with finite # 4D fields $\sim N \times N$ matrices

8D Lagrangian now an operator: $\mathcal{L}_{8D}(Z^{\dagger},Z)$

$$\mathcal{L}_{4D} = \sum_{|p\rangle} \langle p|\mathcal{L}_{8D}(Z^{\dagger}, Z)|p\rangle$$

Gauge Coupling

$$Vol(\mathcal{M}_4)_{open} = \int \mathcal{B} \wedge \mathcal{B} = dim \mathcal{H}(\mathcal{M}_4) = N_{fuzz}$$

$$\int \mathcal{B} \wedge \mathcal{B} = N_{D3}$$
, one per fuzzy point:

At GUT scale:
$$\frac{1}{\alpha_{GUT}} = \frac{N_{\text{fuzz}}}{g_s} \simeq N_{\text{fuzz}}$$

Thresholds

At high energies KK modes become dynamical

Bulk Modes: $\sim N_{\rm fuzz} \times N_{\rm fuzz}$ matrices

Localized Modes: $\sqrt{N_{\rm fuzz}} \times \sqrt{N_{\rm fuzz}}$

 $1/N_{\rm fuzz}$ expansion with $\lambda = g_{YM}^2 N_{\rm fuzz}$

Fuzzy Unification

 $\int \mathcal{B} \wedge \mathcal{B} = N_{D3} \Rightarrow \text{Build up 7-brane}$

Roadmap

• Fuzzy Local Models

Conclusions

Conclusions

• F-theory combines open strings with GUTs

Geometric perspective on 4D Standard Model

- ¿Non-Commutativity: Uniform Description? $[Z_i, Z_i^{\dagger}] \neq 0, \, [\Phi, \Phi^{\dagger}] \neq 0$
- ¿Model building with D3-branes?