A Holographic Model of the Kondo Effect

Andy O'Bannon

Crete Center for Theoretical Physics May 20, 2014 Credits

Based on 1310.3271

Johanna Erdmenger

Max Planck Institute for Physics, Munich

Carlos Hoyos

Tel Aviv University

Jackson Wu

National Center for Theoretical Sciences, Taiwan

- The Kondo Effect
- The CFT Approach
- A Top-Down Holographic Model
- A Bottom-Up Holographic Model
- Summary and Outlook

July 10, 1908

Leiden, the Netherlands



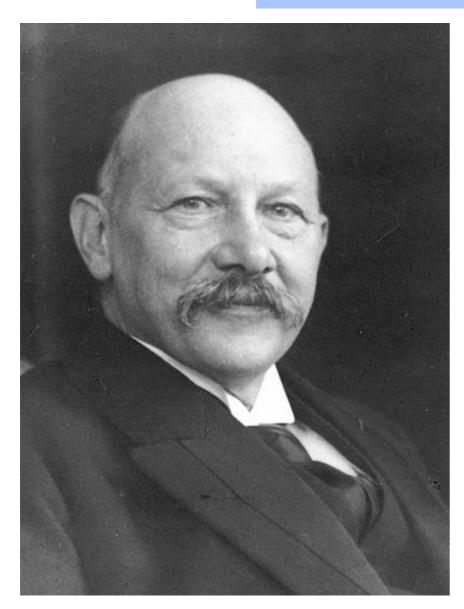


Heike Kamerlingh Onnes liquifies helium

 $T \approx 4.2 \text{ K} \quad (1 \text{ atm})$

Shortly Thereafter

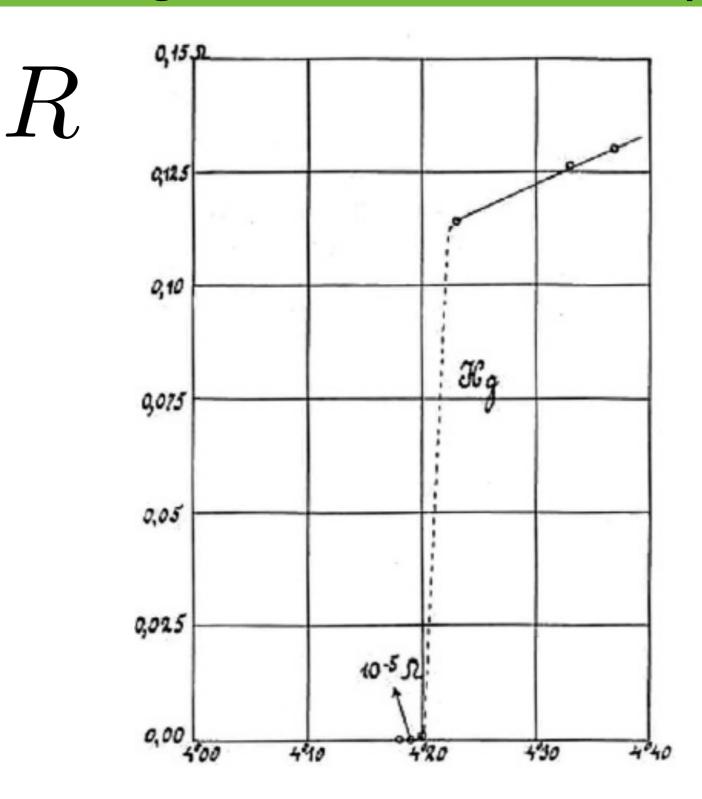
Leiden, the Netherlands



Begins studying low-temperature properties of metals $T \approx 1 \ {\rm to} \ 10 \ K$

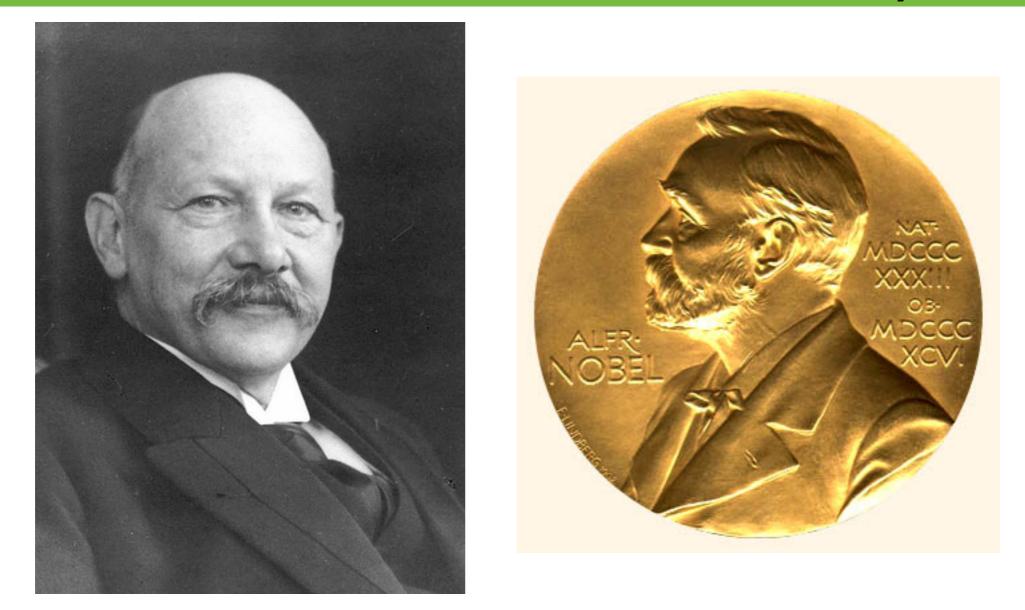
April 8, 1911

Heike Kamerlingh Onnes discovers superconductivity

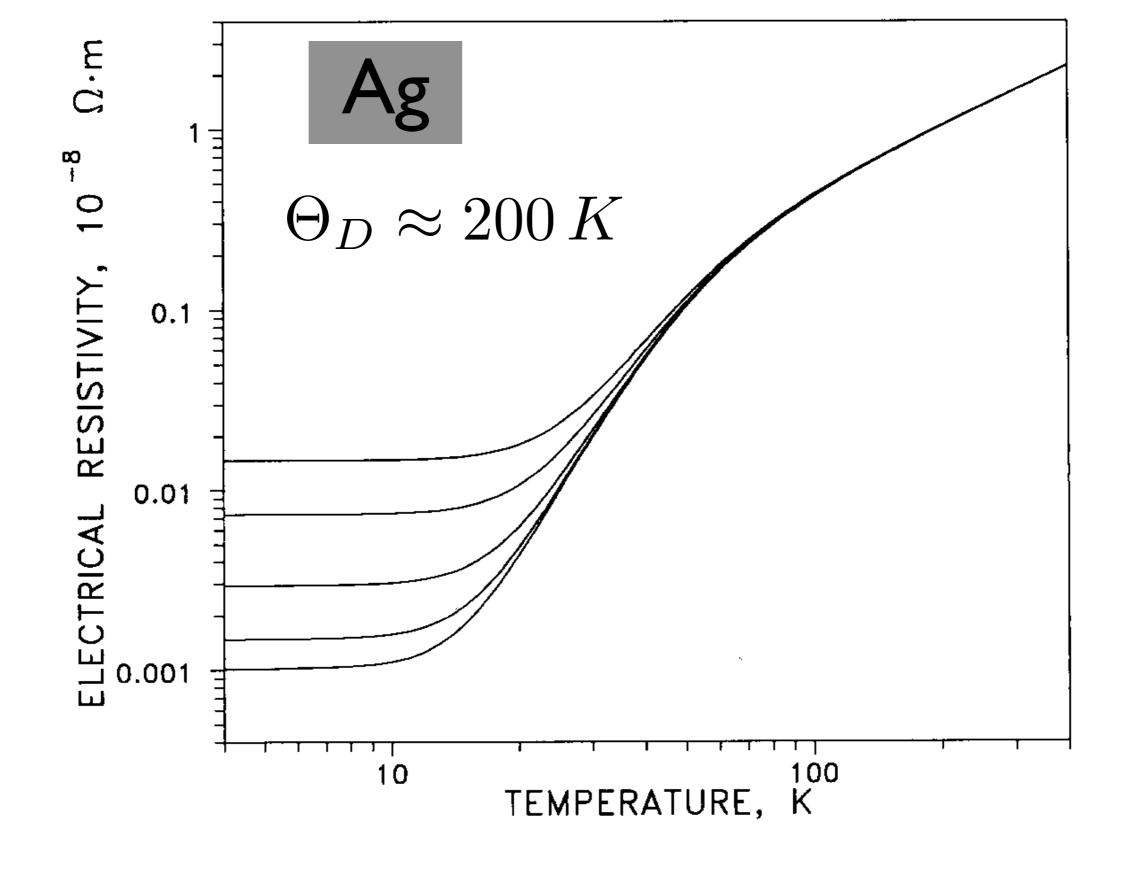


1913

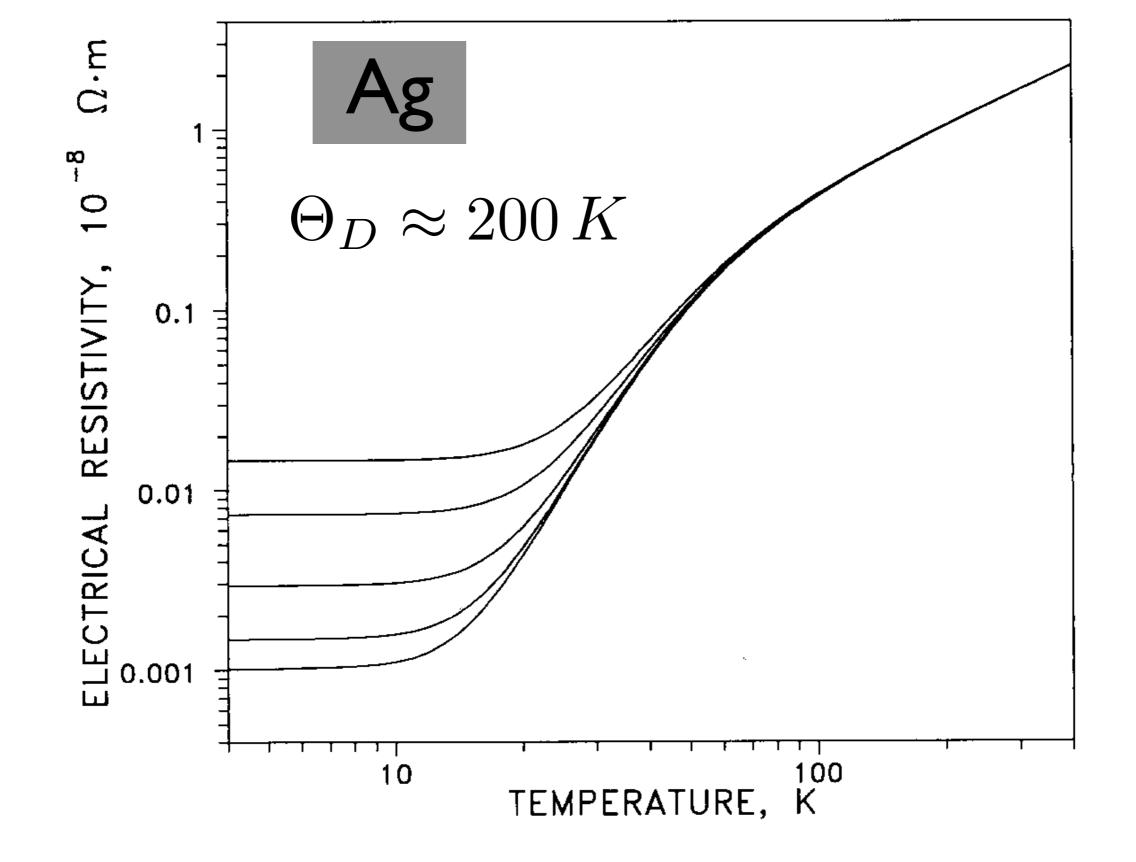
Onnes receives the Nobel Prize in Physics



"for his investigations on the properties of matter at low temperatures which led, *inter alia*, to the production of liquid helium"



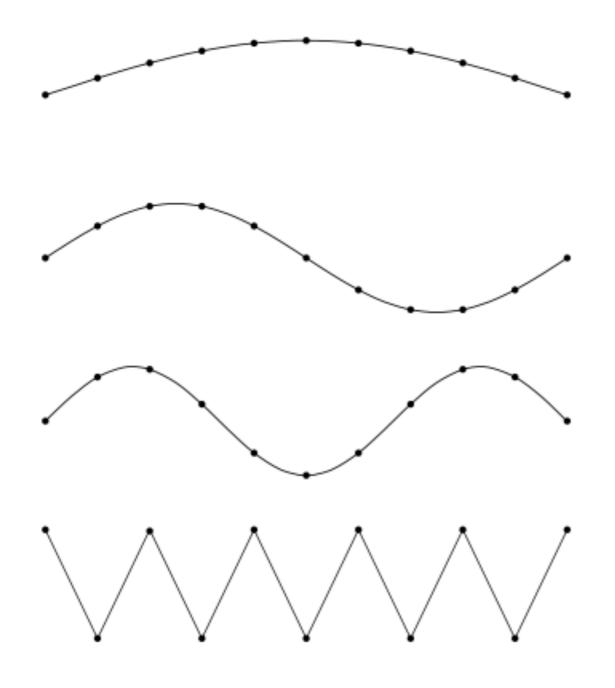
Smith and Fickett, J. Res. NIST, 100, 119 (1995)



Resistivity measures electron scattering cross section

Debye Temperature

Quantized vibrational modes of a solid = Phonons

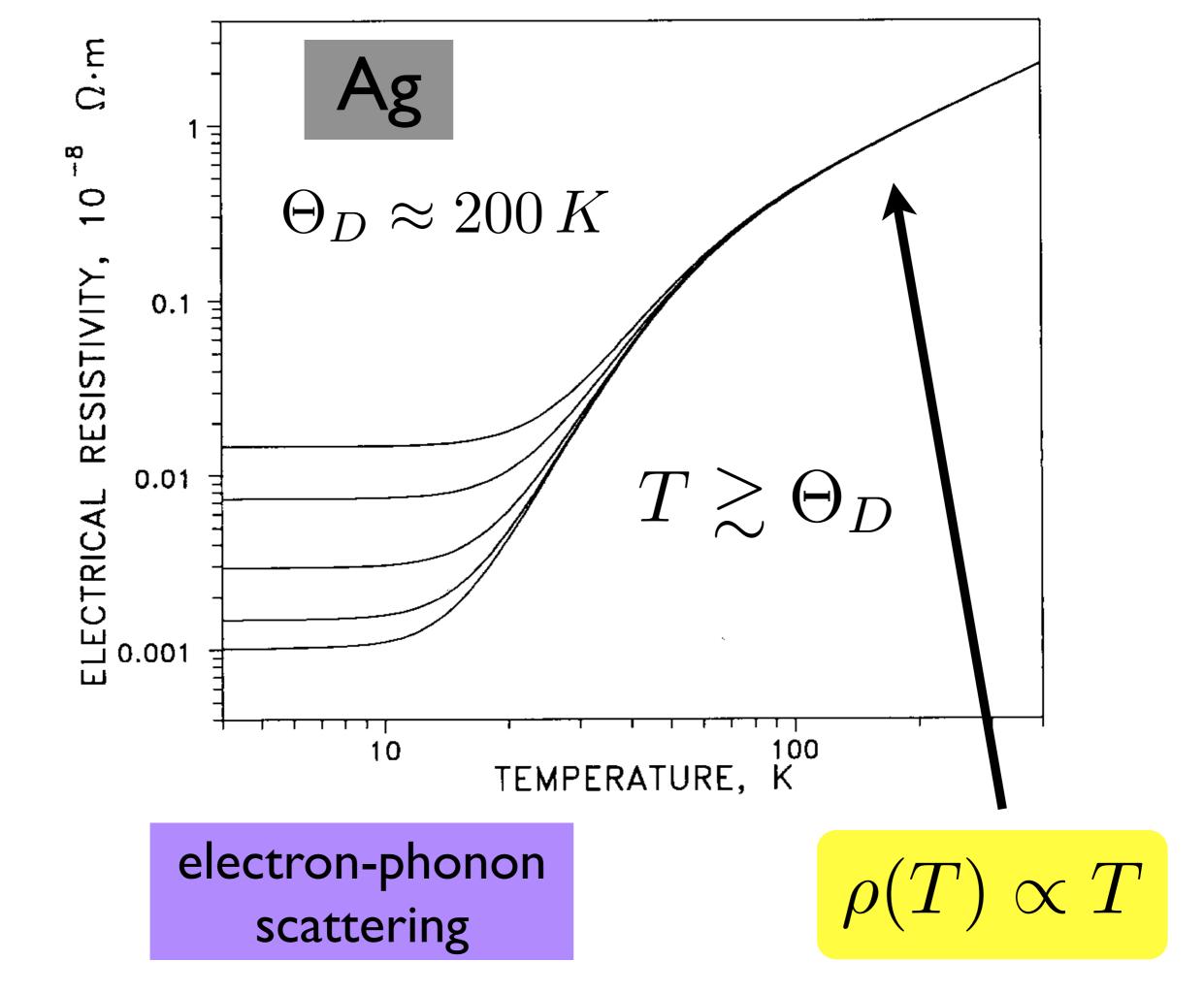


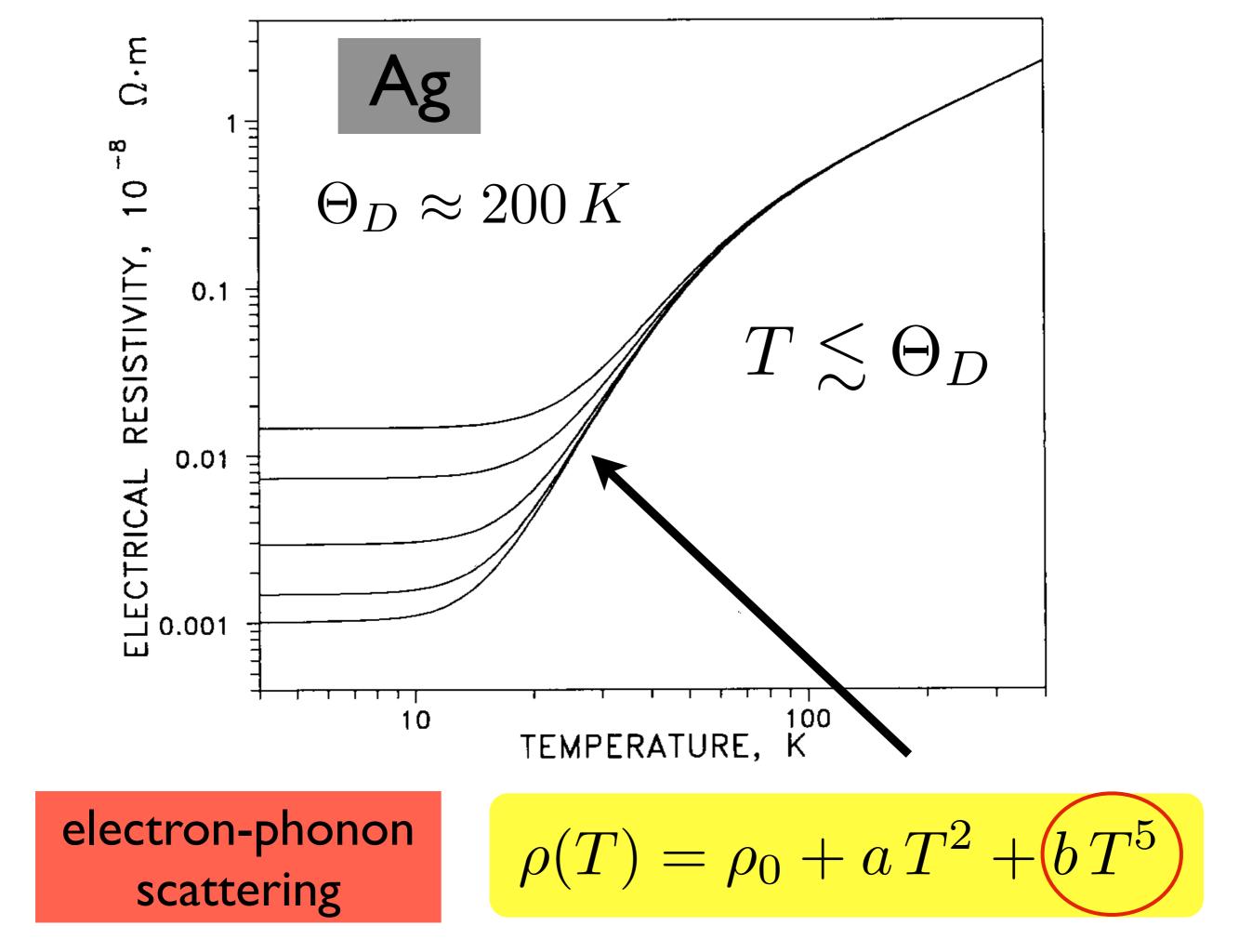
Minimum wavelength: 2 x (lattice spacing)

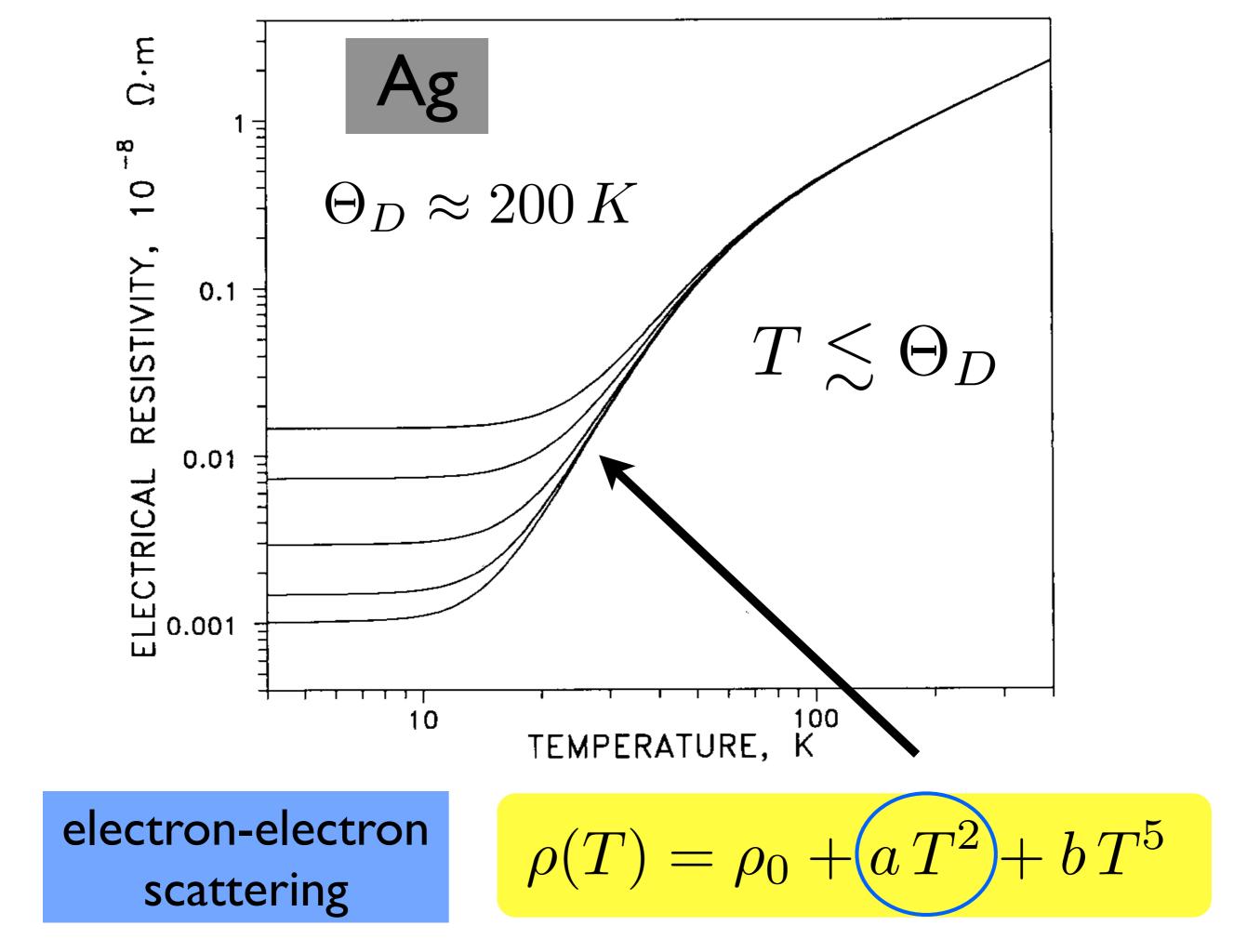
Maximal energy

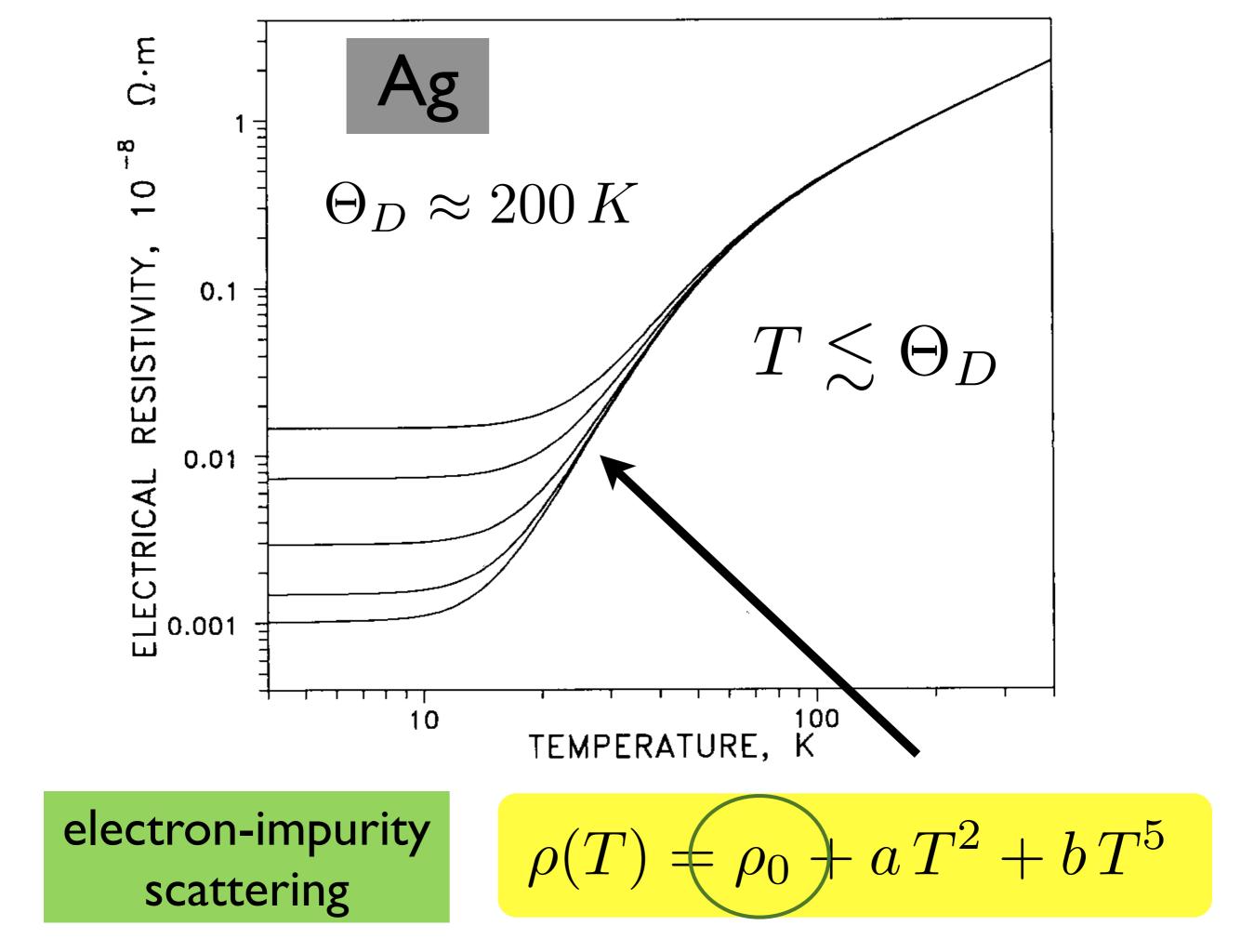
 Θ_D

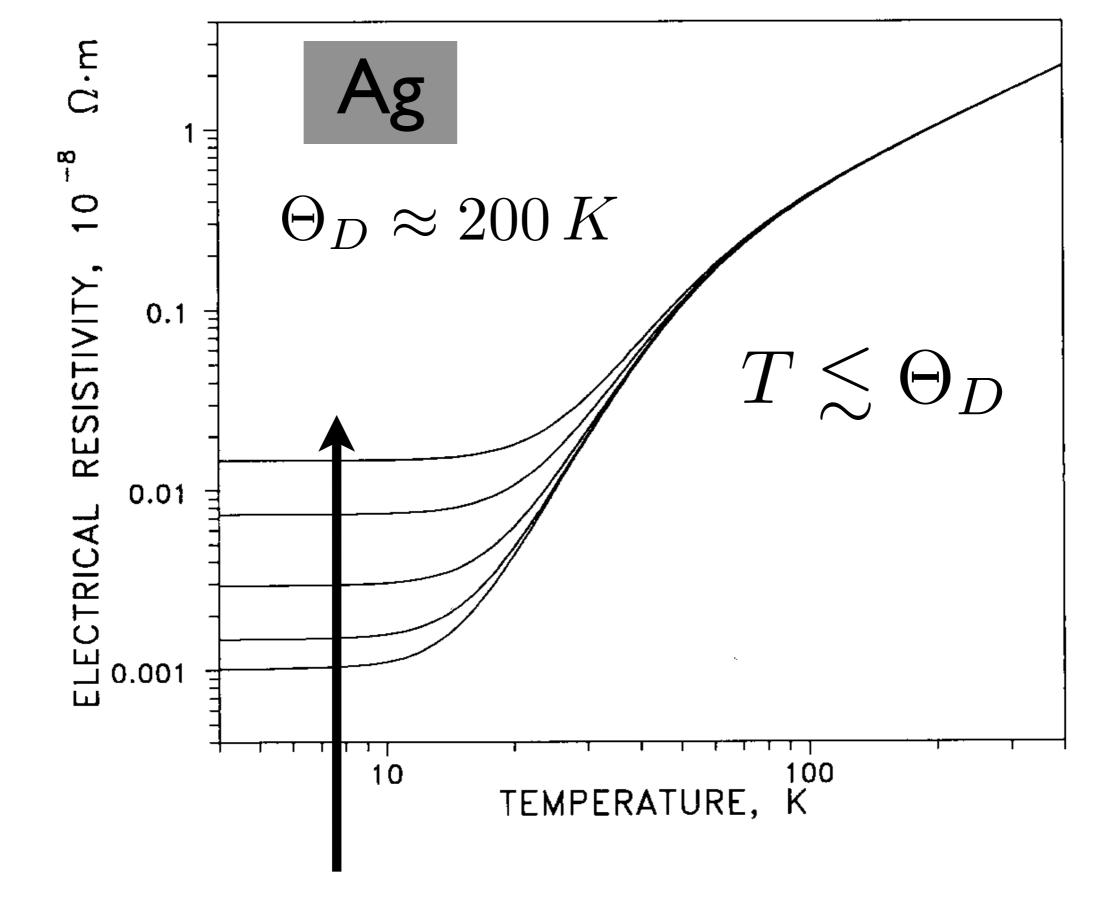
lowest temperature at which maximal-energy phonon excited





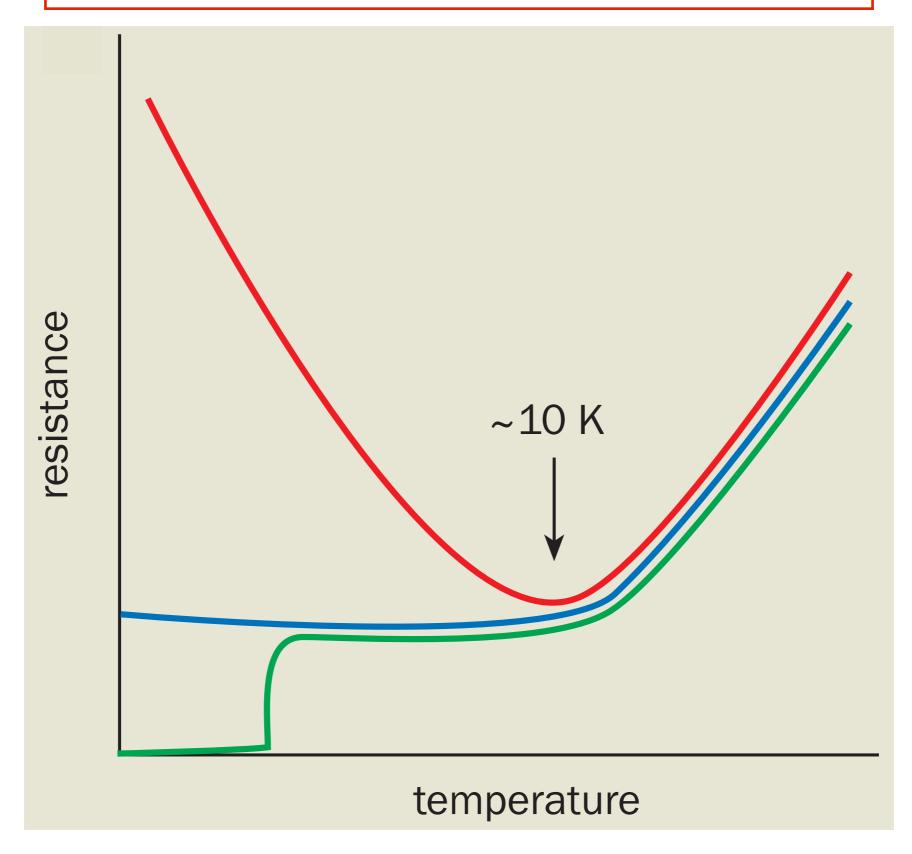


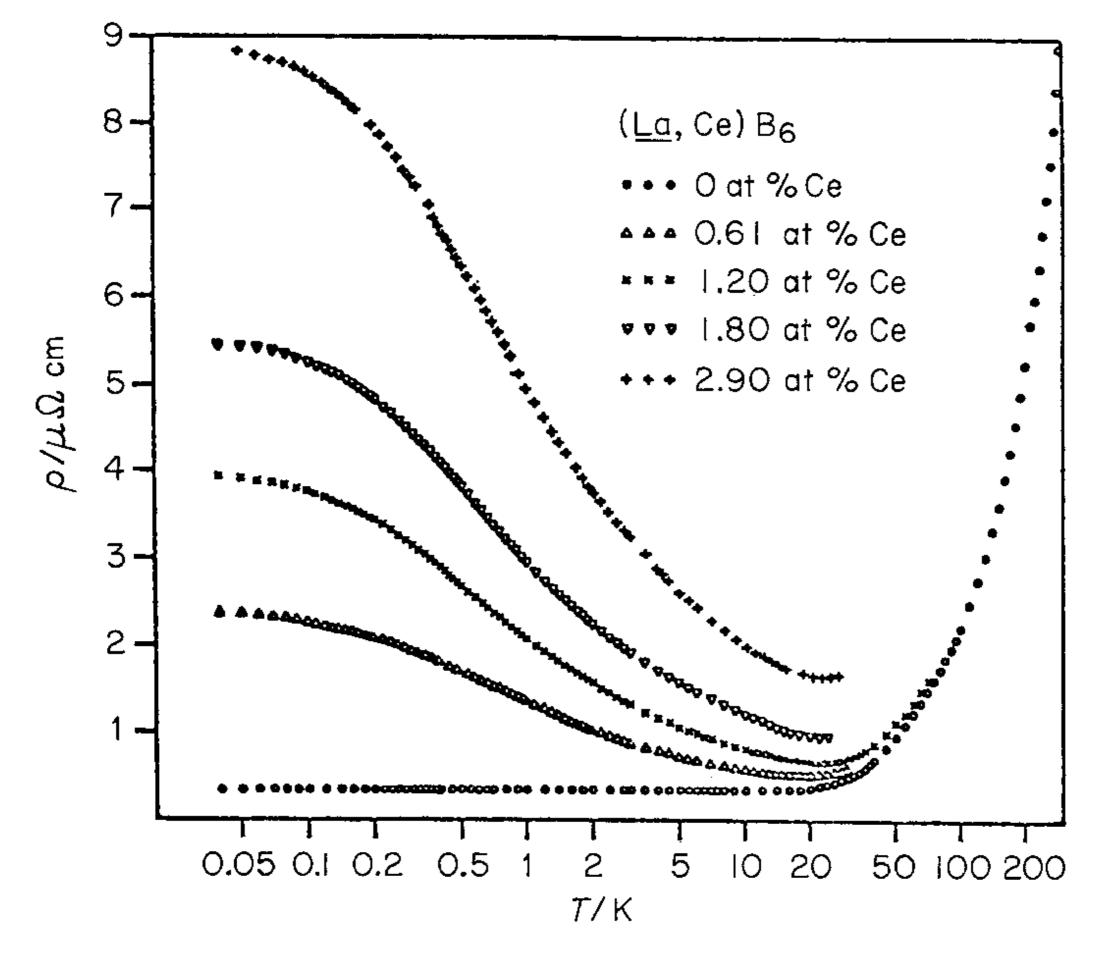




increasing concentration of impurities

The Kondo Effect

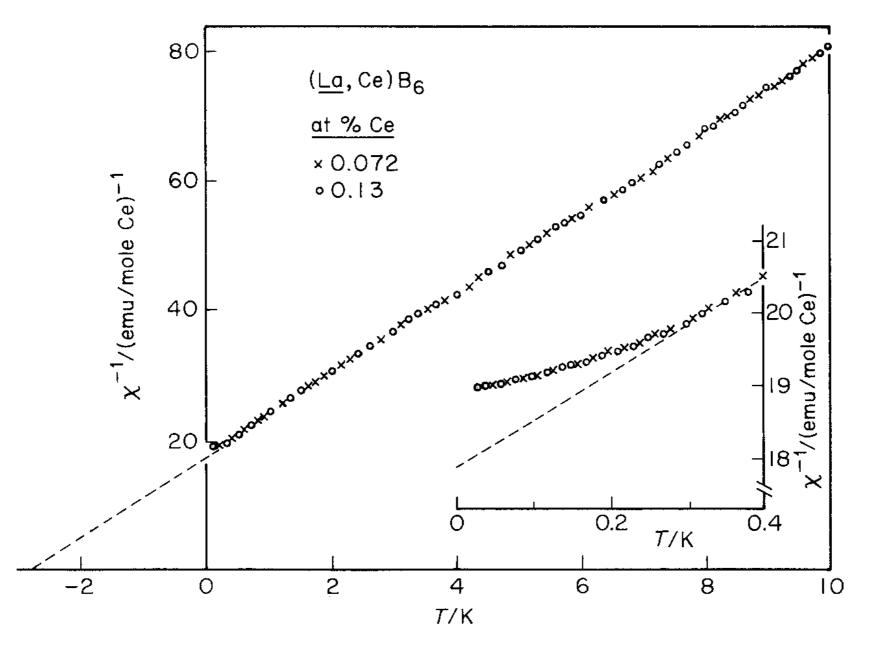




Samwer and Winzer, Z. Phys B, 25, 269, 1976

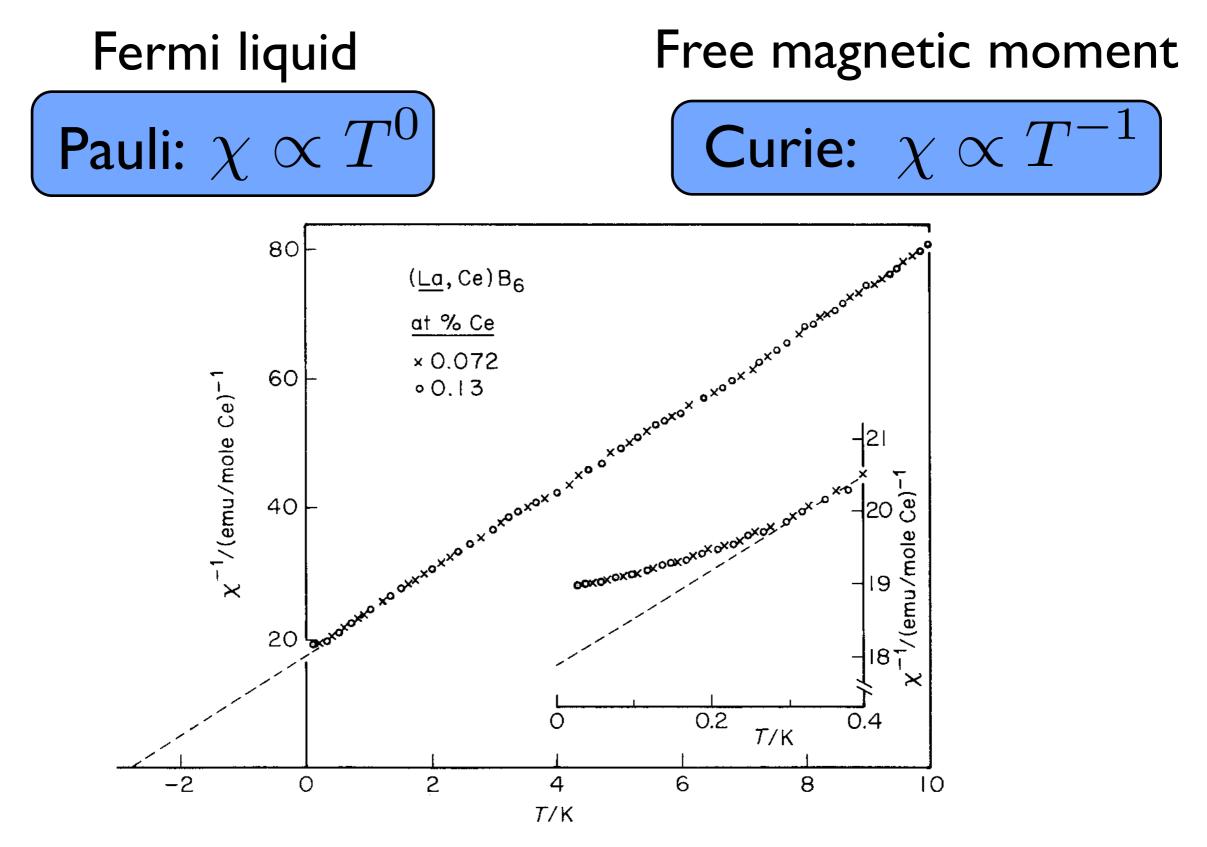
MAGNETIC Impurities

$$\left[\begin{array}{c} \chi = \left. \frac{\partial^2 F}{\partial B^2} \right|_{B=0} \end{array} \right]_{B=0}$$



Felsch, Z. Phys B, 29, 211, 1978

MAGNETIC Impurities



Felsch, Z. Phys B, 29, 211, 1978

Progress of Theoretical Physics, Vol. 32, No. 1, July 1964

Resistance Minimum in Dilute Magnetic Alloys

Jun Kondo

The Kondo Hamiltonian

$$H_{K} = \sum_{k,\sigma} \varepsilon(k) c_{k\sigma}^{\dagger} c_{k\sigma} + g_{K} \vec{S} \cdot \sum_{k\sigma k'\sigma'} c_{k\sigma}^{\dagger} \frac{1}{2} \vec{\tau}_{\sigma\sigma'} c_{k'\sigma'}$$

$$c_{k\sigma}^{\dagger}$$
 , $c_{k\sigma}$

$$\sigma=\uparrow,\downarrow$$

Spin
$$SU(2)$$

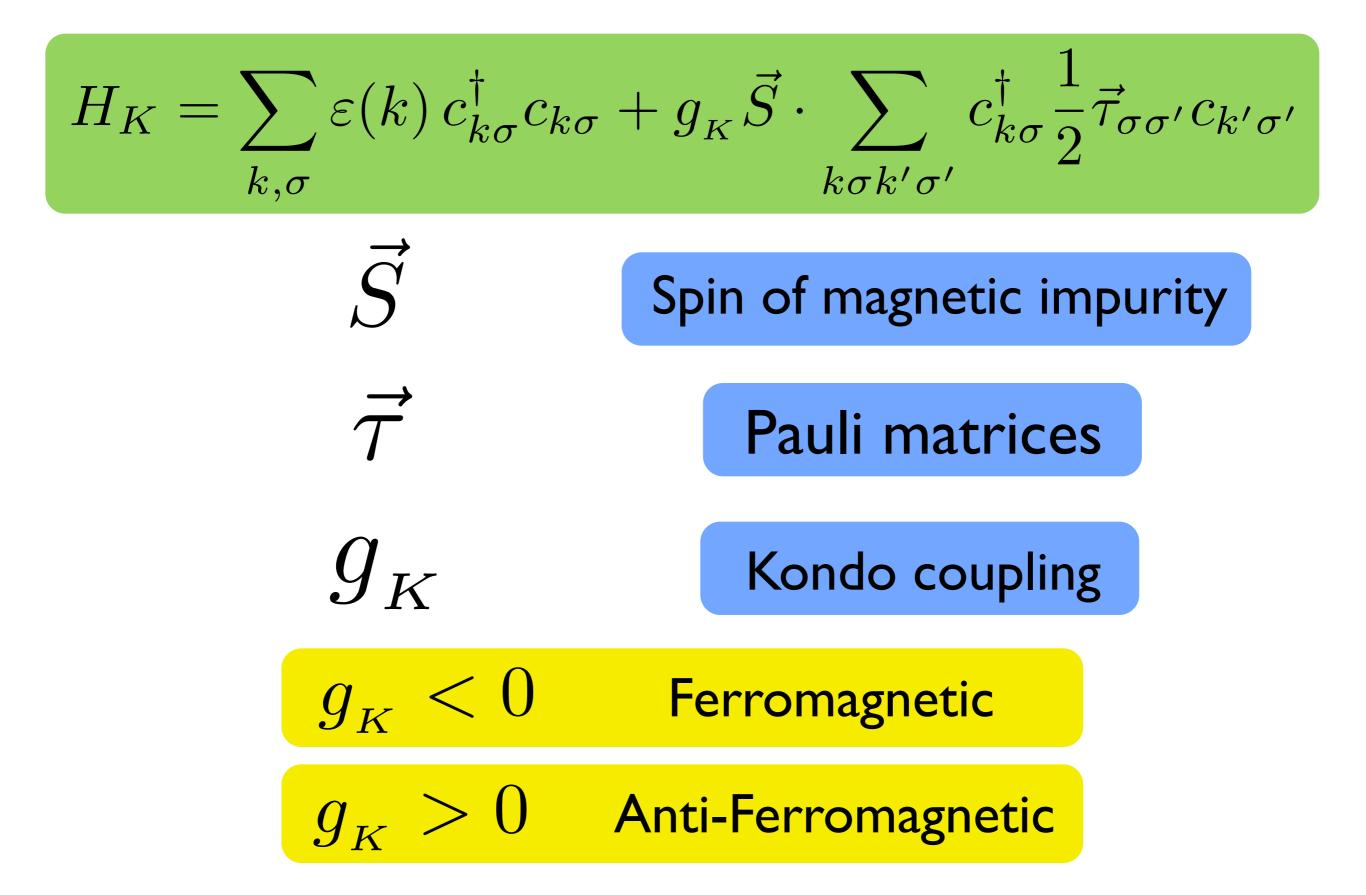
$$c_{k\sigma} \to e^{i\alpha} c_{k\sigma}$$

$$\varepsilon(k) = \frac{k^2}{2m} - \varepsilon_F$$

Charge
$$U(1)$$

Dispersion relation

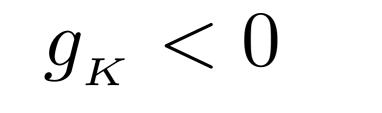
The Kondo Hamiltonian



 $\rho(T) = \rho_0 + a T^2 + b T^5 + c g_{\kappa}^2 - \tilde{c} g_{\kappa}^3 \ln(T/\varepsilon_F)$

$c, \tilde{c} > 0$ \propto concentration of impurities

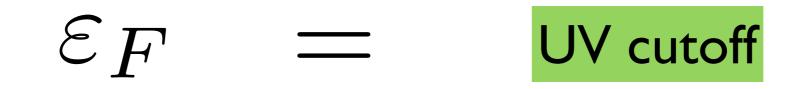
 \Rightarrow

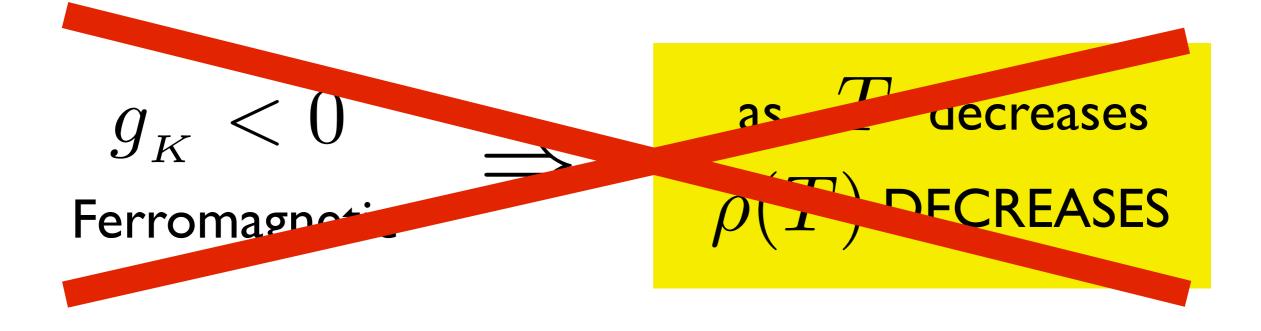


Ferromagnetic

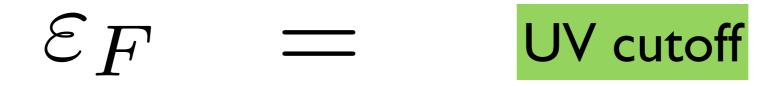
as T decreases ho(T) DECREASES

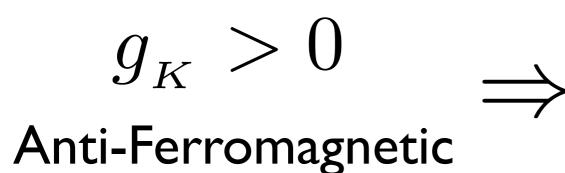
$\rho(T) = \rho_0 + a T^2 + b T^5 + c g_K^2 - \tilde{c} g_K^3 \ln(T/\varepsilon_F)$





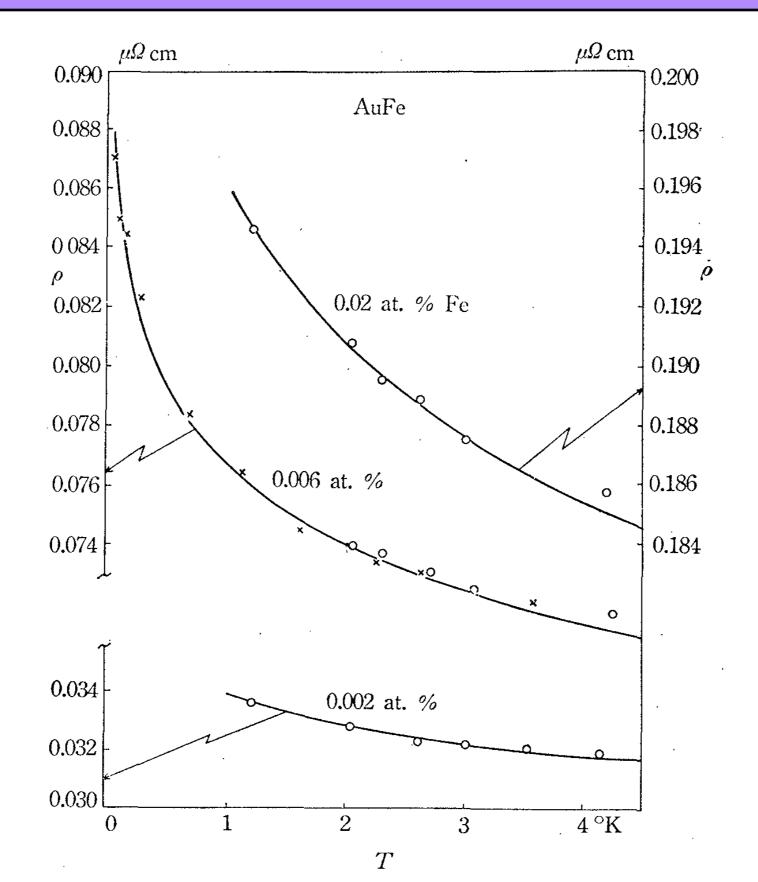
 $\rho(T) = \rho_0 + a T^2 + b T^5 + c g_{\kappa}^2 - \tilde{c} g_{\kappa}^3 \ln(T/\varepsilon_F)$





as T decreases ho(T) INCREASES

 $T) = \rho_0 + a T^2 + b T^5 + c g_{\kappa}^2 - \tilde{c} g_{\kappa}^3 \ln(T/\varepsilon_F)$



$$\rho(T) = \rho_0 + a T^2 + b T^5 + c g_K^2 - \tilde{c} g_K^3 \ln(T/\varepsilon_F)$$

Breakdown of Perturbation Theory

$$\mathcal{O}(g_K^3)$$
 term is same order as $\mathcal{O}(g_K^2)$ term when

$$T_K \approx \varepsilon_F \, e^{-\frac{c}{\tilde{c}} \frac{1}{g_K}}$$

"Kondo temperature"

$$\rho(T) = \rho_0 + a T^2 + b T^5 + c g_K^2 - \tilde{c} g_K^3 \ln(T/\varepsilon_F)$$

Cross section for electron scattering off a MAGNETIC impurity INCREASES as energy DECREASES

$$\beta_{g_K} \propto -g_{_K}^2 + \mathcal{O}(g_{_K}^3)$$

Asymptotic freedom!

 $T_K \sim \Lambda_{\rm QCD}$

The Kondo Problem

What is the ground state?

The coupling diverges at low energy!

We know the answer!

Solutions of the Kondo Problem

Numerical RG (Wilson 1975)

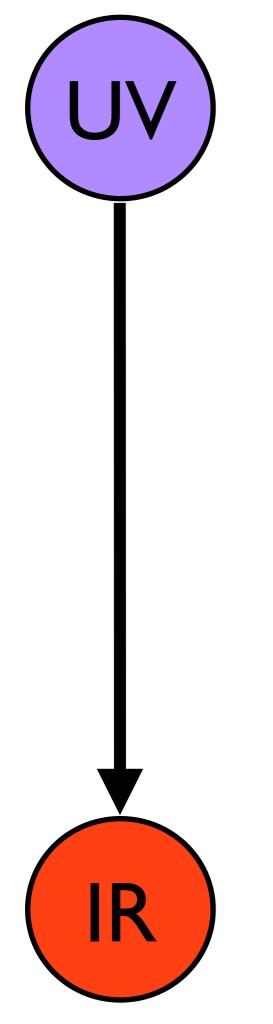
Fermi liquid description (Nozières 1975)

Bethe Ansatz/Integrability (Andrei, Wiegmann, Tsvelick, Destri, ... 1980s)

Large-N expansion (Anderson, Read, Newns, Doniach, Coleman, ... 1970-80s)

Quantum Monte Carlo (Hirsch, Fye, Gubernatis, Scalapino,... 1980s)

> Conformal Field Theory (CFT) (Affleck and Ludwig 1990s)

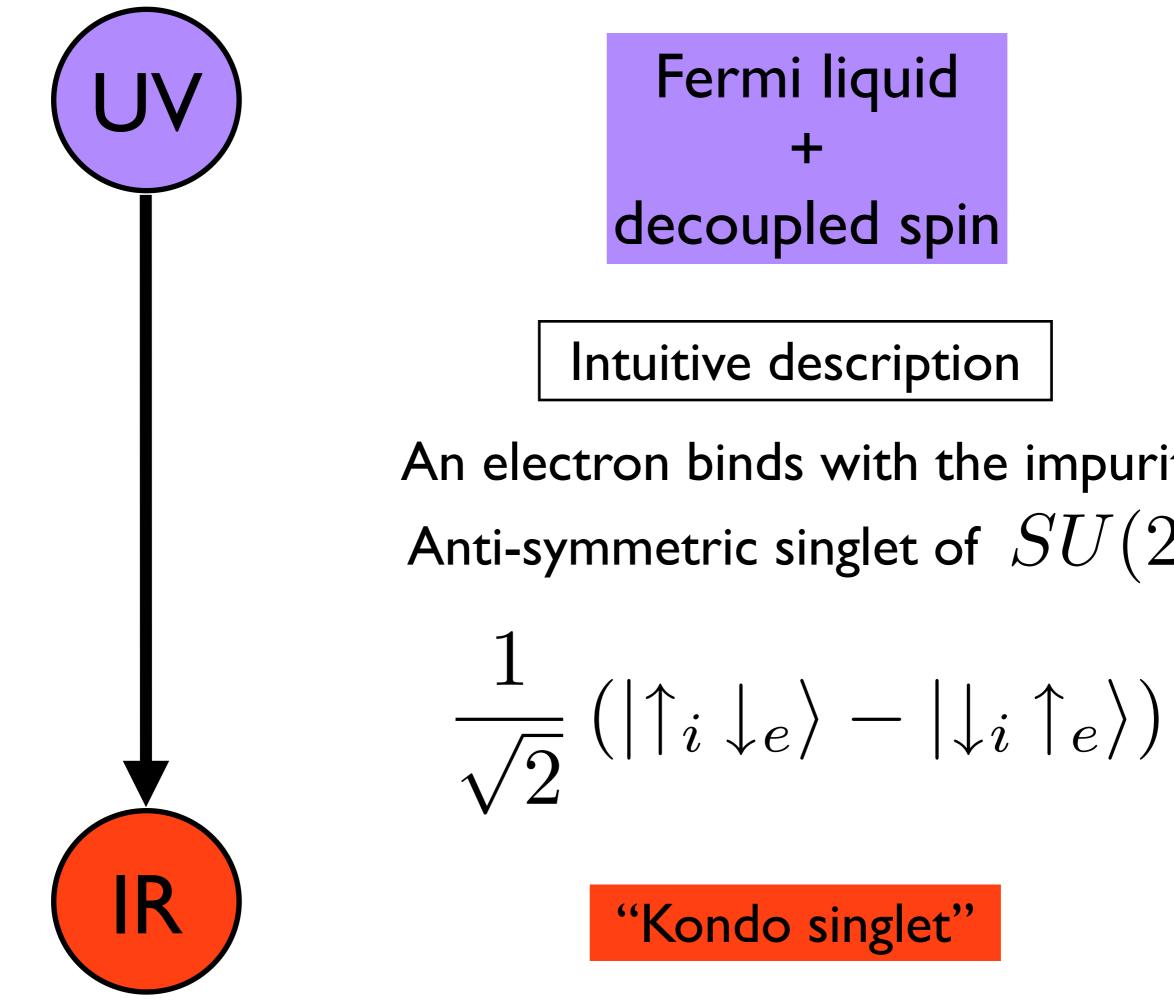


Intuitive description

SINGLE-BODY physics

Exact description

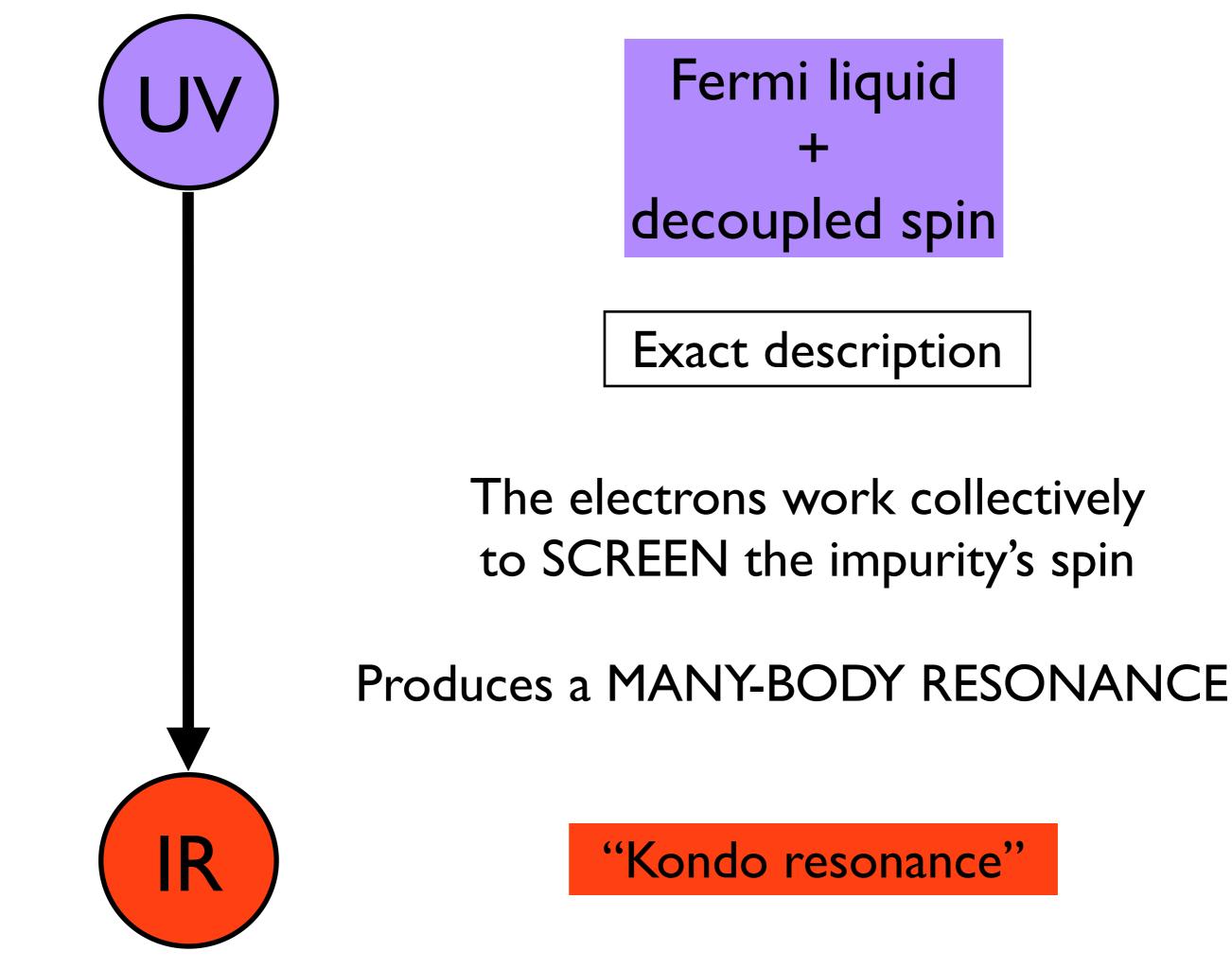
MANY-BODY physics

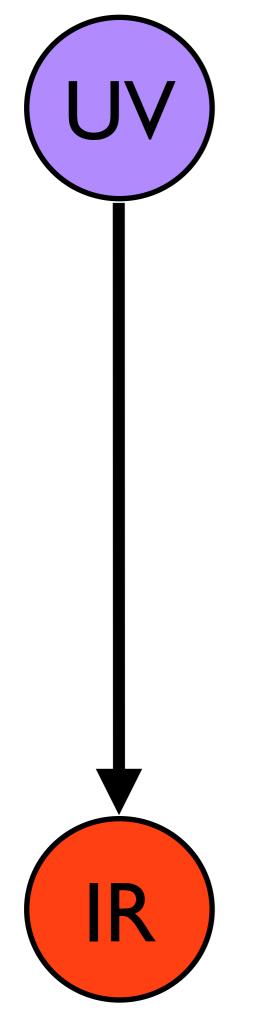


decoupled spin

Intuitive description

An electron binds with the impurity Anti-symmetric singlet of $\,SU(2)\,$





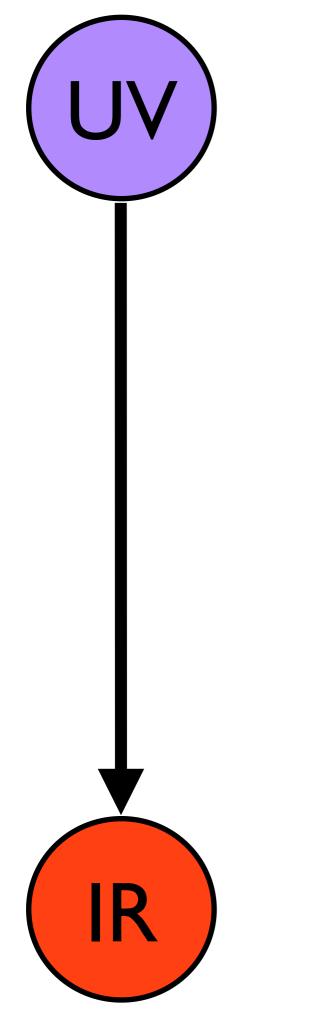
Intuitive description

SINGLE-BODY physics

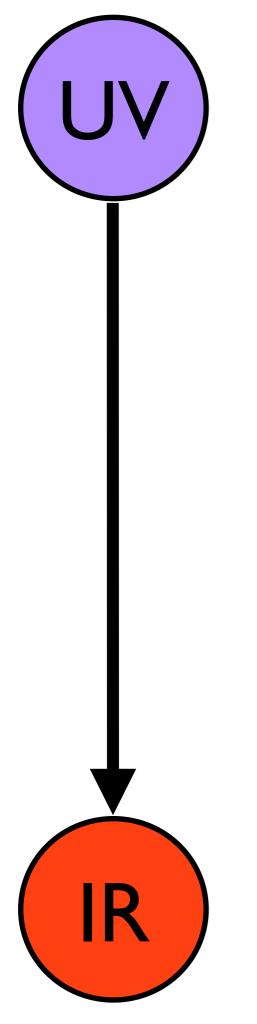
Exact description

MANY-BODY physics

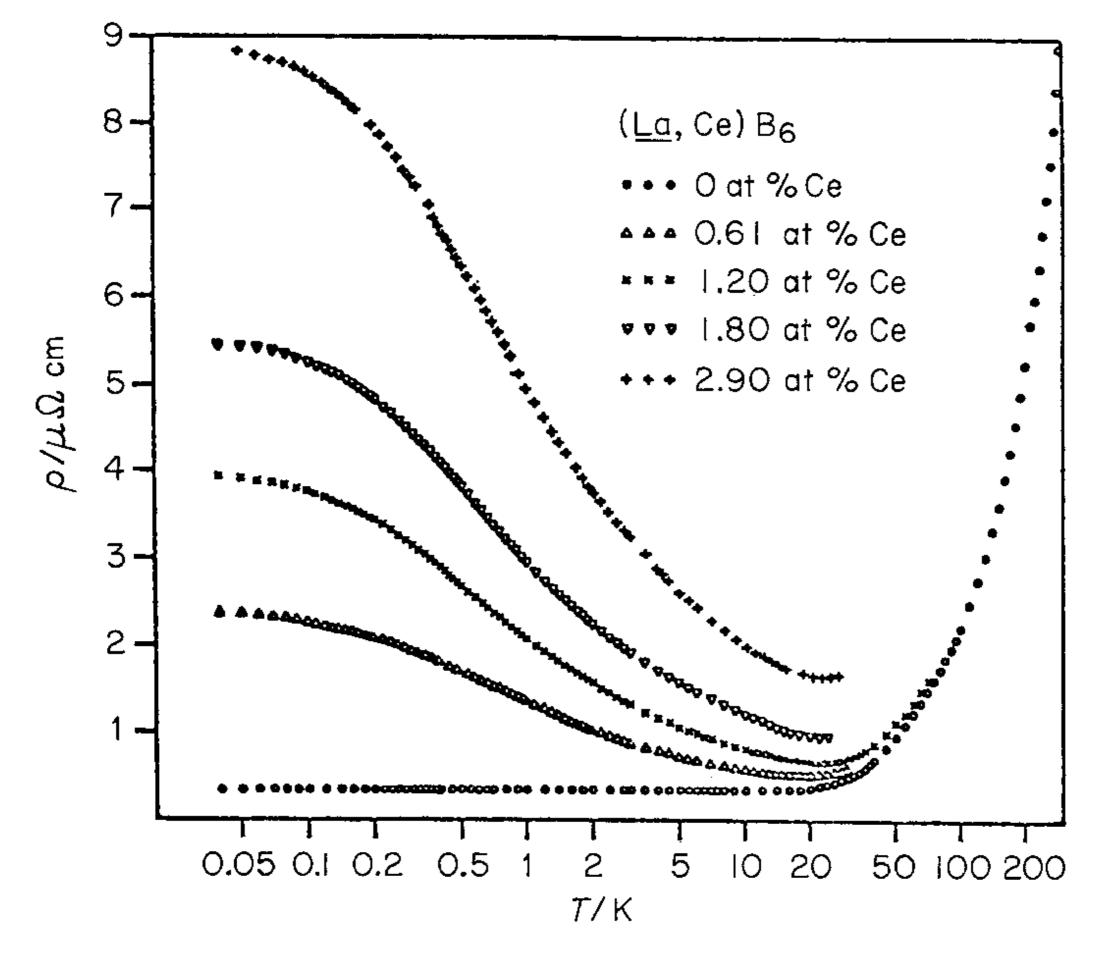
"Kondo singlet"



+ electrons EXCLUDED from impurity location



Fermi liquid + NON-MAGNETIC impurity



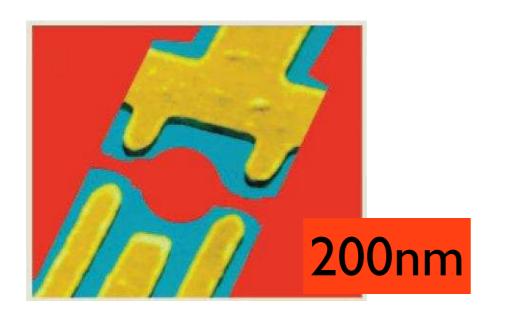
Samwer and Winzer, Z. Phys B, 25, 269, 1976

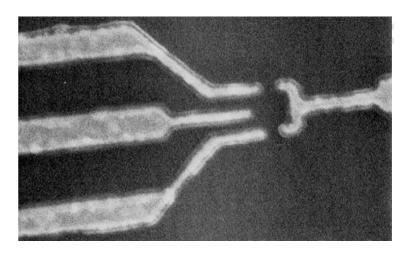
Kondo Effect in Many Systems

Alloys

Cu, Ag, Au, Mg, Zn, ... doped with Cr, Fe, Mo, Mn, Re, Os, ...

Quantum dots





Goldhaber-Gordon, et al., **Nature** 391 (1998), 156-159. Cronenwett, et al., **Science** 281 (1998), no. 5376, 540-544. Generalizations

Enhance the spin group $SU(2) \to SU(N)$

Representation of impurity spin $s_{\rm imp} = 1/2 \longrightarrow R_{\rm imp}$

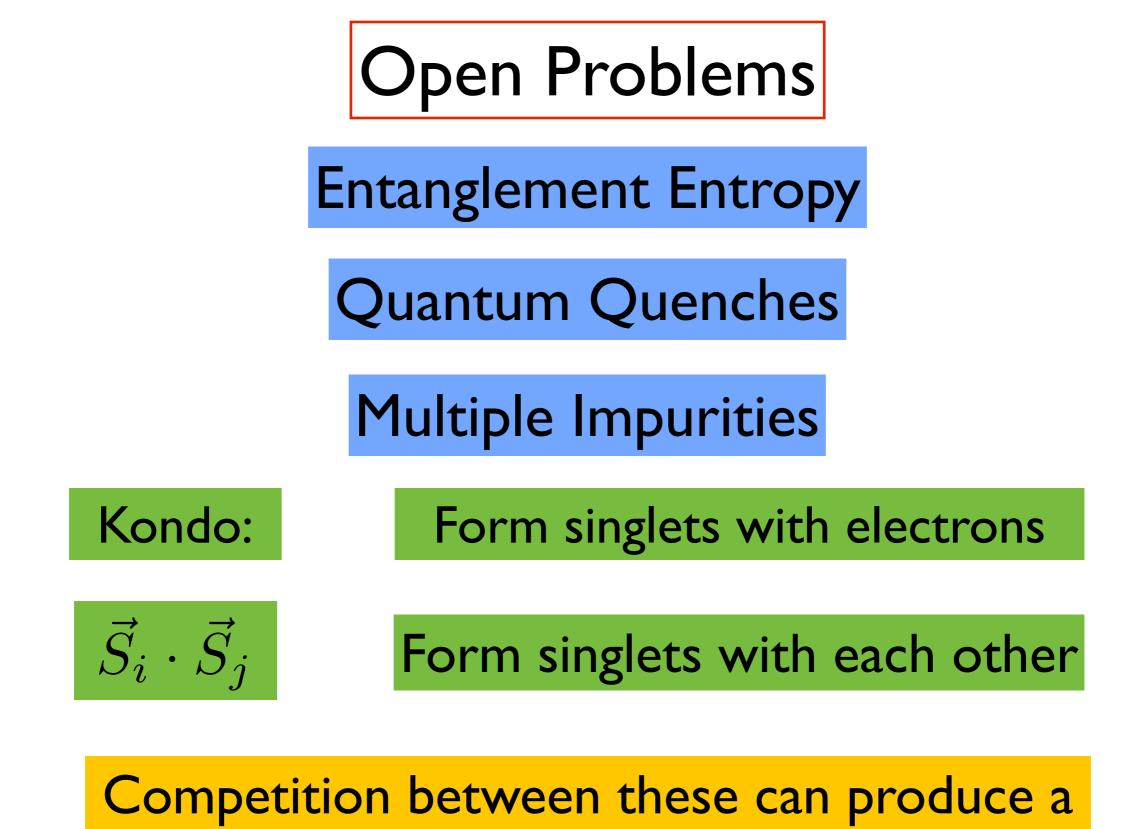
Multiple "channels" or "flavors" $c \rightarrow c^{\alpha} \quad \alpha = 1, \dots, k$ $U(1) \times SU(k)$ Generalizations

Kondo model specified by $N, \, k, \, R_{
m imp}$

Apply the techniques mentioned above...

IR fixed point: NOT always a fermi liquid

"Non-Fermi liquids"

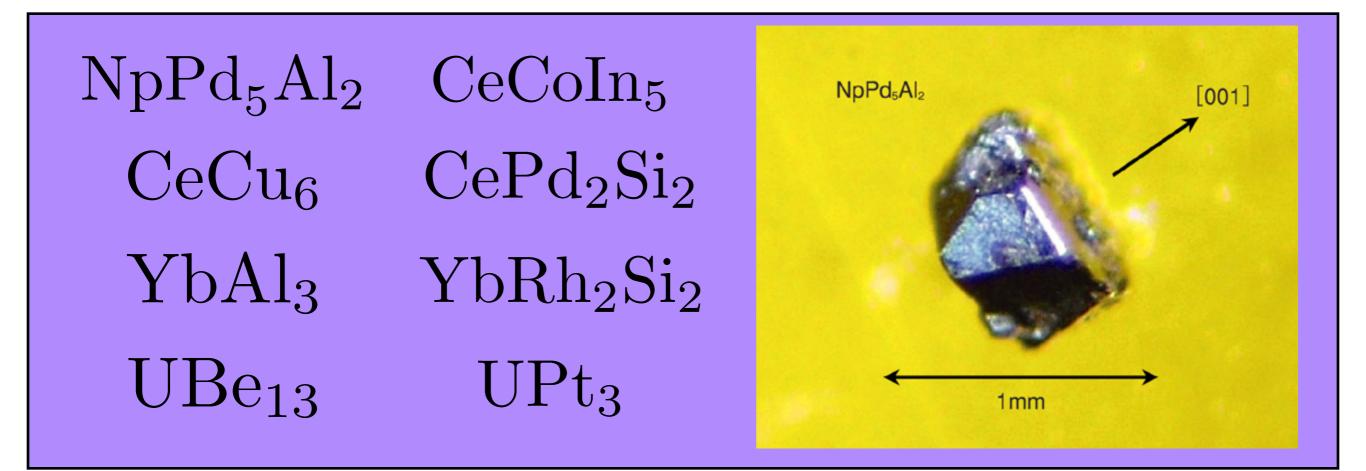


QUANTUM PHASE TRANSITION

Open Problems

Multiple Impurities

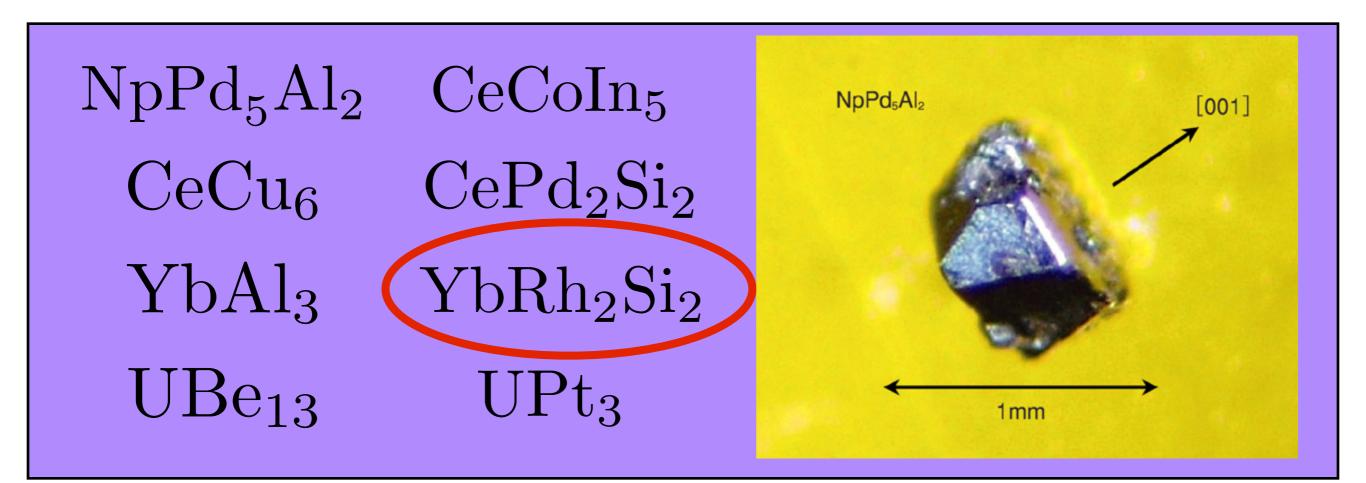
Heavy fermion compounds

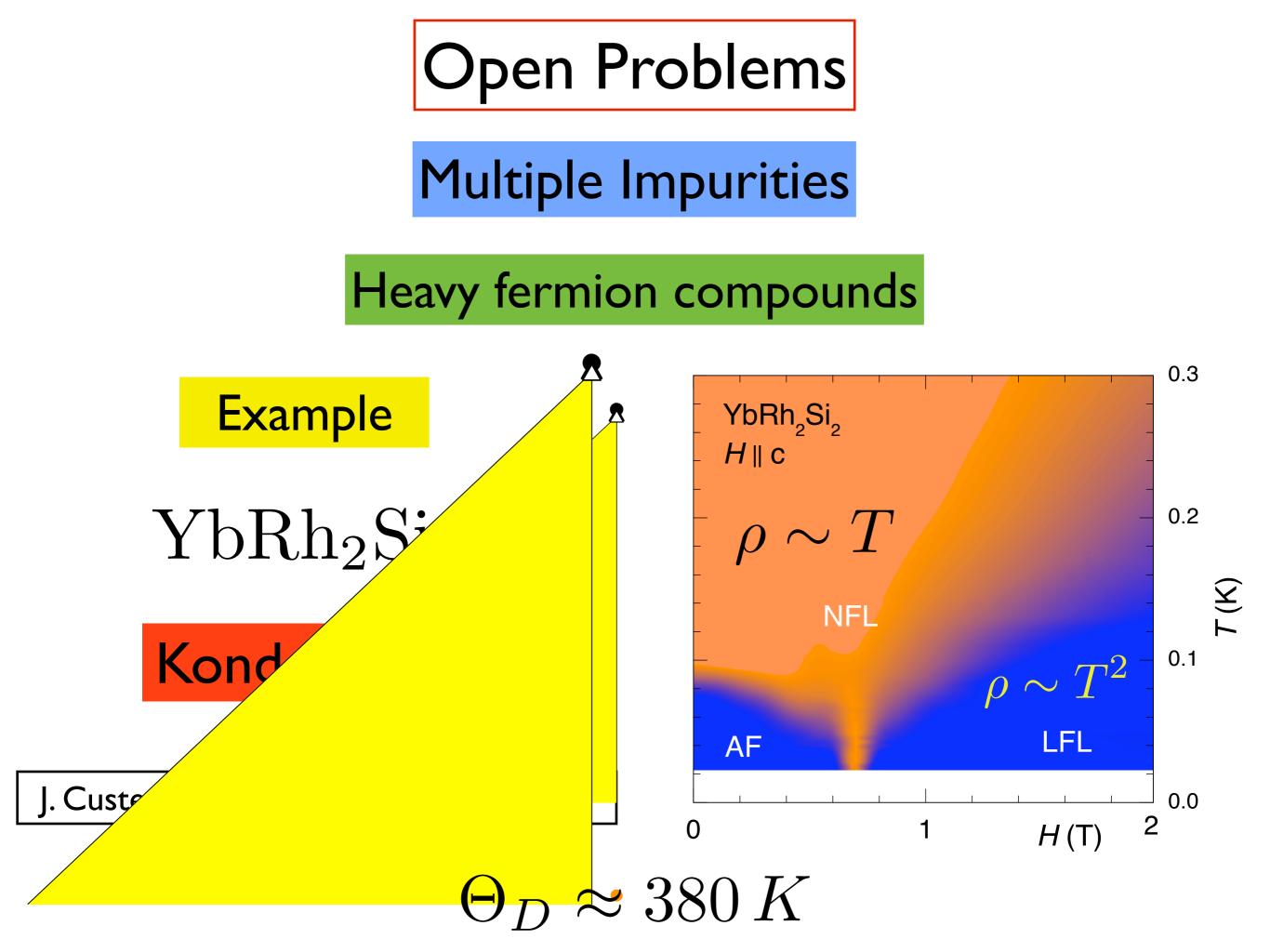


Open Problems

Multiple Impurities

Heavy fermion compounds





Solutions of the Kondo Problem

Numerical RG (Wilson 1975)

Fermi liquid description (Nozières 1975)

Bethe Ansatz/Integrability (Andrei, Wiegmann, Tsvelick, Destri, ... 1980s)

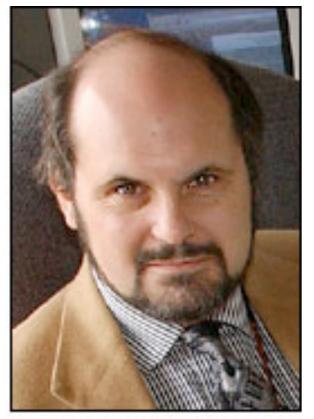
Large-N expansion (Anderson, Read, Newns, Doniach, Coleman, ... 1970-80s)

Quantum Monte Carlo (Hirsch, Fye, Gubernatis, Scalapino,... 1980s)

> Conformal Field Theory (CFT) (Affleck and Ludwig 1990s)

The Kondo Lattice

The Kondo Lattice

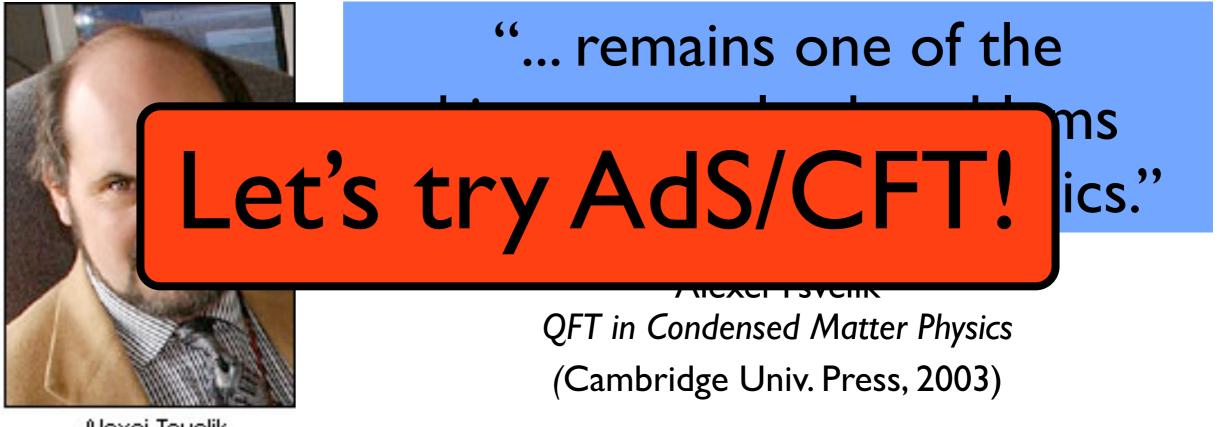


Alexei Tsvelik

"... remains one of the biggest unsolved problems in condensed matter physics."

> Alexei Tsvelik QFT in Condensed Matter Physics (Cambridge Univ. Press, 2003)

The Kondo Lattice



Alexei Tsvelik

Find a holographic description of the Kondo Effect

Solutions of the Kondo Problem Numerical RG (Wilson 1975) Fermi liquid description (Nozières 1975)

Bethe Ansatz/Integrability (Andrei, Wiegmann, Tsvelick, Destri, ... 1980s)

Large-N expansion (Anderson, Read, Newns, Doniach, Coleman, ... 1970-80s)

Quantum Monte Carlo (Hirsch, Fye, Gubernatis, Scalapino,... 1980s)

- The Kondo Effect
- The CFT Approach
- A Top-Down Holographic Model
- A Bottom-Up Holographic Model
- Summary and Outlook

Affleck and Ludwig 1990s

Reduction to one dimension

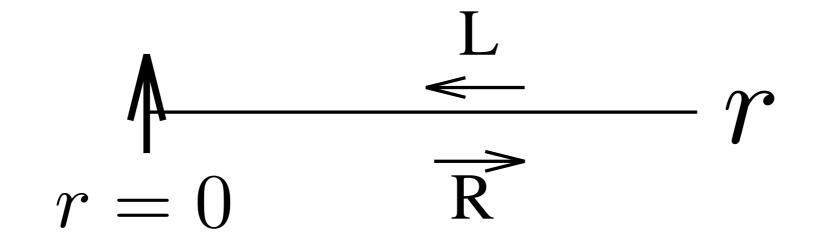
Kondo interaction preserves spherical symmetry

$$g_{\kappa}\delta^{3}(\vec{x})\,\vec{S}\cdot c^{\dagger}(\vec{x})\,\frac{1}{2}\vec{\tau}\,c(\vec{x})$$

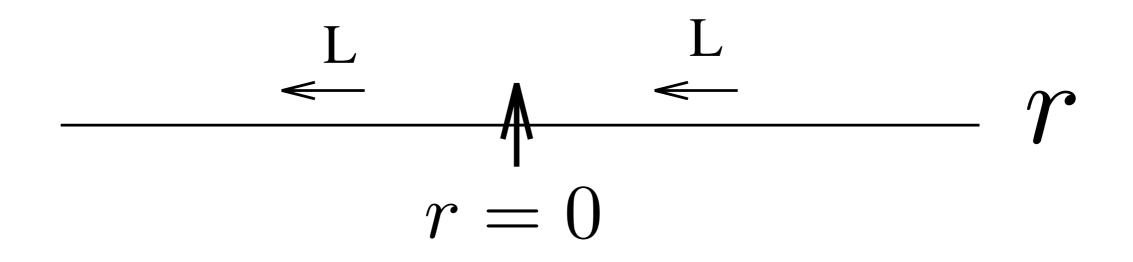
restrict to s-wave

restrict to momenta near k_F

$$c(\vec{x}) \approx \frac{1}{r} \left[e^{-ik_F r} \psi_L(r) - e^{+ik_F r} \psi_R(r) \right]$$



$$\psi_R(+r) \equiv \psi_L(-r)$$



$$H_K = \frac{v_F}{2\pi} \int_{-\infty}^{+\infty} dr \left[\psi_L^{\dagger} i \partial_r \psi_L + \delta(r) \, \tilde{g}_K \, \vec{S} \cdot \psi_L^{\dagger} \vec{\tau} \, \psi_L \right]$$

$$\tilde{g}_{\scriptscriptstyle K} \equiv \frac{k_F^2}{2\pi^2 v_F} \times g_{\scriptscriptstyle K}$$

RELATIVISTIC chiral fermions

$$v_F =$$
 "speed of light"

 $J = \psi_L^{\dagger} \psi_L$

U(1)

$$\vec{J} = \psi_L^\dagger \, \vec{\tau} \, \psi_L$$

SU(N)

 $J^A = \psi_L^\dagger t^A \psi_L$

SU(k)

 $z \equiv \tau + ir$

$$J^A(z) = \sum_{n \in \mathbb{Z}} z^{-n-1} J^A_n$$

$$[J_n^A, J_m^B] = if^{ABC}J_{n+m}^C + N\frac{n}{2}\delta^{AB}\delta_{n,-m}$$

$SU(k)_N$ Kac-Moody Algebra

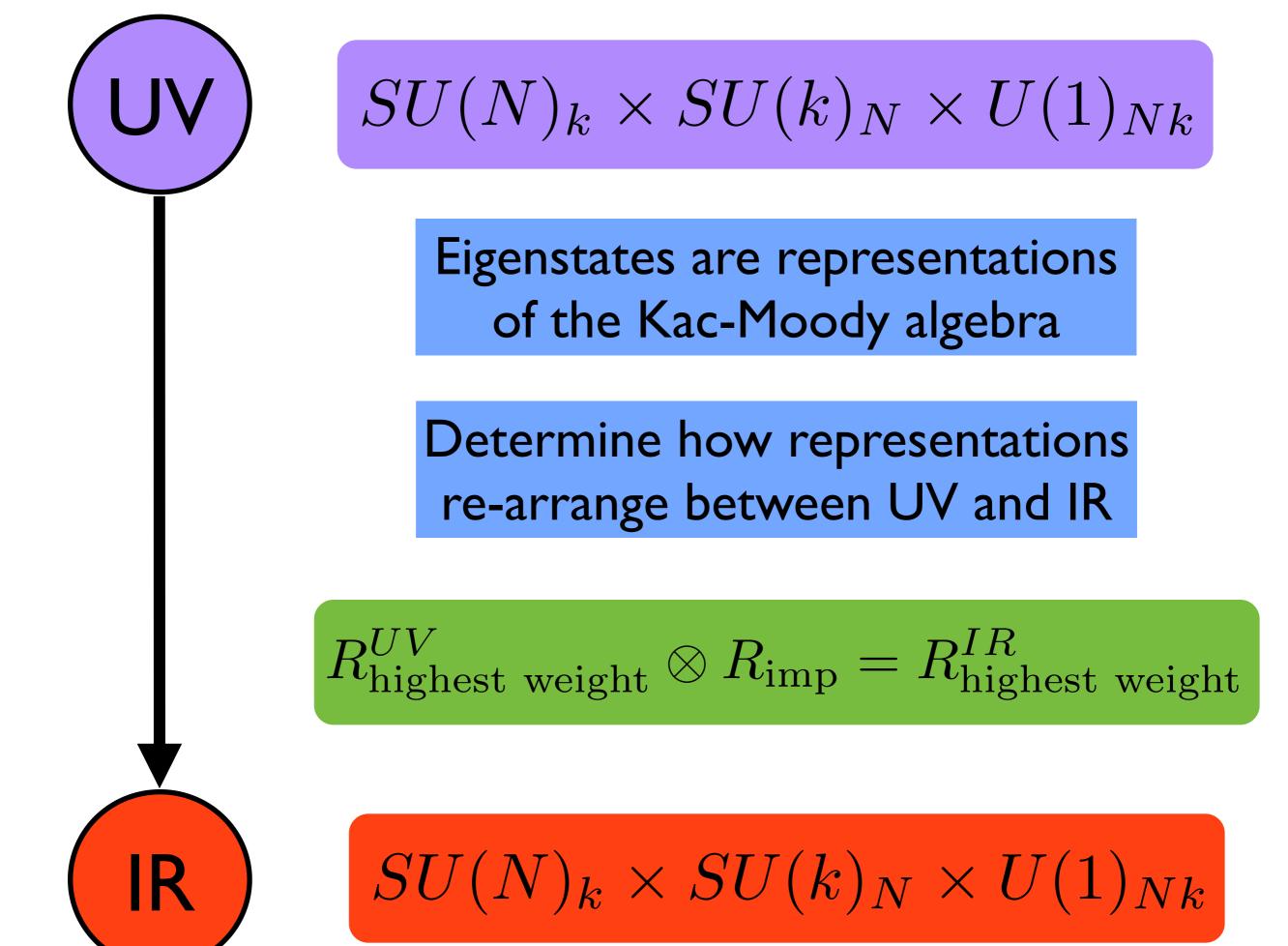
N counts net number of chiral fermions

$$H_K = \frac{v_F}{2\pi} \int_{-\infty}^{+\infty} dr \left[\psi_L^{\dagger} i \partial_r \psi_L + \delta(r) \, \tilde{g}_K \, \vec{S} \cdot \psi_L^{\dagger} \vec{\tau} \, \psi_L \right]$$

Full symmetry:

(1+1)d chiral conformal symmetry $SU(N)_k \times SU(k)_N \times U(1)_{kN}$

$$H_{K} = \frac{v_{F}}{2\pi} \int_{-\infty}^{+\infty} dr \begin{bmatrix} \psi_{L}^{\dagger} i \partial_{r} \psi_{L} + \delta(r) \, \tilde{g}_{K} \, \vec{S} \cdot \psi_{L}^{\dagger} \vec{\tau} \, \psi_{L} \end{bmatrix}$$
$$J = \psi_{L}^{\dagger} \psi_{L} \qquad U(1)$$
$$\vec{J} = \psi_{L}^{\dagger} \vec{\tau} \, \psi_{L} \qquad SU(N)$$
$$J^{A} = \psi_{L}^{\dagger} t^{A} \psi_{L} \qquad SU(k)$$
$$\text{Kondo coupling: } \vec{S} \cdot \vec{J}$$
$$\text{marginal}$$



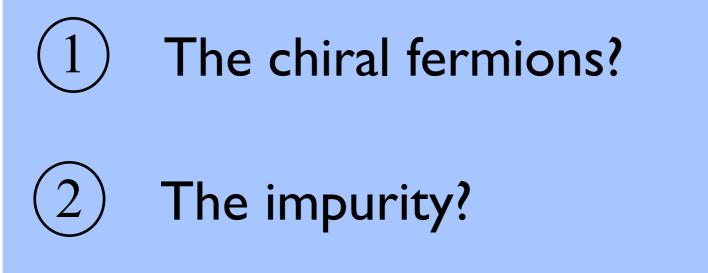
Kondo coupling: $\vec{S} \cdot \vec{J}$

- The Kondo Effect
- The CFT Approach
- A Top-Down Holographic Model
- A Bottom-Up Holographic Model
- Summary and Outlook

Find a holographic description of the Kondo Effect

What classical action do we write on the gravity side of the correspondence?

How do we describe holographically...



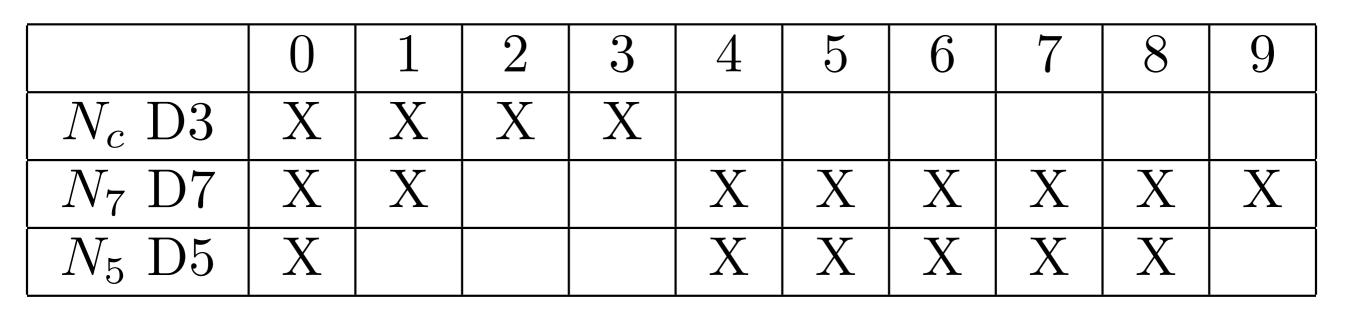
The Kondo coupling?

3

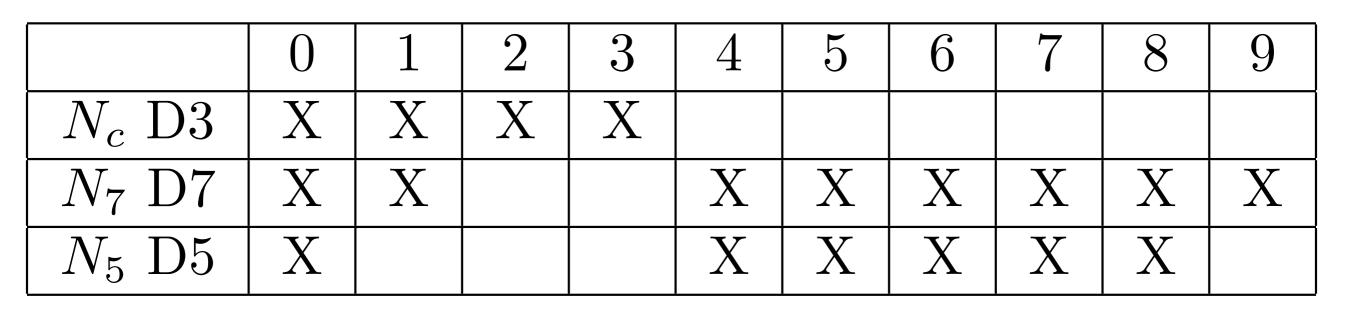
AdS solution to a string or supergravity theory

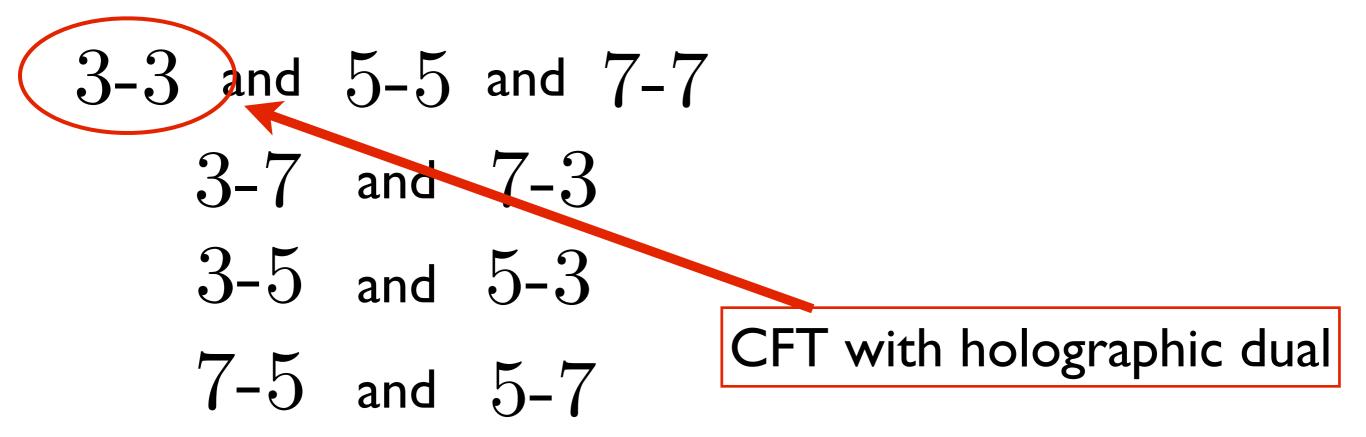
Bottom-up:

AdS solution of some ad hoc Lagrangian



$$3-3$$
 and $5-5$ and $7-7$
 $3-7$ and $7-3$
 $3-5$ and $5-3$
 $7-5$ and $5-7$

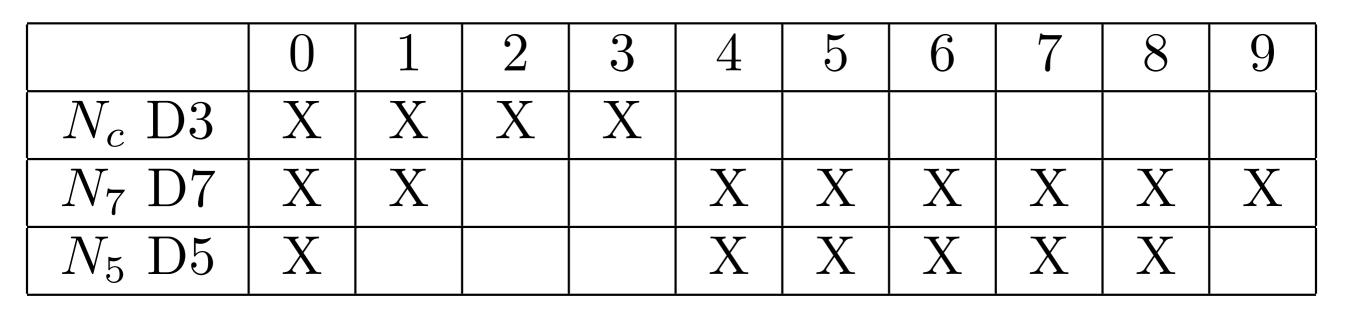


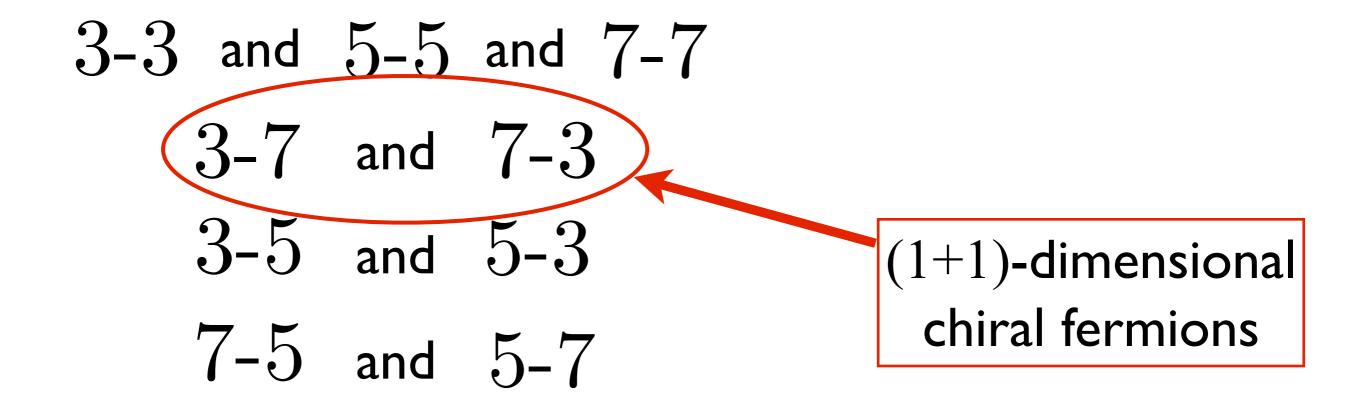


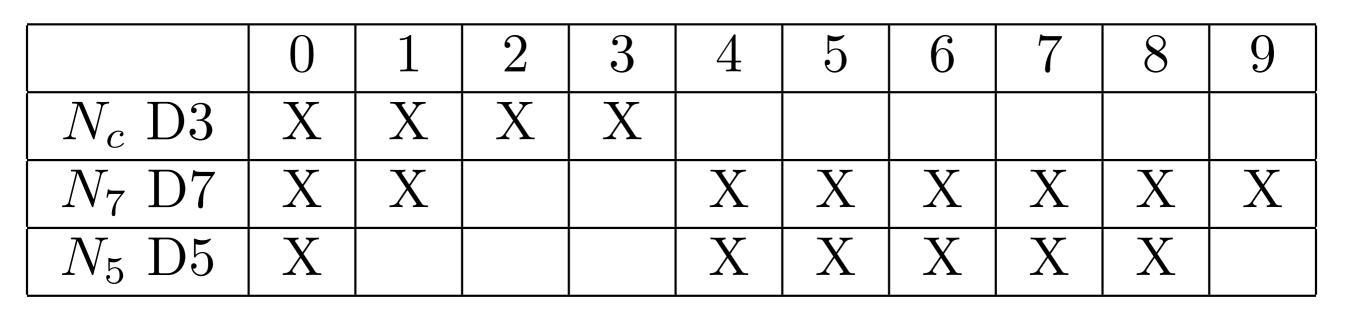
	0	1	2	3	4	5	6	7	8	9
$N_c \text{ D3}$	Х	Х	Х	Х						
$N_7 \text{ D7}$	Х	Х			Х	Х	Х	Х	Х	Х
$N_5 \text{ D5}$	Х				Х	Х	Х	Х	Х	

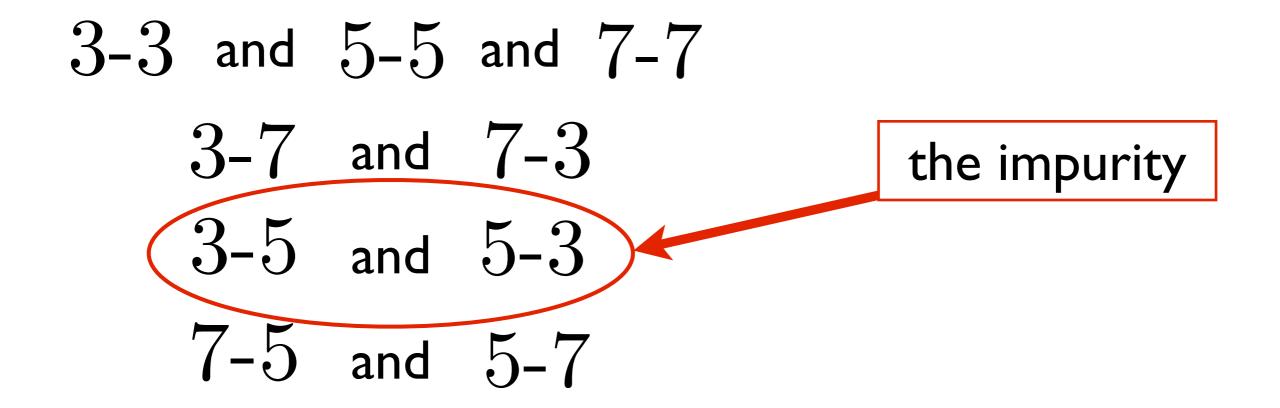
$$3-3 \text{ and } 5-5 \text{ and } 7-7$$

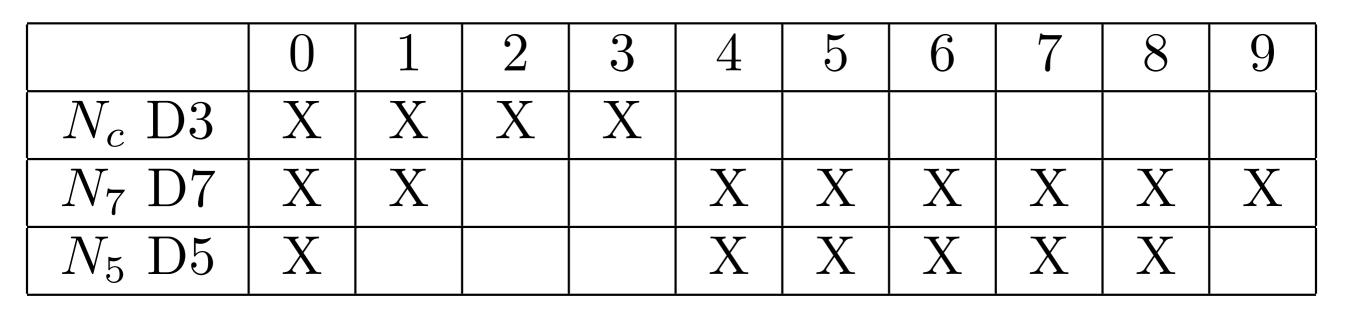
 $3-7 \text{ and } 7-3$
 $3-5 \text{ and } 5-3$
 $7-5 \text{ and } 5-7$
Decouple

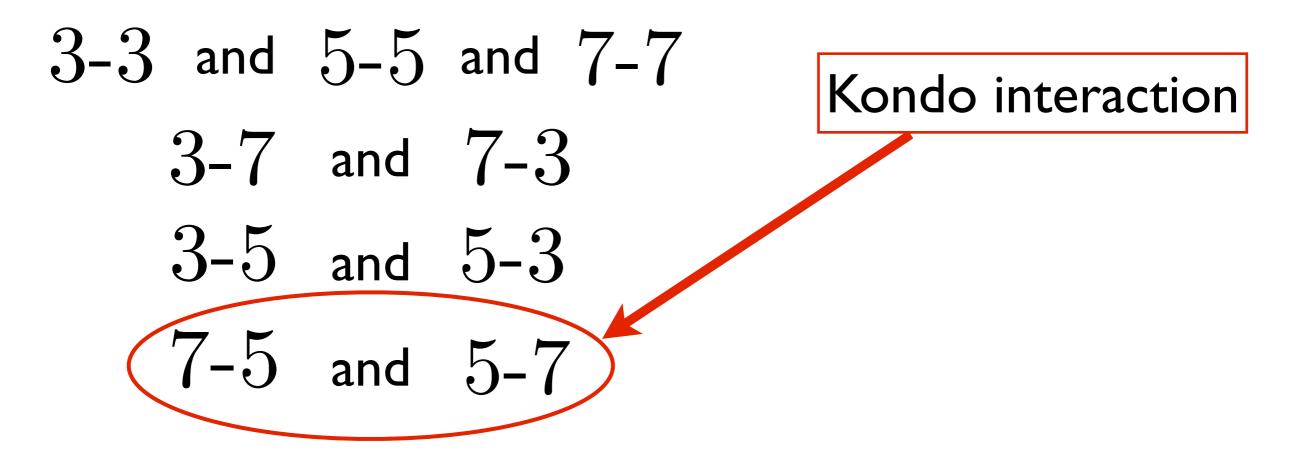






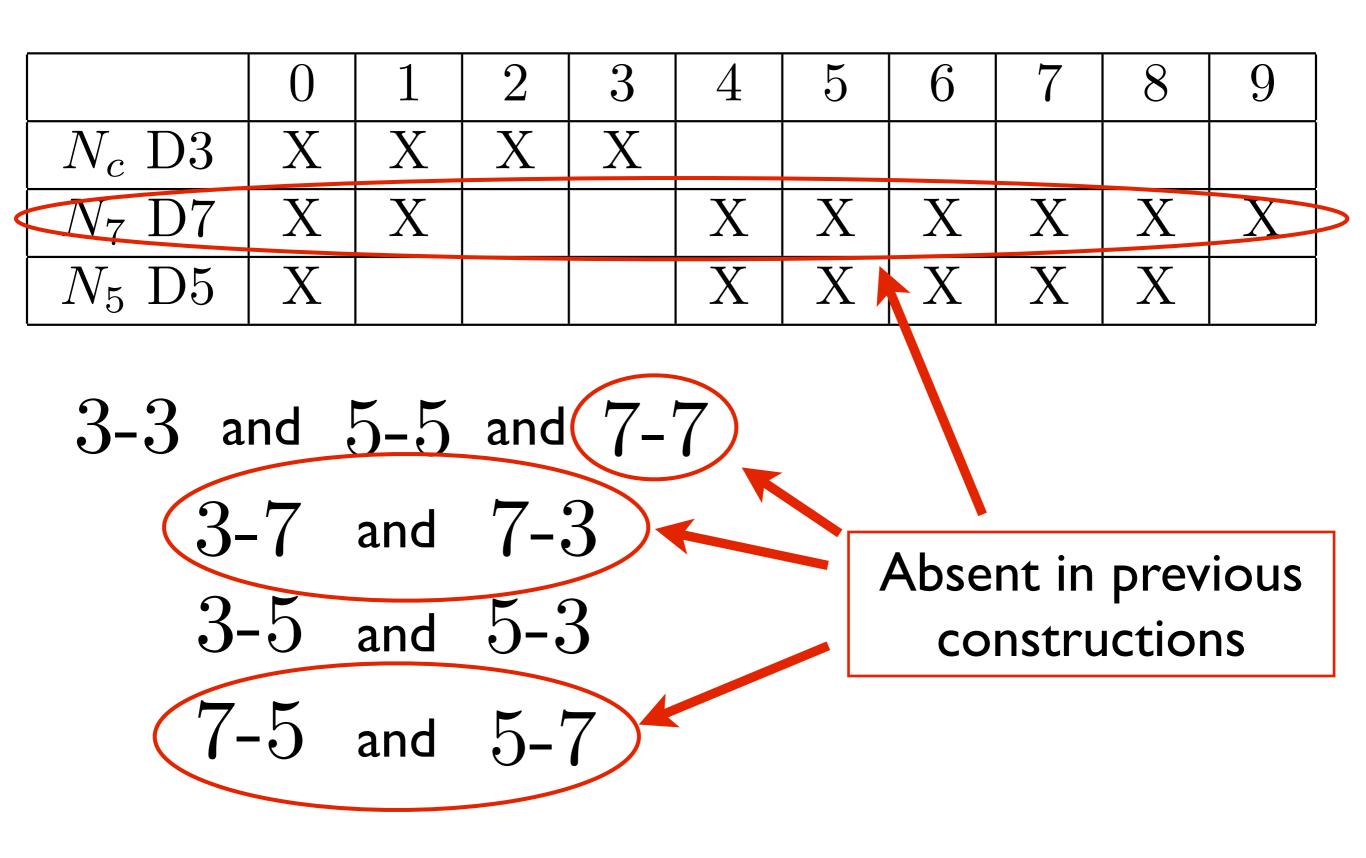


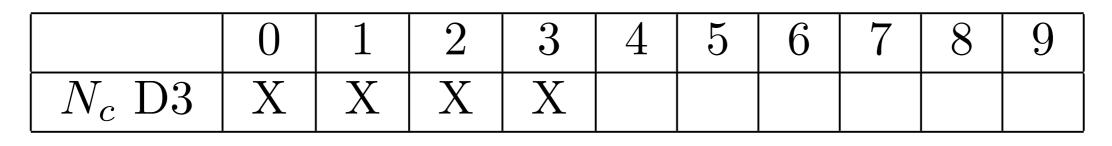




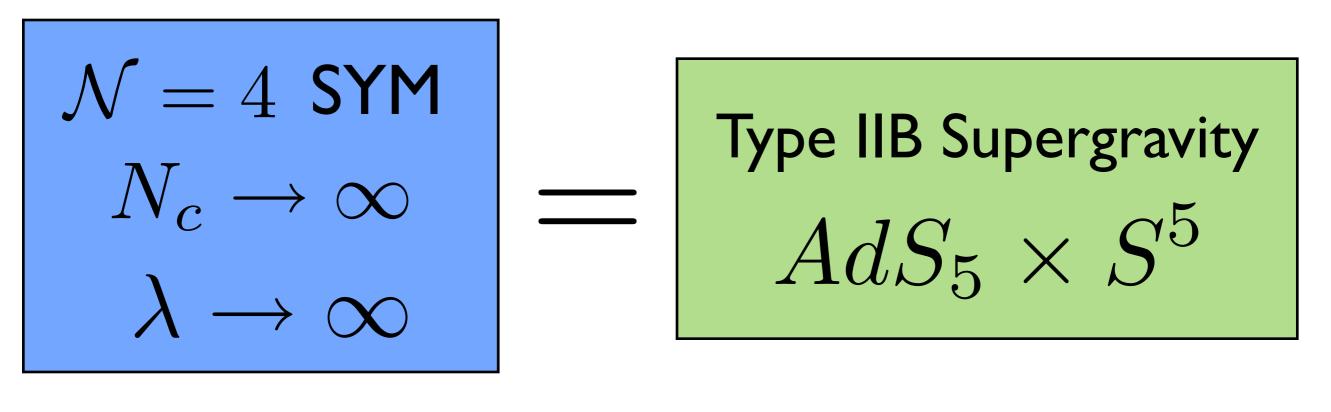
Previous work

Kachru, Karch, Yaida 0909.2639, 1009.3268 Mück 1012.1973 Faraggi and Pando-Zayas 1101.5145 Jensen, Kachru, Karch, Polchinski, Silverstein 1105.1772 Karaiskos, Sfetsos, Tsatis 1106.1200 Harrison, Kachru, Torroba 1110.5325 Benincasa and Ramallo 1112.4669, 1204.6290 Faraggi, Mück, Pando-Zayas 1112.5028 Itsios, Sfetsos, Zoakos 1209.6617



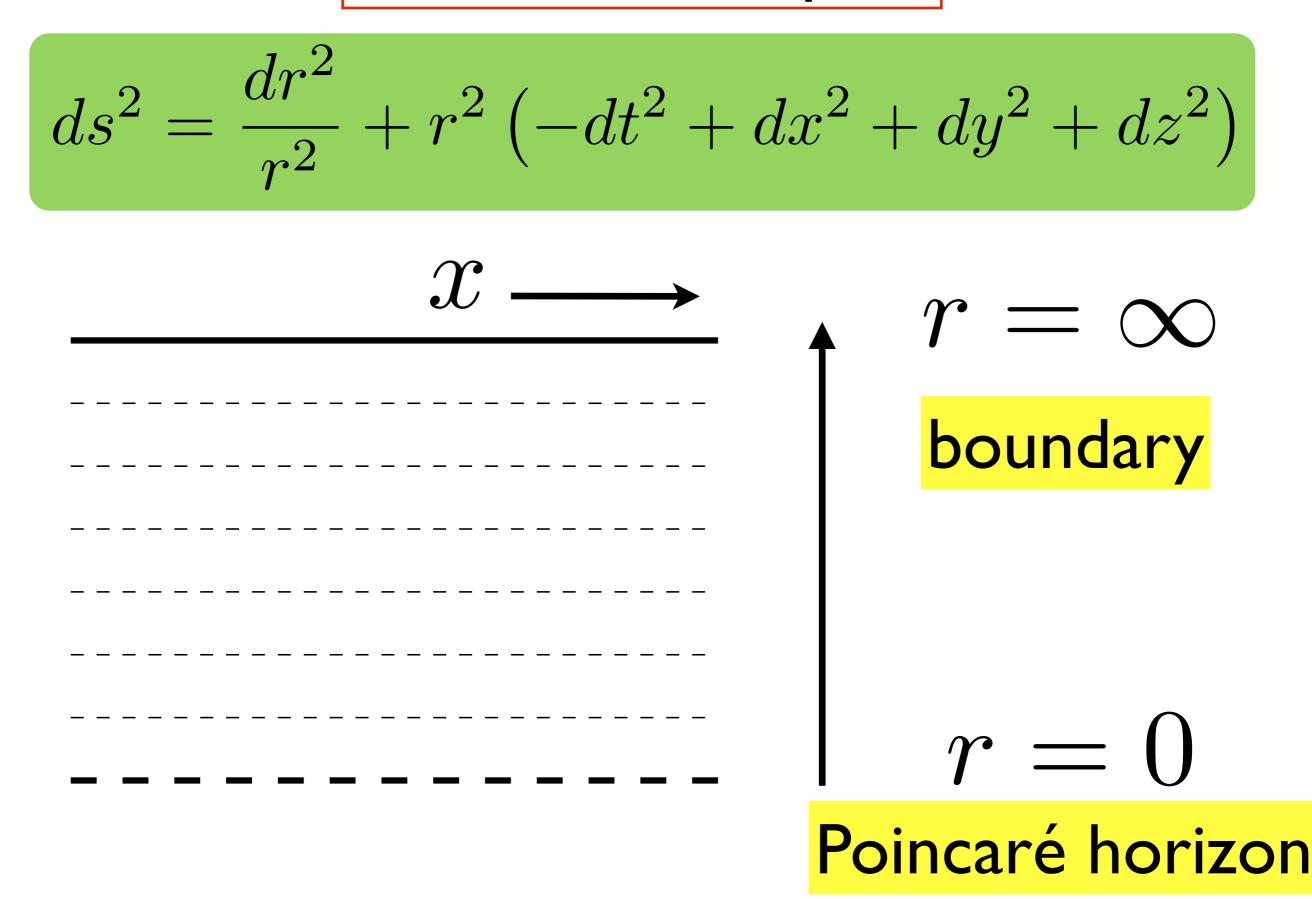


3-3 strings



 $\int_{S^5} F_5 \propto N_c \qquad F_5 = dC_4$

Anti-de Sitter Space



	0	1	2	3	4	5	6	7	8	9
$N_c \text{ D3}$	Х	Х	Х	Х						
$N_7 \text{ D7}$	Х	Х			Х	Х	Х	Х	Х	Х
$N_5 \text{ D5}$	Х				Х	Х	Х	Х	Х	

$$3-3 \text{ and } 5-5 \text{ and } 7-7$$

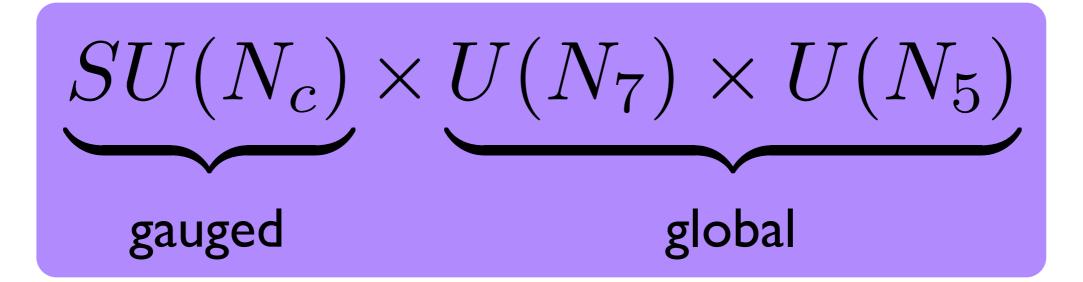
 $3-7 \text{ and } 7-3$
 $3-5 \text{ and } 5-3$
 $7-5 \text{ and } 5-7$
Decouple

Probe Limit

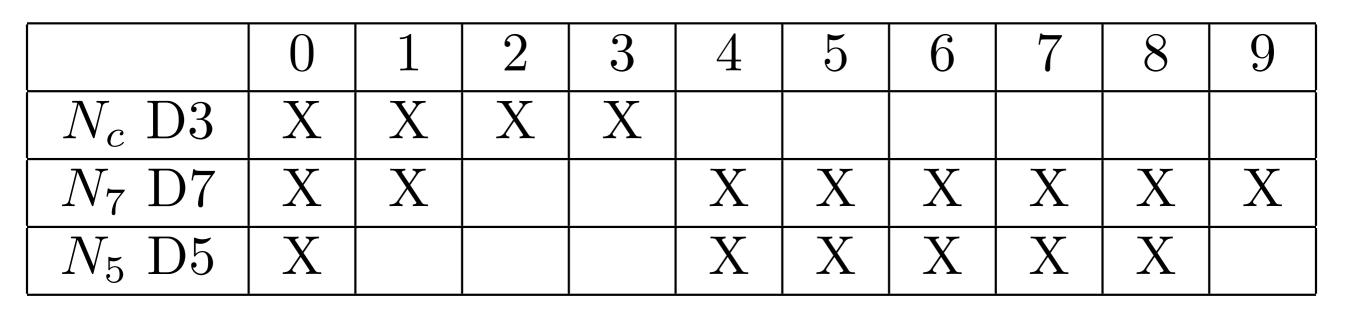
$$N_7/N_c \rightarrow 0$$
 and $N_5/N_c \rightarrow 0$

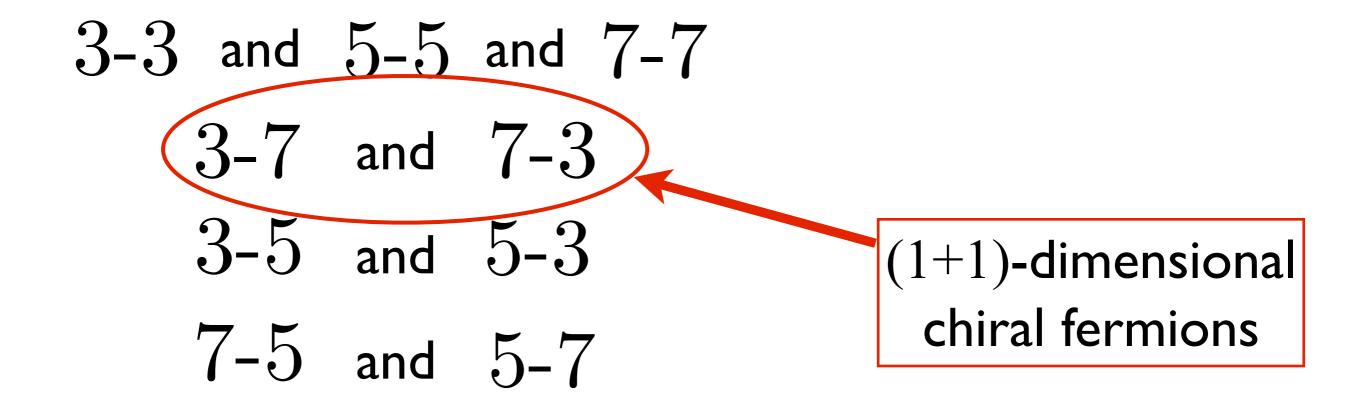
 $U(N_7) imes U(N_5)$ becomes a global symmetry

Total symmetry:



(plus R-symmetry)





	0	1	2	3	4	5	6	7	8	9
$N_c \text{ D3}$	X	X	X	X						
$N_7 \text{ D7}$	Х	Х			X	X	X	Х	Х	Х

Skenderis, Taylor hep-th/0204054 Harvey and Royston 0709.1482, 0804.2854 Buchbinder, Gomis, Passerini 0710.5170

(1+1)-dimensional chiral fermions ψ_L

$$SU(N_c) \times U(N_7) \times U(N_5)$$

 $N_c \quad \overline{N}_7 \quad \text{singlet}$

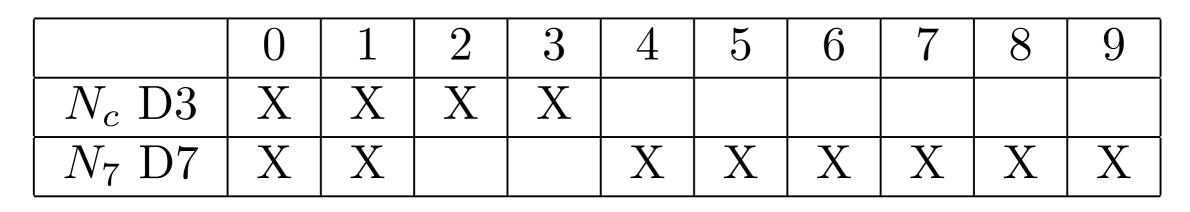
	0	1	2	3	4	5	6	7	8	9
$N_c \text{ D3}$	X	Х	Х	Х						
$N_7 \text{ D7}$	Х	Х			Х	Х	Х	Х	Х	Х

Skenderis, Taylor hep-th/0204054

Harvey and Royston 0709.1482,0804.2854 Buchbinder, Gomis, Passerini 0710.5170

(1+1)-dimensional chiral fermions ψ_L

Kac-Moody algebra $SU(N_c)_{N_7} \times SU(N_7)_{N_c} \times U(1)_{N_cN_7}$



(1+1)-dimensional chiral fermions ψ_L

Differences from Kondo

Do not come from reduction from (3+1) dimensions

Genuinely relativistic

	0	1	2	3	4	5	6	7	8	9
$N_c \text{ D3}$	X	Х	X	X						
$N_7 \text{ D7}$	X	Х			Х	Х	Х	Х	Х	X

(1+1)-dimensional chiral fermions ψ_L

Differences from Kondo

$$SU(N_c)$$
 is gauged!

$$\vec{J} = \psi_L^\dagger \vec{\tau} \, \psi_L$$

	0	1	2	3	4	5	6	7	8	9
$N_c \text{ D3}$	Х	Х	Х	X						
$N_7 \text{ D7}$	Х	Х			X	X	Х	Х	Х	Х

 $SU(N_c)$ is gauged!

Harvey and Royston 0709.1482, 0804.2854 Buchbinder, Gomis, Passerini 0710.5170

Probe Limit

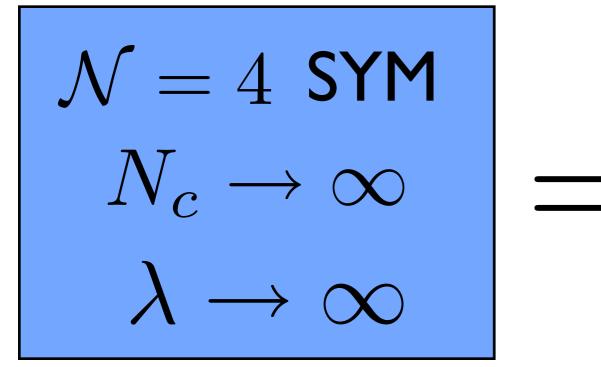
$$N_7/N_c \to 0$$

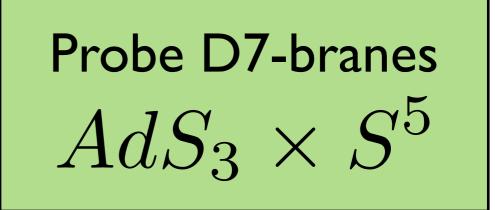
In the probe limit, the gauge anomaly is suppressed...

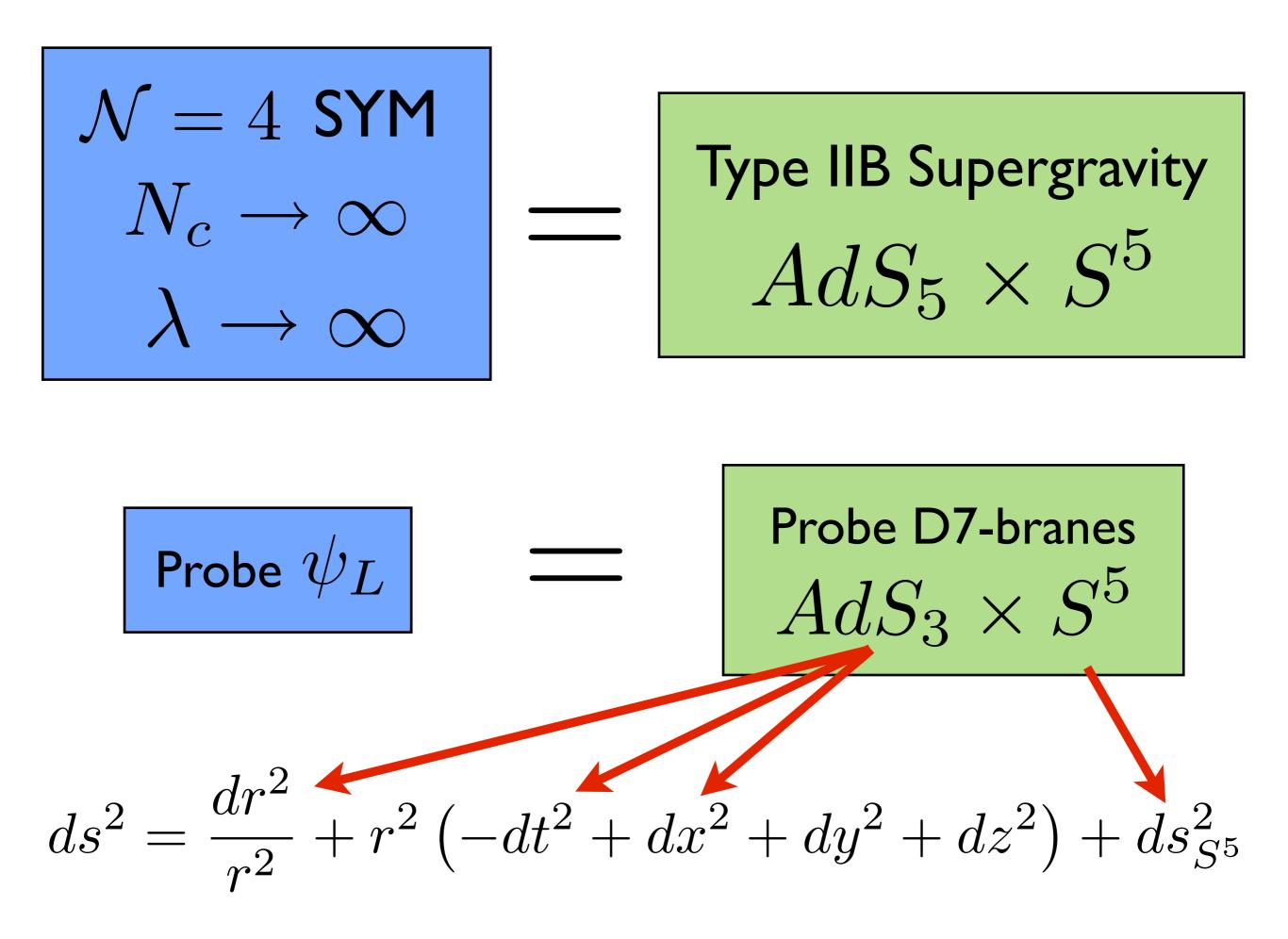
$$SU(N_c)_{N_7} \to SU(N_c)$$

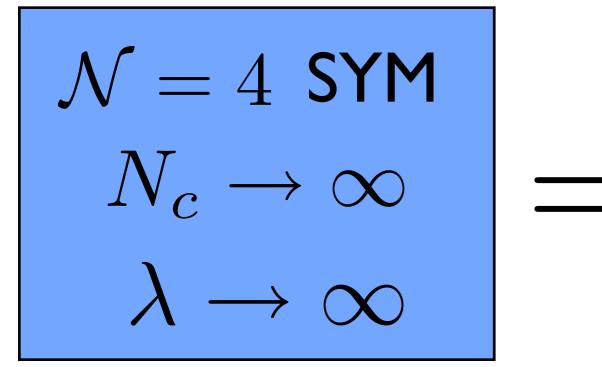
... but the global anomalies are not.

 $SU(N_7)_{N_c} \times U(1)_{N_cN_7} \to SU(N_7)_{N_c} \times U(1)_{N_cN_7}$

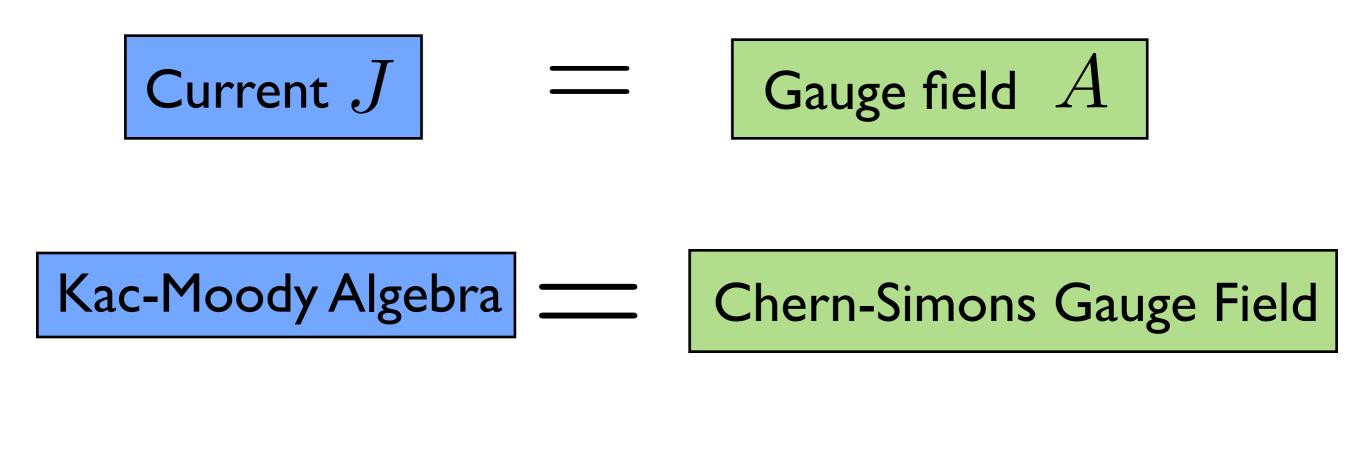








Probe D7-branes $AdS_3 \times S^5$



rank and level of algebra rank and level of gauge field

Gukov, Martinec, Moore, Strominger hep-th/0403225

Kraus and Larsen hep-th/0607138

Probe D7-branes along
$$\,AdS_3 imes S^5$$

$$S_{D7} = +\frac{1}{2}T_{D7}(2\pi\alpha')^2 \int P[C_4] \wedge \operatorname{tr} F \wedge F + \dots$$

$$= -\frac{1}{2}T_{D7}(2\pi\alpha')^2 \int P[F_5] \wedge \operatorname{tr}\left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A\right) + \dots$$

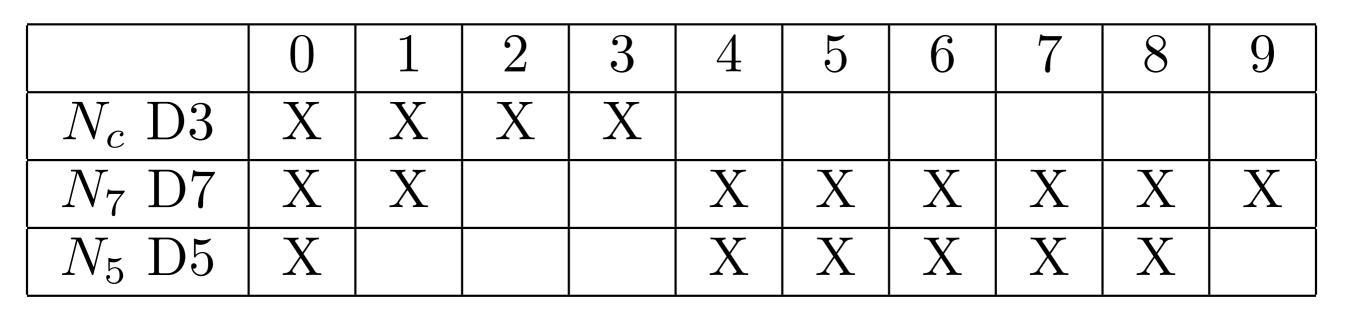
$$= -\frac{N_c}{4\pi} \int_{AdS_3} \operatorname{tr} \left(A \wedge dA + \frac{2}{3} A \wedge A \wedge A \right) + \dots$$

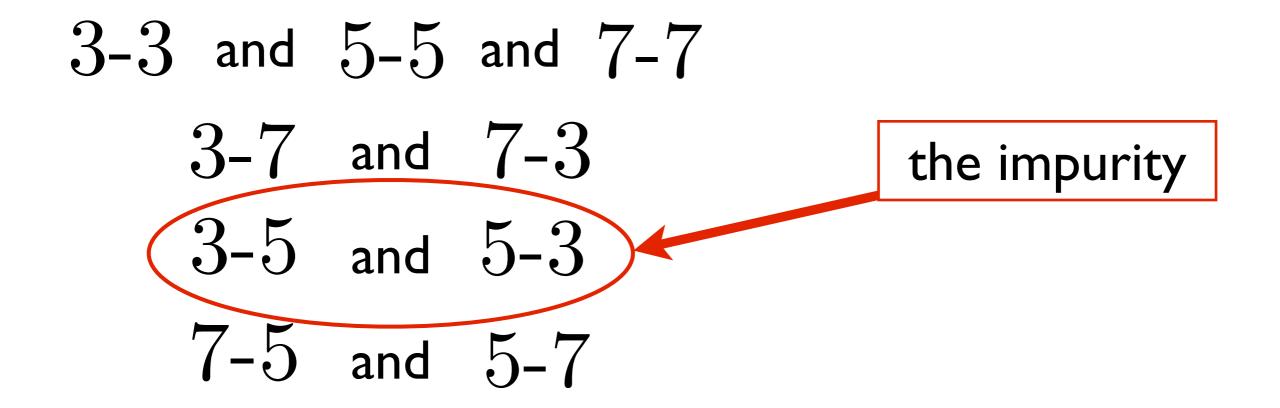
 $U(N_7)_{N_c}$ Chern-Simons gauge field

Answer #1

The chiral fermions:

Chern-Simons Gauge Field in AdS_3





	0	1	2	3	4	5	6	7	8	9
$N_c \text{ D3}$	X	Х	Х	Х						
$N_5 \text{ D5}$	X				X	Х	Х	Х	Х	

Skenderis, Taylor hep-th/0204054 Camino, Paredes, Ramallo hep-th/0104082 Gomis and Passerini hep-th/0604007

(0+1)-dimensional fermions χ

$$SU(N_c) \times U(N_7) \times U(N_5)$$

 $N_c \quad \text{singlet} \quad \overline{N}_5$

	0	1	2	3	4	5	6	7	8	9
$N_c \text{ D3}$	X	X	Х	Х						
N_5 D5	X				Х	Х	Х	Х	Х	

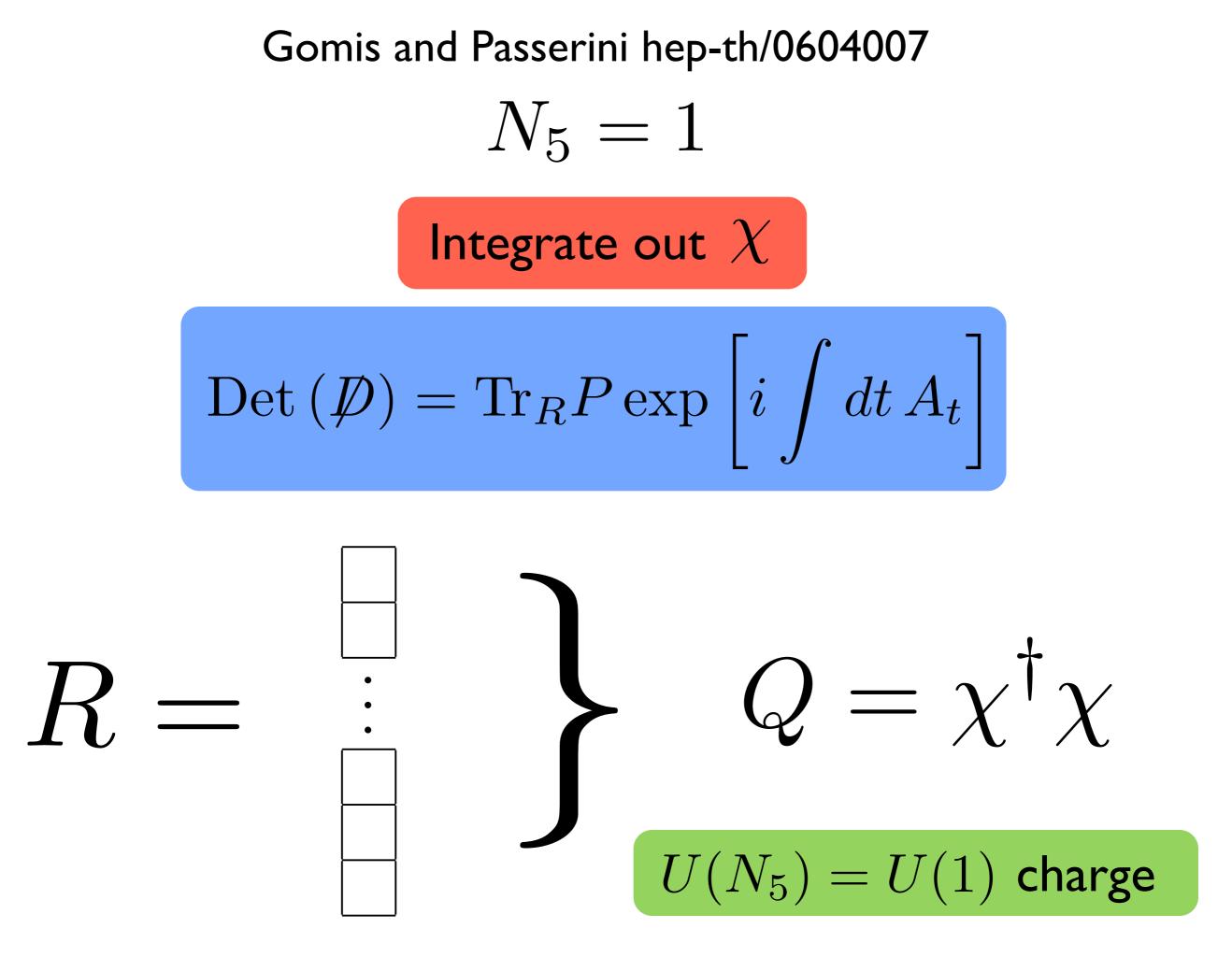
 $SU(N_c)$ is "spin"

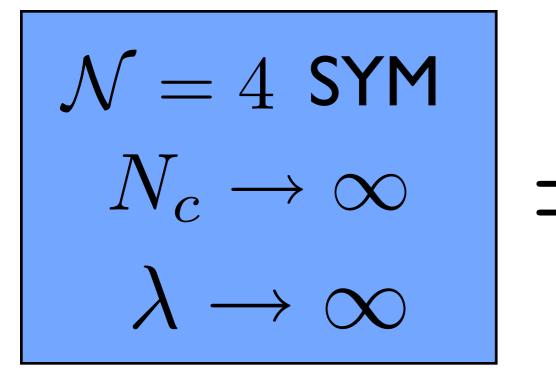
$$\vec{S} = \chi^{\dagger} \vec{\tau} \, \chi$$

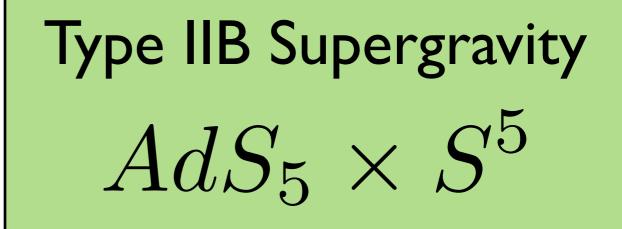
"slave fermions"

"Abrikosov pseudo-fermions"

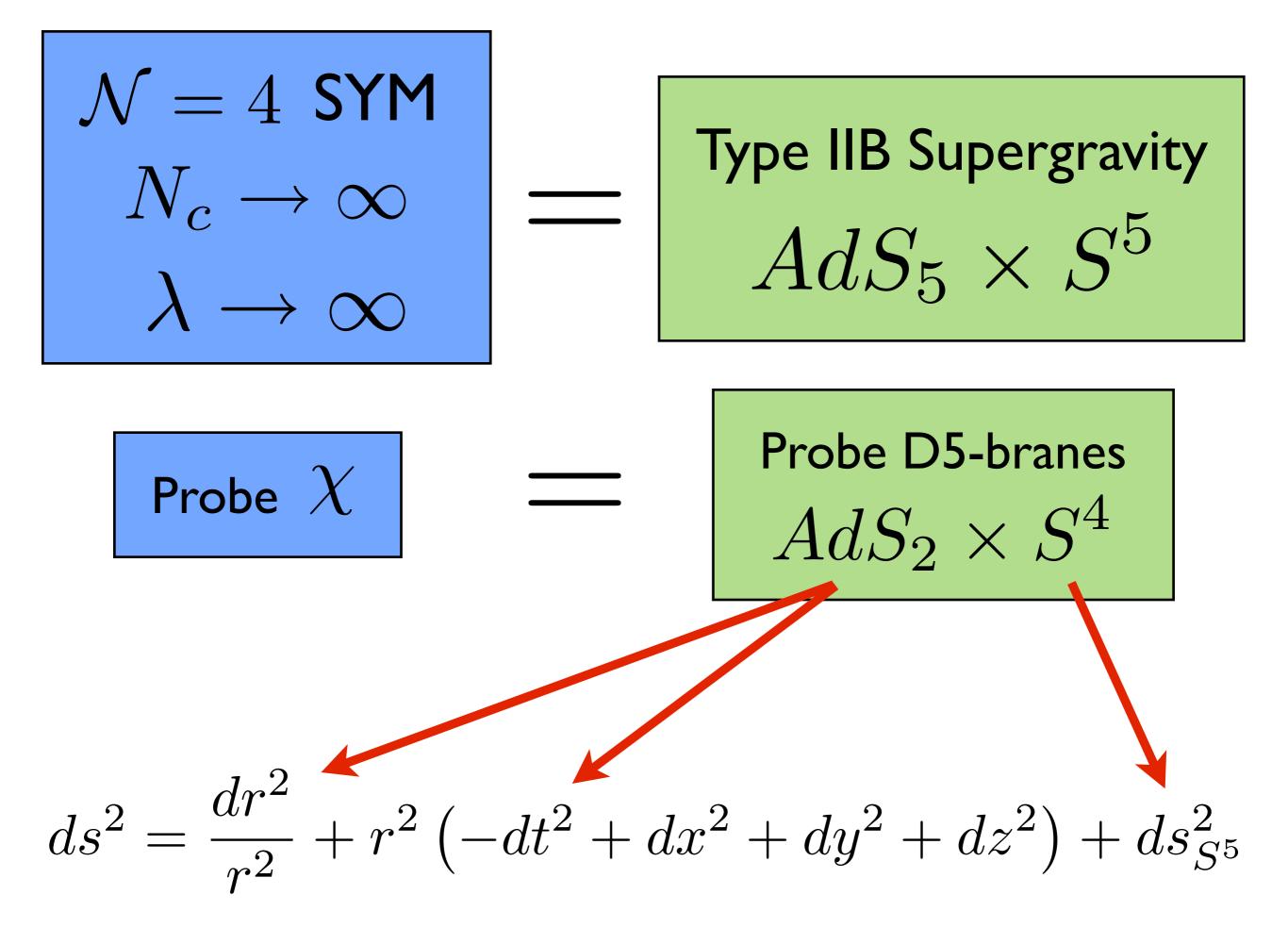
Abrikosov, **Physics** 2, p.5 (1965)

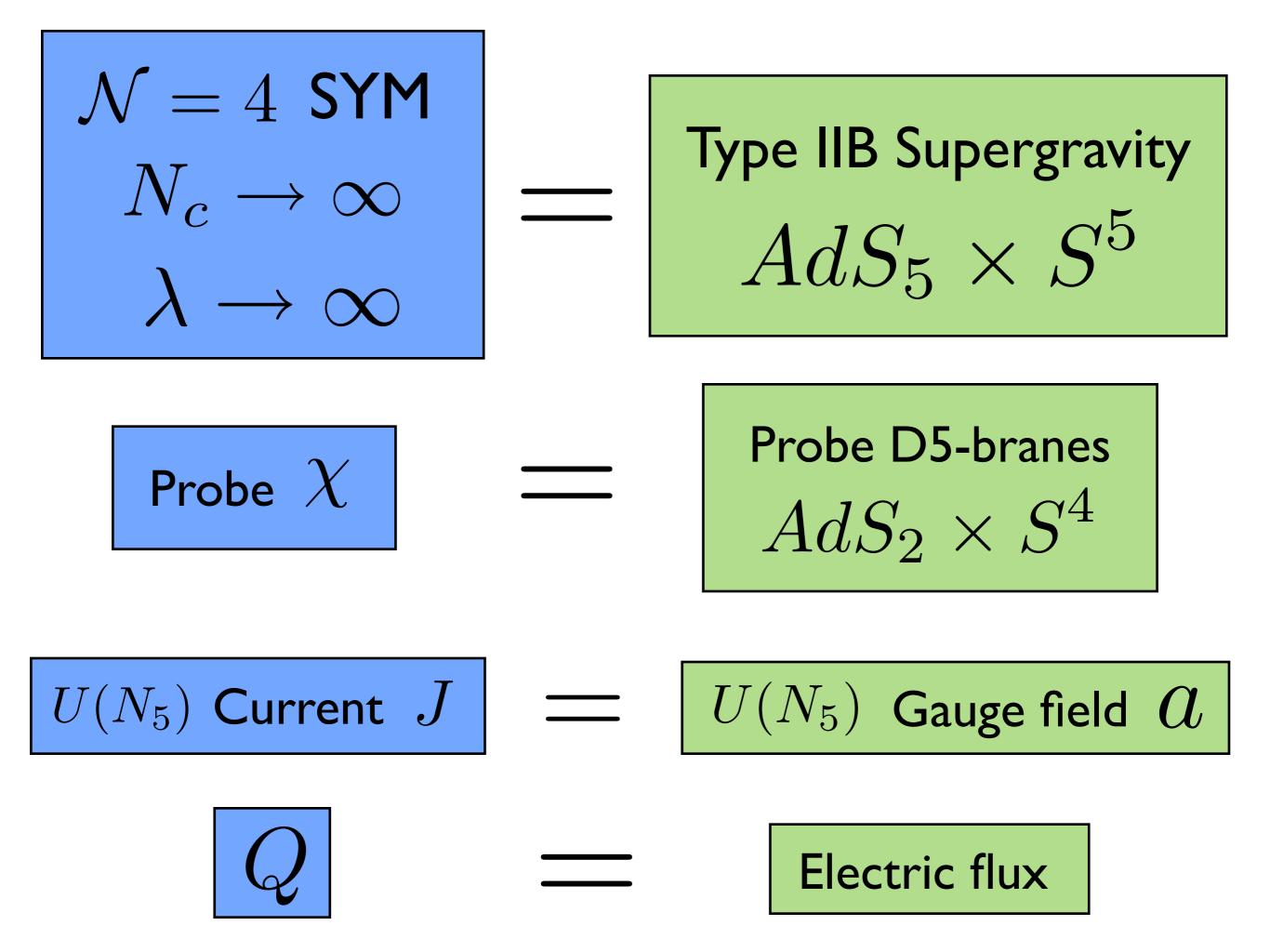






Probe D5-branes $AdS_2 \times S^4$





Probe D5-brane along $AdS_2 \times S^4$

Camino, Paredes, Ramallo hep-th/0104082

Dissolve Q strings into the D5-brane

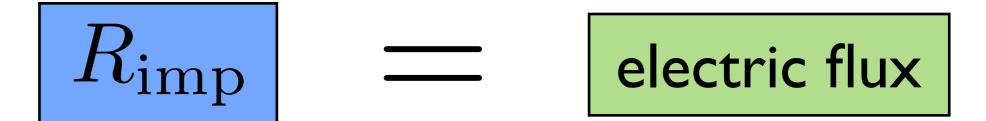
$$AdS_2$$
 electric field $f_{rt} = \partial_r a_t - \partial_t a_r$

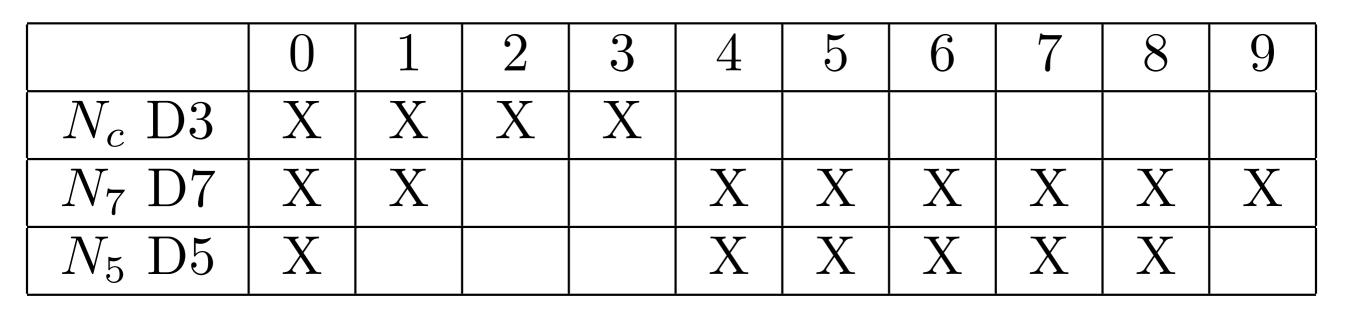
$$\sqrt{-g}f^{tr}\big|_{\partial AdS_2} = Q = \chi^\dagger \chi$$

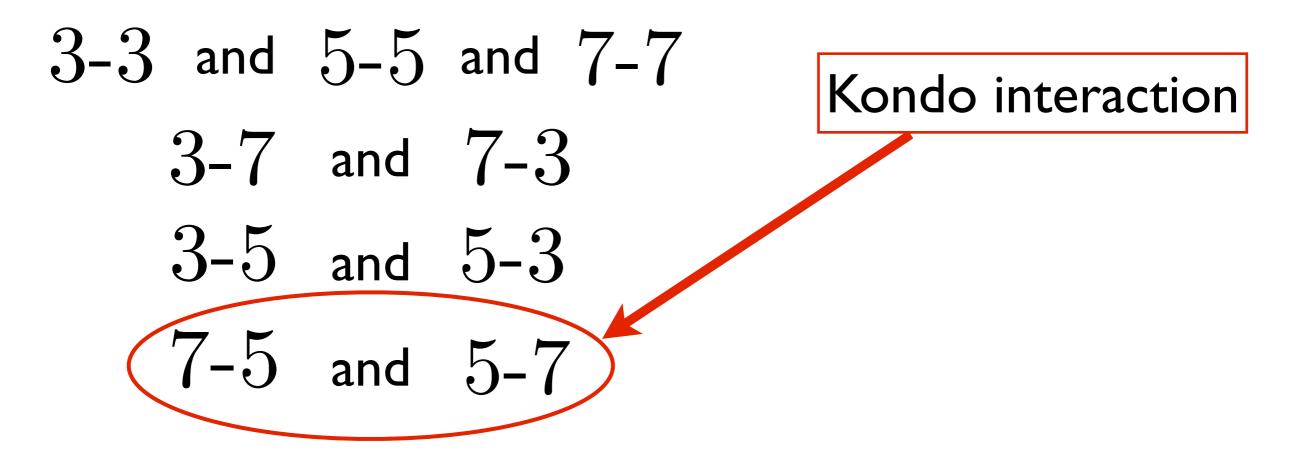
Answer #2

The impurity:

Yang-Mills Gauge Field in AdS_2







The Kondo Interaction

	0	1	2	3	4	5	6	7	8	9
N_5 D5	X				Х	Х	X	X	X	
$N_7 \text{ D7}$	X	Х			Х	Х	X	X	X	X

Complex scalar!

$$SU(N_c) \times U(N_7) \times U(N_5)$$

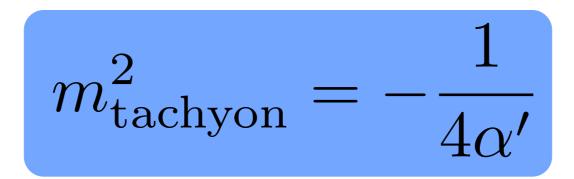
singlet \overline{N}_7 N_5

$$\mathcal{O}\equiv\psi_L^{\dagger}\chi$$

The Kondo Interaction

	0	1	2	3	4	5	6	7	8	9
N_5 D5	Х				X	Х	Х	Х	X	
$N_7 \text{ D7}$	Х	Х			X	Х	X	Х	X	Х

TACHYON



D5 becomes magnetic flux in the D7

The Kondo Interaction

$$SU(N_c)$$
 is "spin"

$$\vec{J} = \psi_L^\dagger \vec{\tau} \, \psi_L$$

$$\vec{S} = \chi^{\dagger} \vec{\tau} \, \chi$$

$$\vec{S} \cdot \vec{J} = \chi^{\dagger} \vec{\tau} \, \chi \cdot \psi_L^{\dagger} \vec{\tau} \, \psi_L$$

$$\vec{\tau}_{ij} \cdot \vec{\tau}_{kl} = \delta_{il} \delta_{jk} - \frac{1}{N_c} \delta_{ij} \delta_{kl}$$

$$\vec{S} \cdot \vec{J} = |\psi_L^{\dagger} \chi|^2 + \mathcal{O}(1/N_c)$$

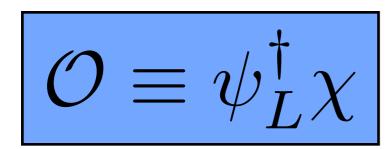
"double trace"

$$\mathcal{N}=4~\mathrm{SYM}$$

 $N_c \to \infty$
 $\lambda \to \infty$

Probe ψ_L

Probe χ



Type IIB Supergravity
$$AdS_5 \times S^5$$

Probe D7-branes
$$AdS_3 \times S^5$$

Probe D5-branes $AdS_2 \times S^4$

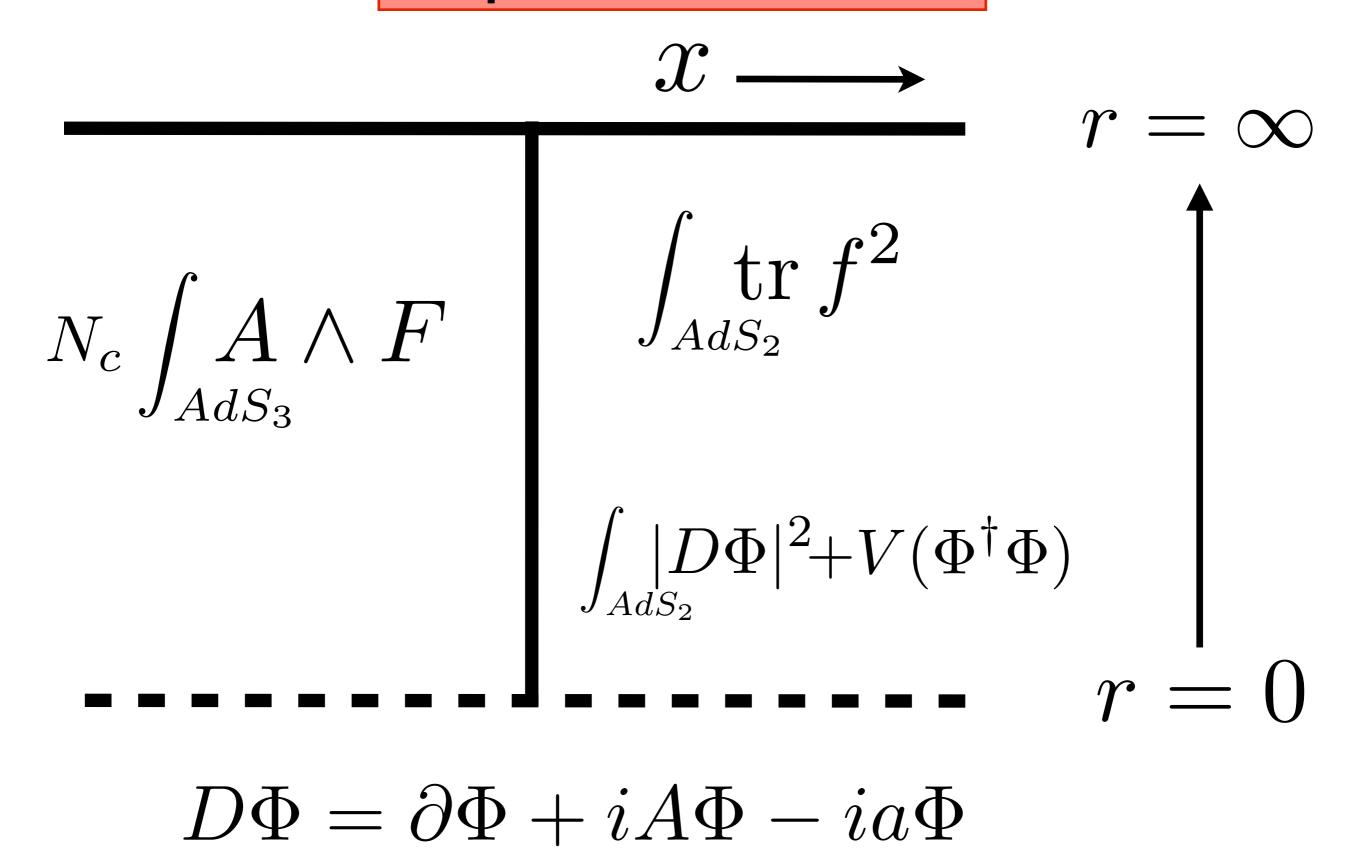
Bi-fundamental scalar $AdS_2 \times S^4$

Answer #3

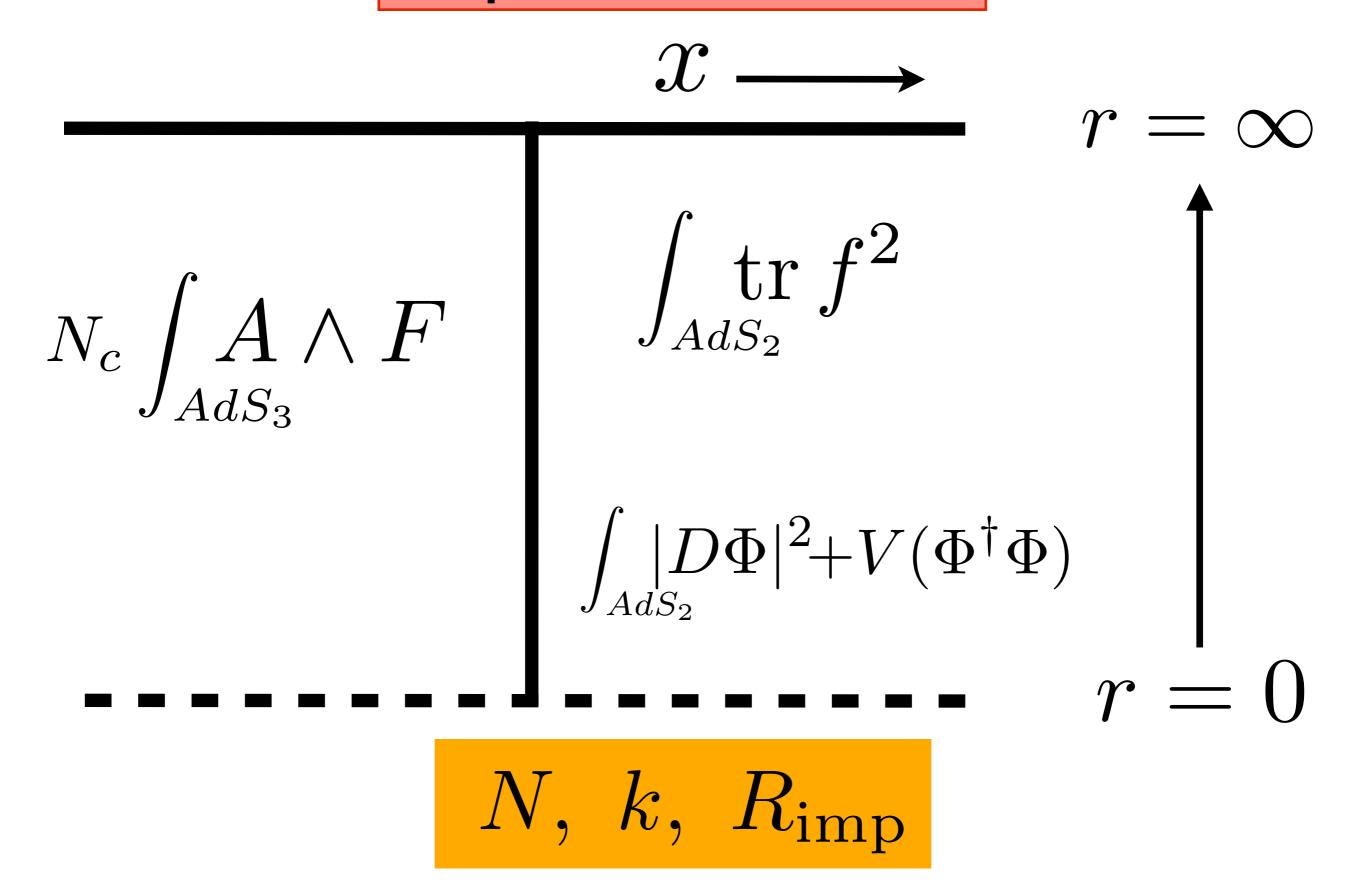
The Kondo interaction:

Bi-fundamental scalar in AdS_2

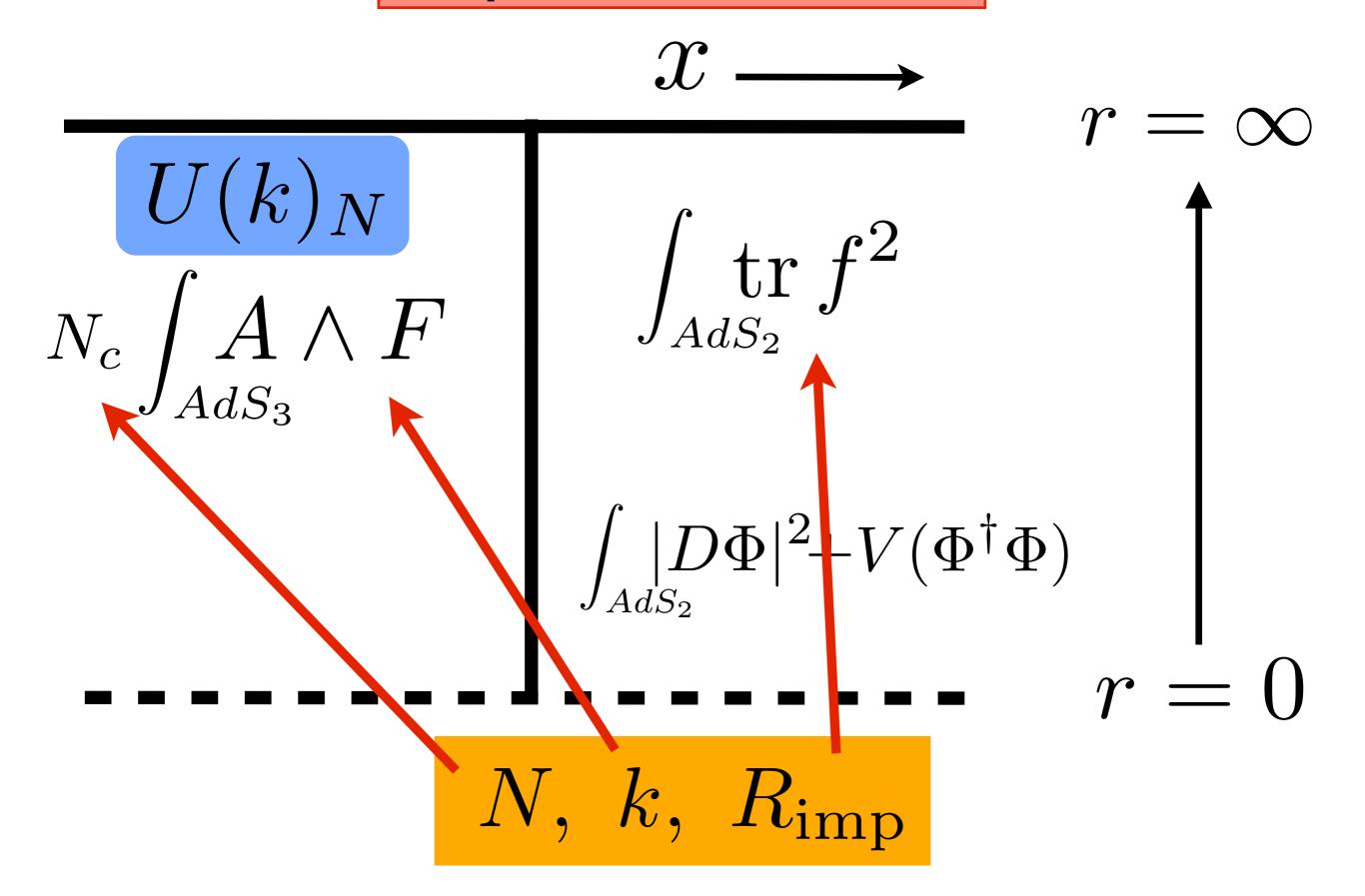
Top-Down Model

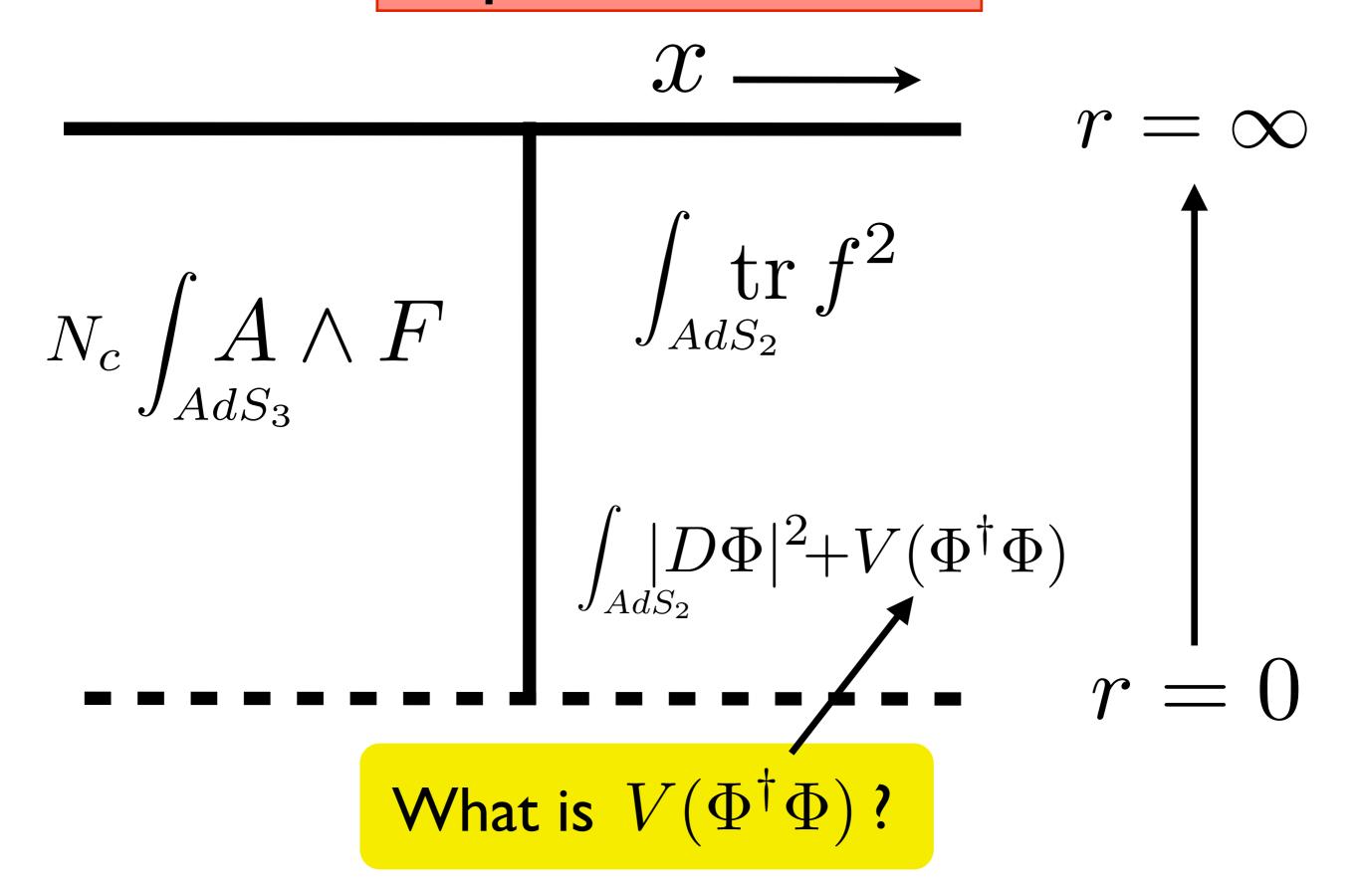


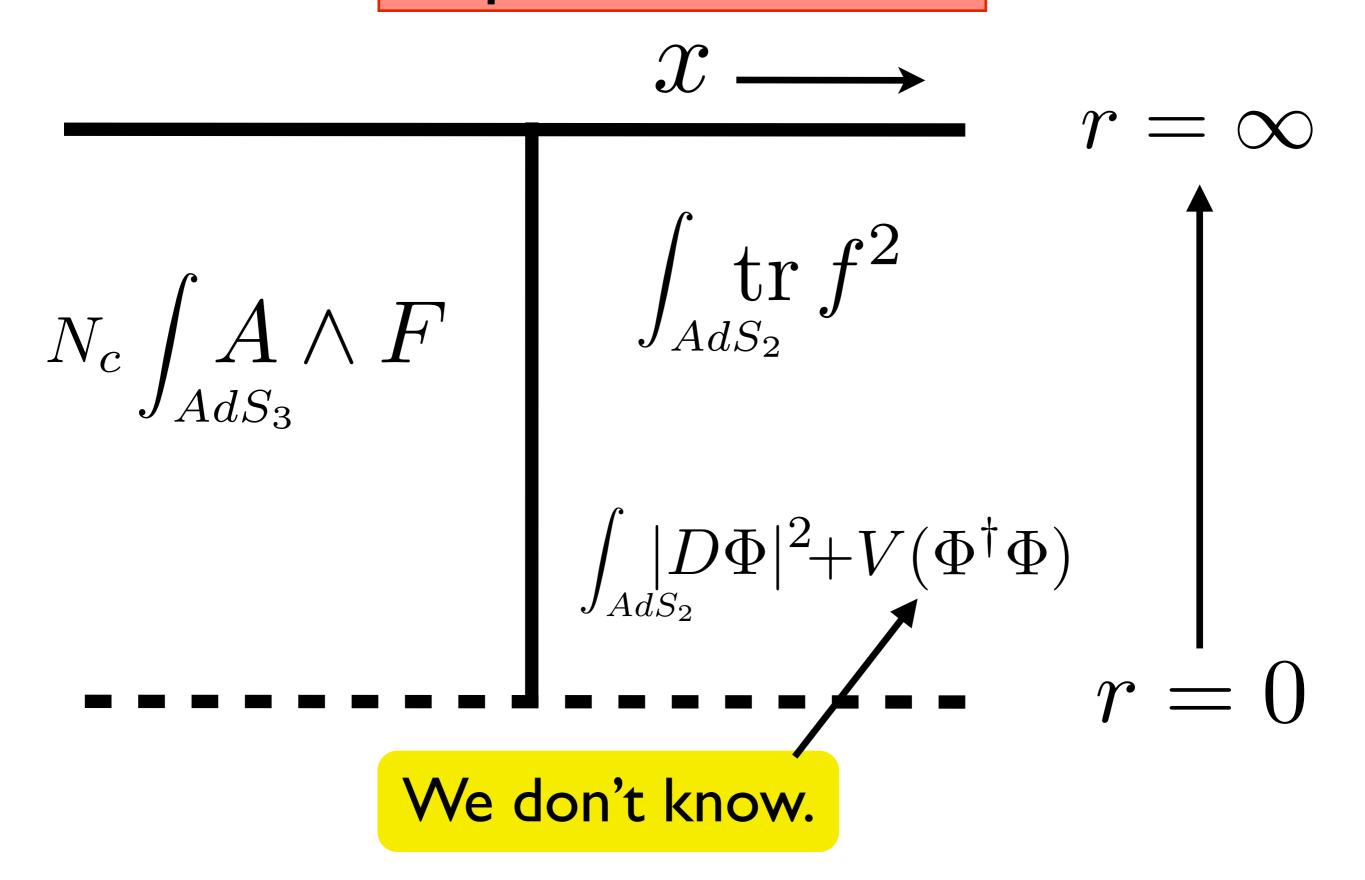
Top-Down Model



Top-Down Model







What is
$$V(\Phi^{\dagger}\Phi)$$
 ?

Gava, Narain, Samadi hep-th/9704006

Aganagic, Gopakumar, Minwalla, Strominger hep-th/0009142

Difficult to calculate in $AdS_5 \times S^5$

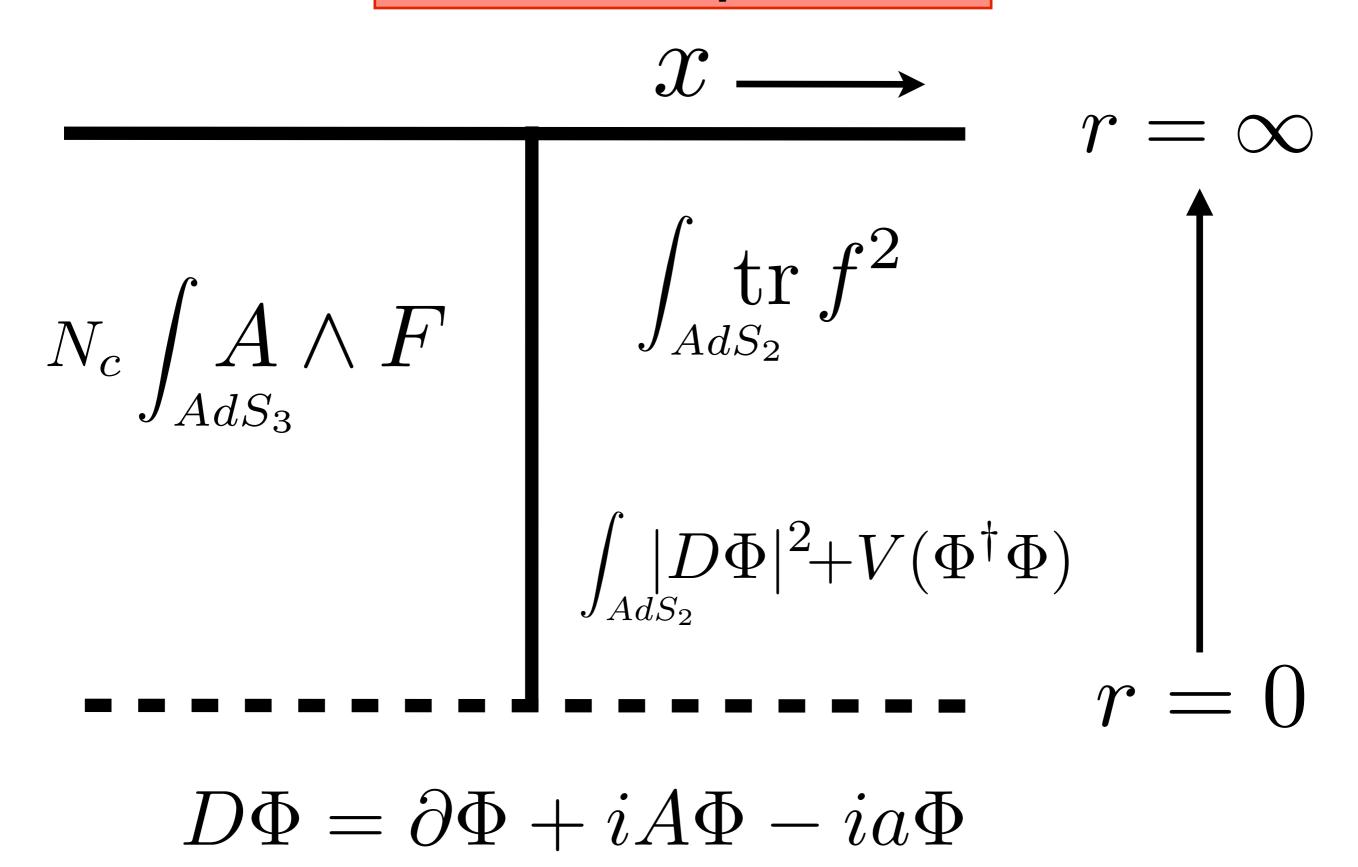
What is
$$V(\Phi^{\dagger}\Phi)$$
 ?

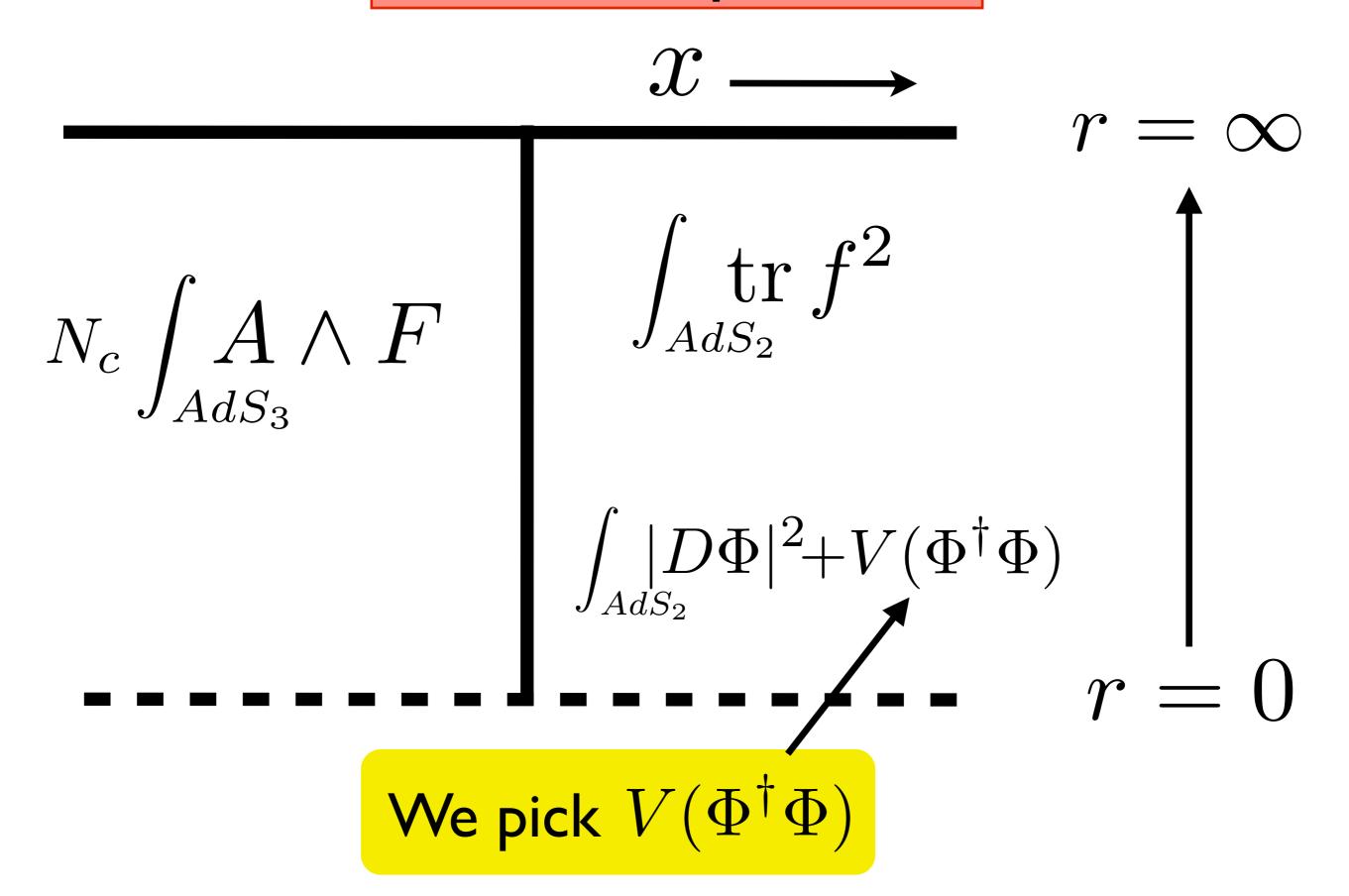
Gava, Narain, Samadi hep-th/9704006

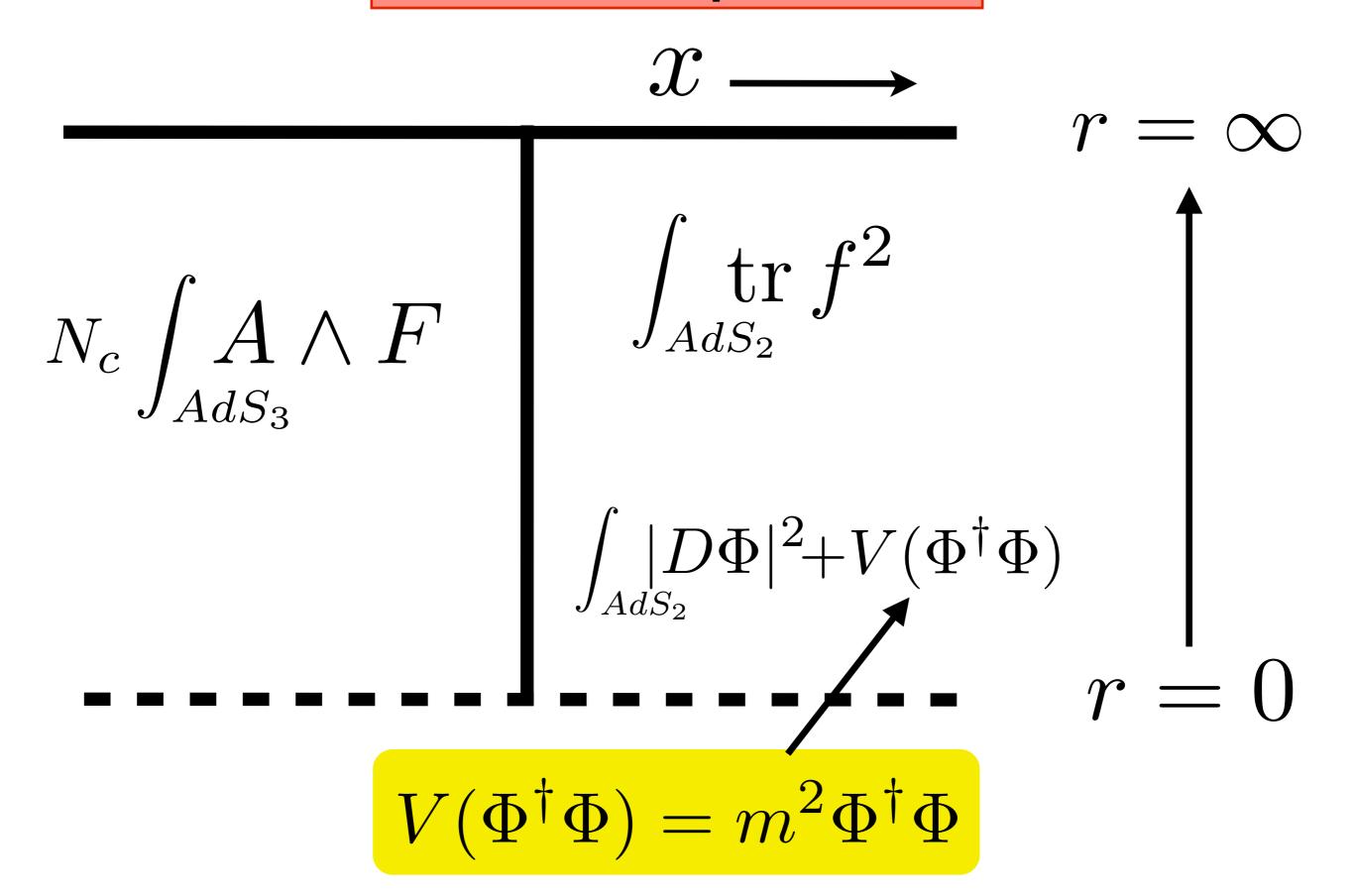
Aganagic, Gopakumar, Minwalla, Strominger hep-th/0009142

Switch to bottom-up model!

- The Kondo Effect
- The CFT Approach
- A Top-Down Holographic Model
- A Bottom-Up Holographic Model
- Summary and Outlook



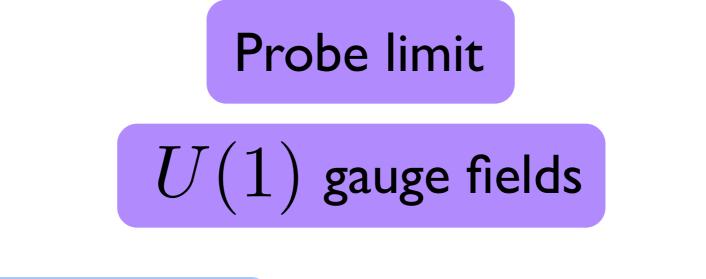


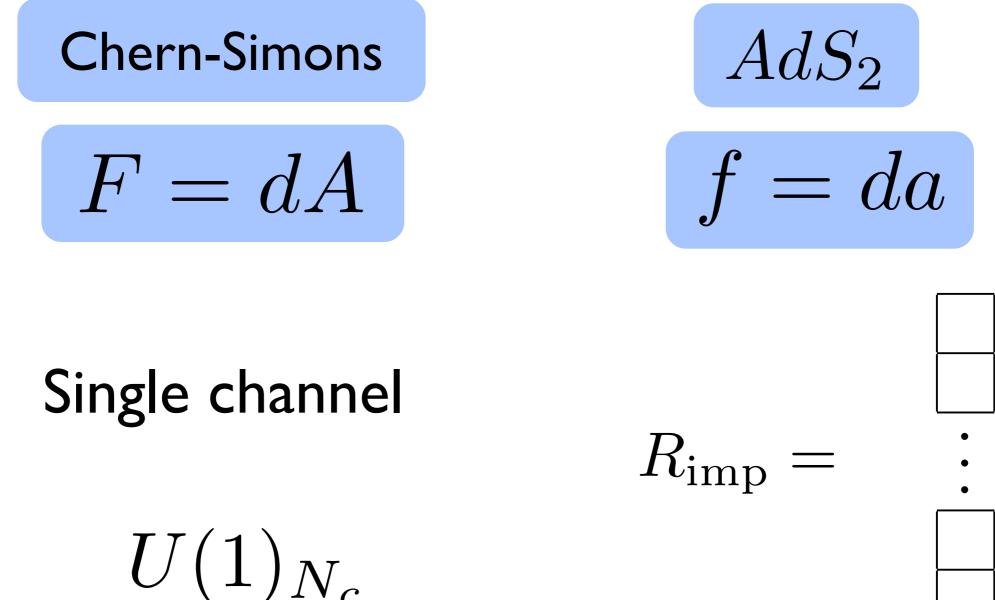


$$S = S_{CS} + S_{AdS_2}$$

$$S_{CS} = -\frac{N}{4\pi} \int \operatorname{tr} \left(A \wedge dA + \frac{2}{3} A \wedge A \wedge A \right)$$
$$S_{AdS_2} = -\int d^3x \,\delta(x) \sqrt{-g} \left[\frac{1}{4} \operatorname{tr} f^2 + |D\Phi|^2 + V(\Phi^{\dagger}\Phi) \right]$$

$$D\Phi = \partial\Phi + iA\Phi - ia\Phi$$
$$V(\Phi^{\dagger}\Phi) = m^{2}\Phi^{\dagger}\Phi$$





$$\sqrt{-g}f^{rt}\big|_{\partial AdS_2} = Q$$

We choose $m^2 = \operatorname{Breitenlohner-Freedman}$ bound

$$\Phi(r) = \tilde{c} r^{-1/2} + c r^{-1/2} \log r + \dots$$

Our double-trace (Kondo) coupling:

$$c = \tilde{g}_K \, \tilde{c}$$

Witten hep-th/0112258 Berkooz, Sever, Shomer hep-th/0112264

$$T > T_c \quad \sqrt{-g} f^{tr} |_{\partial AdS_2} \neq 0 \quad \Phi(r) = 0$$
$$\langle \psi_L^{\dagger} \chi \rangle = 0$$

$$\begin{split} T < T_c \quad \sqrt{-g} f^{tr} |_{\partial AdS_2} \neq 0 \quad \Phi(r) \neq 0 \\ & \langle \psi_L^{\dagger} \chi \rangle \neq 0 \end{split}$$

A holographic superconductor in AdS_2

$$\begin{array}{c|c} T > T_c & \sqrt{-g} f^{tr} \big|_{\partial AdS_2} \neq 0 & \Phi(r) = 0 \\ \\ & \langle \psi_L^{\dagger} \chi \rangle = 0 \end{array}$$

$$T < T_c \quad \sqrt{-g} f^{tr} \big|_{\partial AdS_2} \neq 0 \quad \Phi(r) \neq 0$$

$$\left\langle \psi_L^\dagger \chi \right\rangle \neq 0$$

Superconductivity???

$$\begin{array}{c|c} T > T_c & \sqrt{-g} f^{tr} |_{\partial AdS_2} \neq 0 & \Phi(r) = 0 \\ \\ & \langle \psi_L^{\dagger} \chi \rangle = 0 \end{array}$$

$$T < T_c \quad \sqrt{-g} f^{tr} \big|_{\partial AdS_2} \neq 0 \quad \Phi(r) \neq 0$$

$$\left\langle \psi_L^{\dagger} \chi \right\rangle \neq 0$$

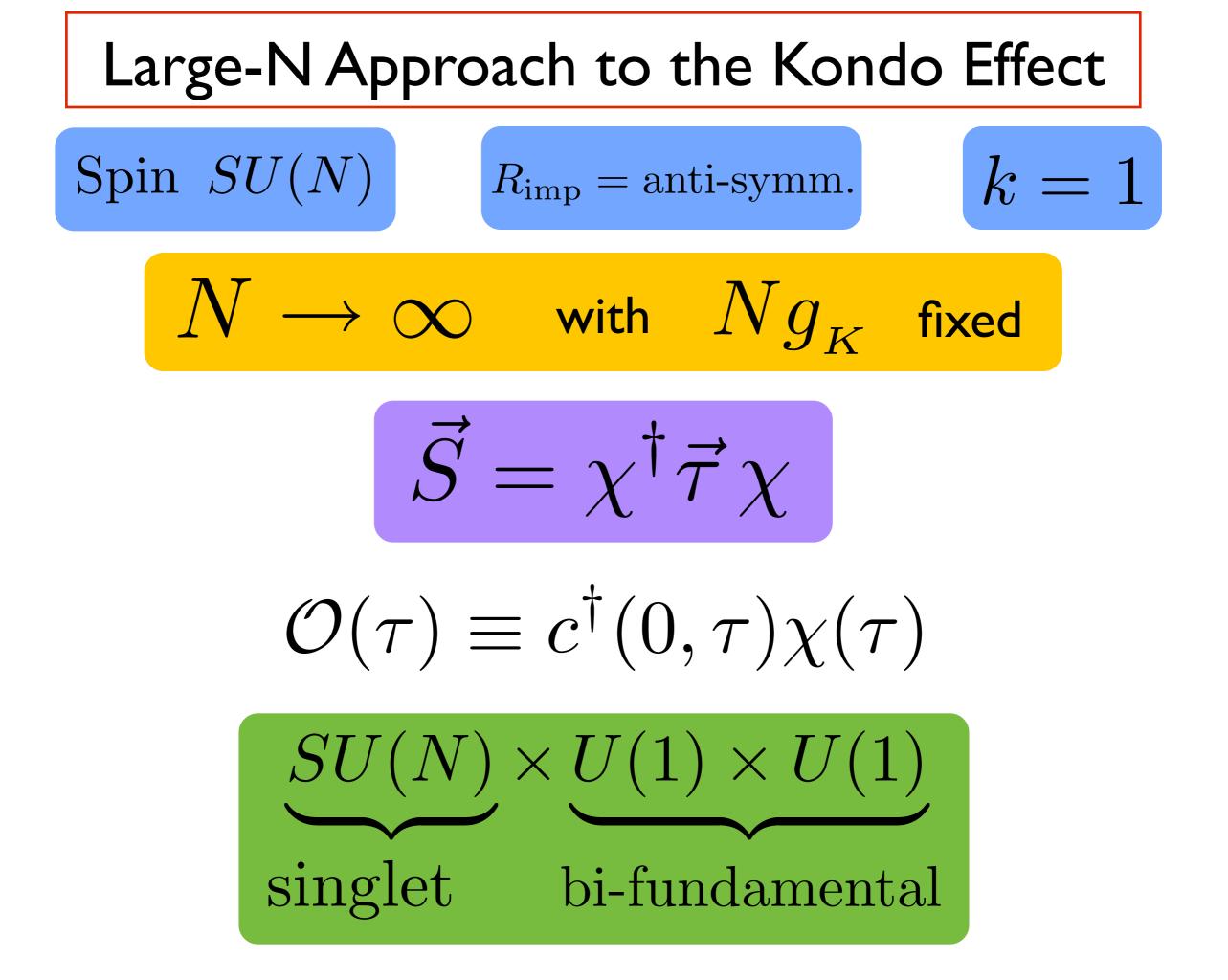
The large-N Kondo effect!

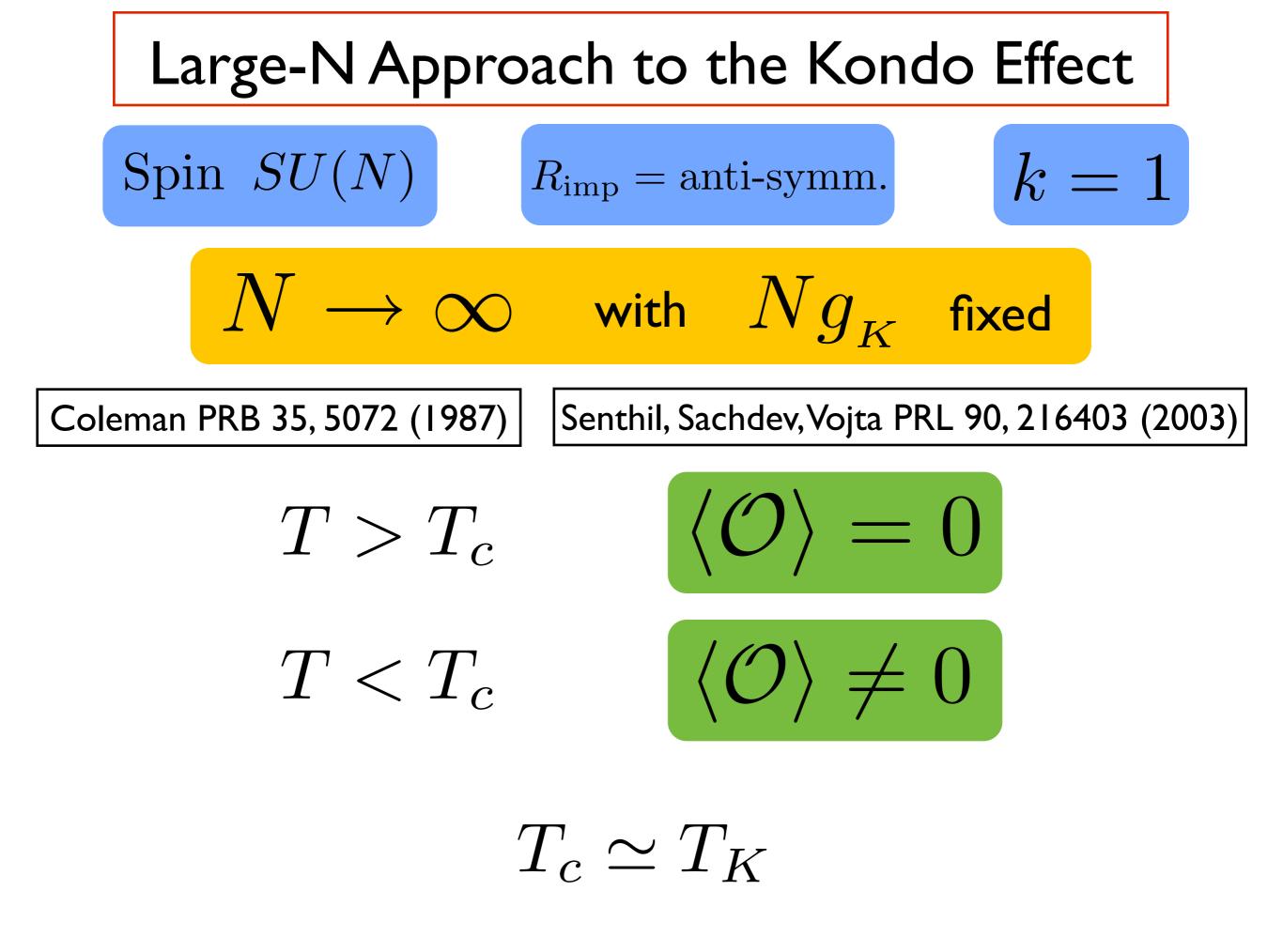
Solutions of the Kondo Problem Numerical RG (Wilson 1975) Fermi liquid description (Nozières 1975) Bethe Ansatz/Integrability (Andrei, Wiegmann, Tsvelick, Destri, ... 1980s) Large-N expansion

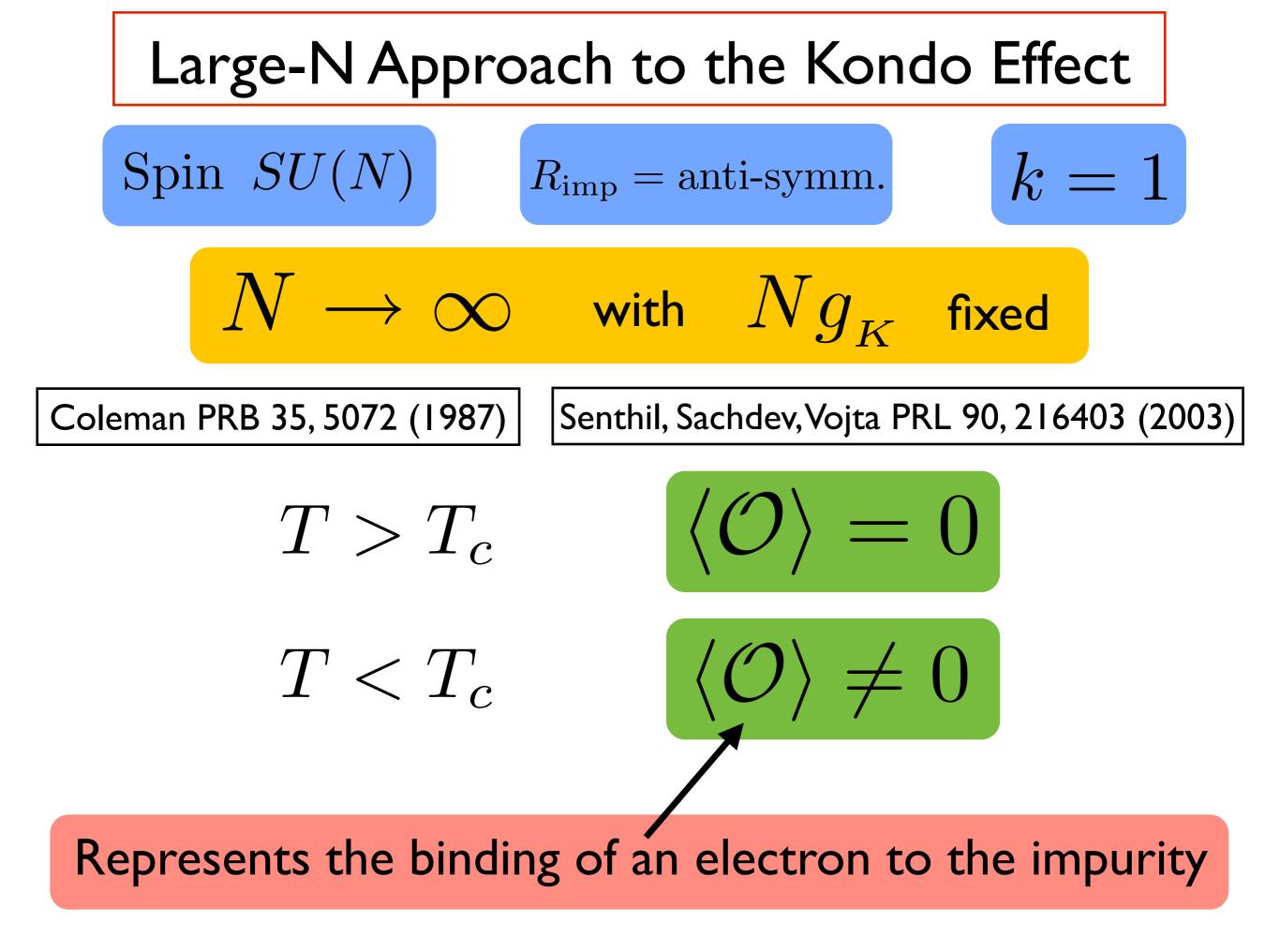
(Anderson, Read, Newns, Doniach, Coleman, ... 1970-80s)

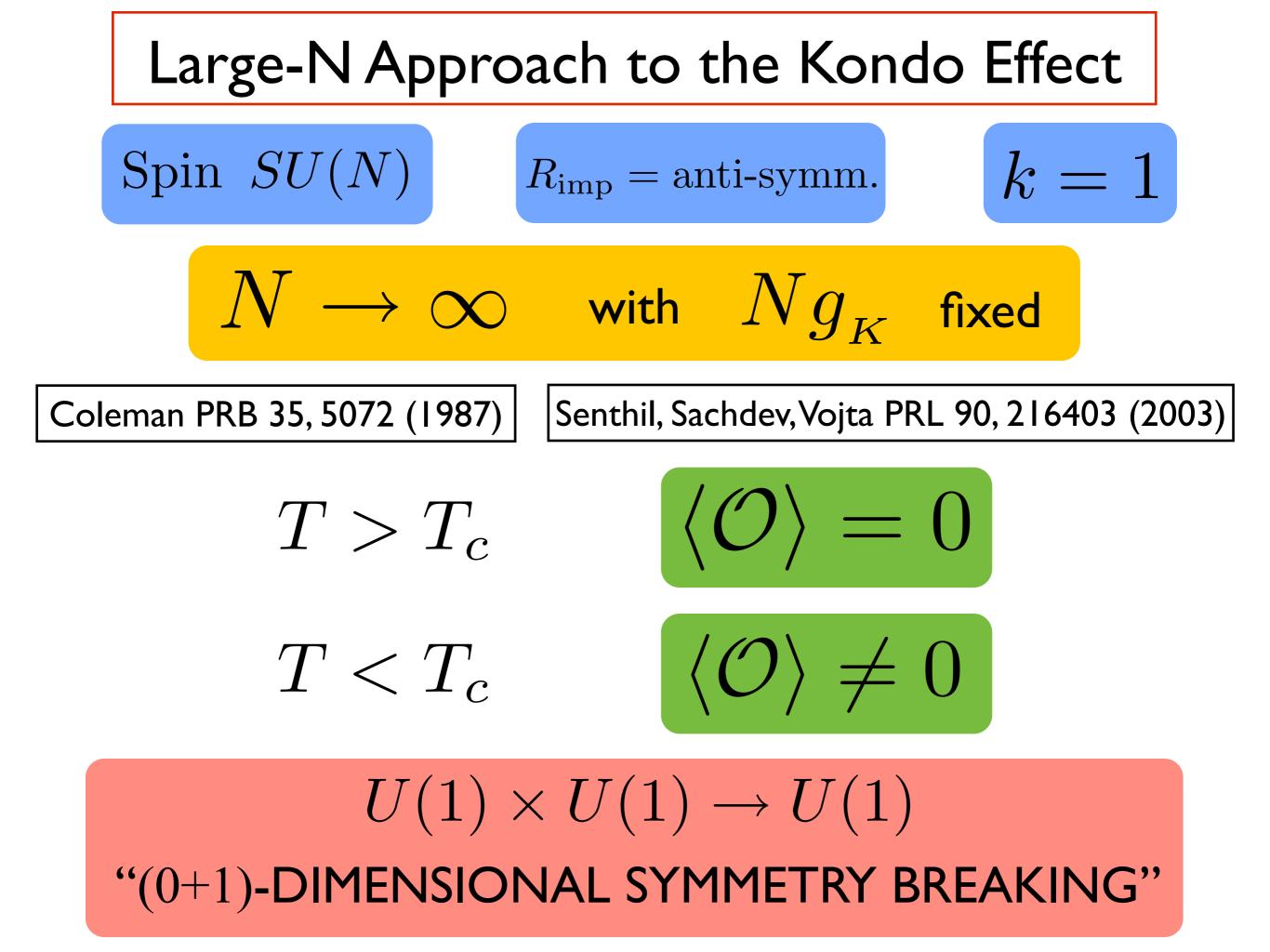
Quantum Monte Carlo (Hirsch, Fye, Gubernatis, Scalapino,... 1980s)

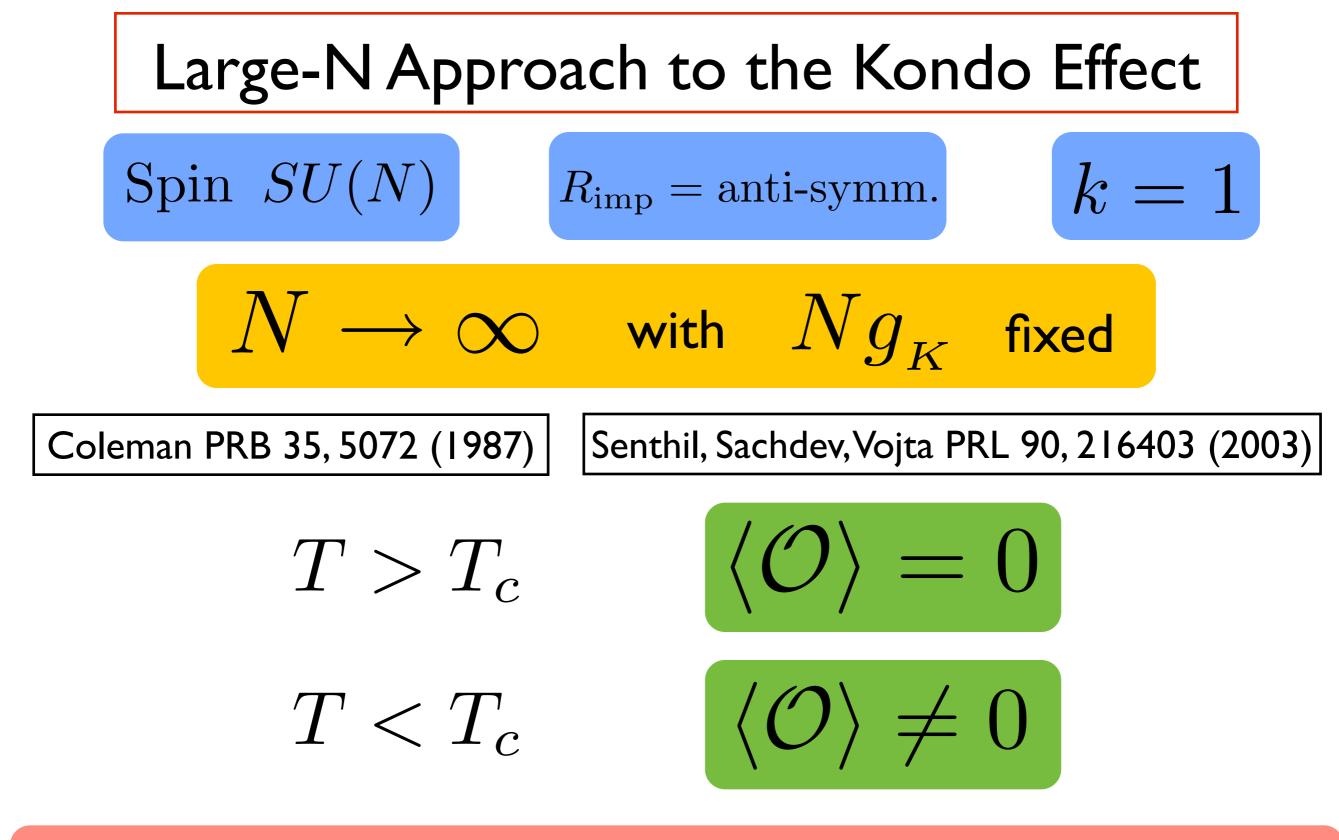
> Conformal Field Theory (CFT) (Affleck and Ludwig 1990s)











The phase transition is an ARTIFACT of the large-N limit! The actual Kondo effect is a crossover

$$\begin{array}{c|c} T > T_c & \sqrt{-g} f^{tr} |_{\partial AdS_2} \neq 0 & \Phi(r) = 0 \\ \\ & \langle \psi_L^{\dagger} \chi \rangle = 0 \end{array}$$

$$T < T_c \quad \sqrt{-g} f^{tr} \big|_{\partial AdS_2} \neq 0 \quad \Phi(r) \neq 0$$

$$\left\langle \psi_L^{\dagger} \chi \right\rangle \neq 0$$

The large-N Kondo effect!

Work in Progress...

- Entropy?
- Heat capacity?
- Magnetic susceptibility?
- Resistivity?

- The Kondo Effect
- The CFT Approach
- A Top-Down Holographic Model
- A Bottom-Up Holographic Model
- Summary and Outlook

Summary

What is the holographic dual of the Kondo effect?

Holographic superconductor in AdS_2 with a special boundary condition on the scalar coupled as a defect to a Chern-Simons gauge field in AdS_3

Outlook

- Multi-channel?
- Other impurity representations?
- Spin as global symmetry?
- Entanglement entropy?
- Quantum Quench?
- Multiple impurities?
- Suggestions welcome!

