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Motivation & Approach

Why return to the bootstrap?
1 Conformal symmetry very powerful tool that goes largely unused in D > 2.
2 Completely non-perturbative tool to study field theories

I Does not require SUSY, large N, or weak coupling.
3 In D = 2 conformal symmetry enhanced to Virasoro symmetry

I Allows us to completely solve some CFTs (c < 1).
4 Long term hope: generalize this to D > 2?

Approach
I Use only “global” conformal group, valid in all D.
I Our previous result:

I Constrained “landscape of CFTs” in D = 2, 3 using conformal bootstrap.
I Certain CFTs (e.g. Ising model) sit at boundary of solution space.

I New result: “solve” spectrum & OPE of CFTs (in any D) on boundary.
I Check against the D = 2 Ising model.

I The Future: Apply this to D = 3 Ising model?

2



Motivation & Approach

Why return to the bootstrap?
1 Conformal symmetry very powerful tool that goes largely unused in D > 2.
2 Completely non-perturbative tool to study field theories

I Does not require SUSY, large N, or weak coupling.
3 In D = 2 conformal symmetry enhanced to Virasoro symmetry

I Allows us to completely solve some CFTs (c < 1).
4 Long term hope: generalize this to D > 2?

Approach
I Use only “global” conformal group, valid in all D.
I Our previous result:

I Constrained “landscape of CFTs” in D = 2, 3 using conformal bootstrap.
I Certain CFTs (e.g. Ising model) sit at boundary of solution space.

I New result: “solve” spectrum & OPE of CFTs (in any D) on boundary.
I Check against the D = 2 Ising model.

I The Future: Apply this to D = 3 Ising model?

2



Motivation & Approach

Why return to the bootstrap?
1 Conformal symmetry very powerful tool that goes largely unused in D > 2.
2 Completely non-perturbative tool to study field theories

I Does not require SUSY, large N, or weak coupling.
3 In D = 2 conformal symmetry enhanced to Virasoro symmetry

I Allows us to completely solve some CFTs (c < 1).
4 Long term hope: generalize this to D > 2?

Approach
I Use only “global” conformal group, valid in all D.
I Our previous result:

I Constrained “landscape of CFTs” in D = 2, 3 using conformal bootstrap.
I Certain CFTs (e.g. Ising model) sit at boundary of solution space.

I New result: “solve” spectrum & OPE of CFTs (in any D) on boundary.
I Check against the D = 2 Ising model.

I The Future: Apply this to D = 3 Ising model?

2



Motivation & Approach

Why return to the bootstrap?
1 Conformal symmetry very powerful tool that goes largely unused in D > 2.
2 Completely non-perturbative tool to study field theories

I Does not require SUSY, large N, or weak coupling.
3 In D = 2 conformal symmetry enhanced to Virasoro symmetry

I Allows us to completely solve some CFTs (c < 1).
4 Long term hope: generalize this to D > 2?

Approach
I Use only “global” conformal group, valid in all D.
I Our previous result:

I Constrained “landscape of CFTs” in D = 2, 3 using conformal bootstrap.
I Certain CFTs (e.g. Ising model) sit at boundary of solution space.

I New result: “solve” spectrum & OPE of CFTs (in any D) on boundary.
I Check against the D = 2 Ising model.

I The Future: Apply this to D = 3 Ising model?

2



Outline

1 Motivation
2 The Ising Model
3 CFT Refresher
4 The Bootstrap & the Extremal Functional Method
5 Results: the 2d Ising model
6 The (Near) Future
7 Conclusions/Comments

3



The Ising model
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The Ising Model
Original Formulation

Basic Definition
I Lattice theory with nearest neighbor interactions

H = −J
∑
<i,j>

sisj

with si = ±1 (this is O(N) model with N = 1).

Relevance
I Historical: 2d Ising model solved exactly. [Onsager, 1944].
I Relation to E-expansion.
I “Simplest” CFT (universality class)
I Describes:

1 Ferromagnetism
2 Liquid-vapour transition
3 . . .
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The Ising Model
A Field Theorist’s Perspective

Continuum Limit
I To study fixed point can take continuum limit (and σ(x) ∈ R)

H =

∫
dDx

[
(∇σ(x))2 + t σ(x)2 + aσ(x)4]

I In D < 4 coefficient a is relevant and theory flows to a fixed point.

E-expansion
Wilson-Fisher set D = 4− E and study critical point perturbatively.
Setting E = 1 can compute anomolous dimensions in D = 3:

[σ] = 0.5→ 0.518 . . .

[ε] := [σ2] = 1→ 1.41 . . .

[ε′] := [σ4] = 2→ 3.8 . . .
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New Perspective

At fixed point conformal symmetry emerges:
I Strongly constrains data of theory.
I Can we use symmetry to fix e.g. [σ], [ε], [ε′], . . . ?
I Can we also fix interactions this way?
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CFT Refresher
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Conformal Symmetry in D > 2

Primary Operators
Conformal symmetry:

SO(1,D− 1)× R1,D−1︸ ︷︷ ︸
Poincare

+ D (Dilatations) + Kµ (Special conformal)

Highest weight representation built on primary operators O:

Primary operators: KµO(0) = 0
Descendents: Pµ1 . . .Pµn O(0)

All dynamics of descendants fixed by those of primaries.

Clarifications vs 2D
I Primaries O called quasi-primaries in D = 2.
I Descendents are with respect to “small” conformal group: L0,L±1.
I Example: Viraso descendents L−2O are primaries in our language.
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Spectrum and OPE
CFT Background

CFT defined by specifying:
I Spectrum S = {Oi} of primary operators dimensions, spins: (∆i, li)

I Operator Product Expansion (OPE)

Oi(x) · Oj(0) ∼
∑

k

Ck
ij D(x, ∂x)Ok(0)

Oi are primaries. Diff operator D(x, ∂x) encodes descendent contributions.

This data fixes all correlatiors in the CFT:
I 2-pt & 3-pt fixed:

〈OiOj〉 =
δij

x2∆i
, 〈OiOjOk〉 ∼ Cijk

I Higher pt functions contain no new dynamical info:

〈 O1(x1)O2(x2)︸ ︷︷ ︸∑
k Ck

12 D(x12,∂x2 )Ok(x2)

O3(x3)O4(x4)︸ ︷︷ ︸∑
l Cl

34 D(x34,∂x4 )(x3)Ol(x4)︸ ︷︷ ︸∑
k,l Ck

12Cl
34 D(x12,x34,∂x2 ,∂x4 )〈Ok(x2)Ol(x4)〉

〉
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conformal block
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Crossing Symmettry
CFT Background

This procedure is not unique: 〈φ1φ2φ3φ4〉

Consistency requires equivalence of two different contractions∑
k

Ck
12Ck

34 G12;34
∆k,lk

(u, v) =
∑

k

Ck
14Ck

23 G14;23
∆k,lk

(u, v)

Functions Gab;cd
∆k,lk

are conformal blocks (of “small” conformal group):
I Each G∆k,lk corresponds to one operator Ok in OPE.
I Entirely kinematical: all dynamical information is in Ck

ij.
I u, v are independent conformal cross-ratios: u = x12x34

x13x24
, v = x14x23

x13x24

I Crossing symmetry give non-perturbative constraints on (∆k,Ck
ij).
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CFT Background Recap

What have we learned so far:
1 CFTs completely specified by primary operator spectrum and OPE.

{∆i, li}, {Cijk} for all Oi

This data allows us to compute all correlators.
2 Constrained by crossing symmetry

3 Crossing symmetry equations is sum over primary operators Ok:∑
Ok

Ck
12Ck

34 G12;34
∆k,lk (u, v) =

∑
Ok

Ck
14Ck

23 G14;23
∆k,lk (u, v)

4 G∆k,lk (u, v) encode contribution of primary Ok and its decendents.
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How Strong is Crossing Symmetry?
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The “Landscape” of CFTs
Constraints from Crossing Symmetry

Constraining the spectrum

Figure : A Putative Spectrum in D = 3

Unitarity Bound

Gap
Ε

Σ

0 2 4
L0

1

2

3

4

5

6
D

I Unitarity implies:

∆ ≥ D− 2
2

(l = 0),

∆ ≥ l + D− 2 (l ≥ 0)

I “Carve” landscape of CFTs
by imposing gap in scalar
sector.

I Fix lightest scalar: σ.

I Vary next scalar: ε.

I Spectrum otherwise
unconstrained: allow any
other operators.
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Constraining Spectrum using Crossing Symmetry

Is crossing symmetry consistent with a gap?

σ four-point function: 〈σ1σ2σ3σ4〉

Crossing symmetric values of σ-ε

Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80
DΣ1.0

1.2

1.4

1.6

1.8

DΕ

Blue = solution may exists.
White = No solution exists.

I Certain values of σ, ε inconsistent with
crossing symmetry.

I Solutions to crossing:

1 white region⇒ 0 solutions.
2 blue region⇒∞ solutions.
3 boundary⇒ 1 solution (unique)!

I Ising model special in two ways:

1 On boundary of allowed region.
2 At kink in boundary curve.
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Solving CFTs on the boundary via Crossingy

Summarize Our Approach
Use the uniqueness of the boundary solution to compute OPE &
spectrum of a putative CFTs at any point on the boundary.

Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80
DΣ1.0

1.2

1.4

1.6

1.8

DΕ
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Implementing Crossing Symmetry
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Crossing Symmetry Nuts and Bolts
Bootstrap

So how do we enforce crossing symmetry in practice?

Consider four identical scalars: 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 dim(φ) = ∆φ

Recall crossing symmetry constraint:∑
Ok

(Ck
φφ)2 G12;34

∆k,lk
(x) =

∑
Ok

(Ck
φφ)2 G14;23

∆k,lk
(x)
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Express as sum of functions with positive coefficients:∑
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∑
Ok

(Ck
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pk

[G12;34
∆k,lk

(x)− G14;23
∆k,ll

(x)]︸ ︷︷ ︸
Fk(x)

= 0

Functions Fk(x) are formally infinite dimensional vectors.

p1 (F1,F′1,F
′′
1 , . . . )︸ ︷︷ ︸

~v1

+p2 (F2,F′2,F
′′
2 , . . . )︸ ︷︷ ︸

~v2

+p3 (F3,F′3,F
′′
3 , . . . )︸ ︷︷ ︸

~v3

+ · · · = ~0

1 Each vector~vk represents the contribution of an operator Ok.

2 If {~v1,~v2, . . . } span a positive cone there is no solution.
3 Efficient numerical methods to check if vectors~vk span a cone.

4

�� ��When cone “unfolds” solution is unique!

18



Crossing Symmetry Nuts and Bolts
Bootstrap

So how do we enforce crossing symmetry in practice?

Consider four identical scalars: 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 dim(φ) = ∆φ

∑
Ok

(Ck
φφ)2︸ ︷︷ ︸
pk

[G12;34
∆k,lk

(x)− G14;23
∆k,ll

(x)]︸ ︷︷ ︸
Fk(x)

= 0

Functions Fk(x) are formally infinite dimensional vectors.

p1 (F1,F′1,F
′′
1 , . . . )︸ ︷︷ ︸

~v1

+p2 (F2,F′2,F
′′
2 , . . . )︸ ︷︷ ︸

~v2

+p3 (F3,F′3,F
′′
3 , . . . )︸ ︷︷ ︸

~v3

+ · · · = ~0

1 Each vector~vk represents the contribution of an operator Ok.

2 If {~v1,~v2, . . . } span a positive cone there is no solution.
3 Efficient numerical methods to check if vectors~vk span a cone.

4

�� ��When cone “unfolds” solution is unique!

18



Cones in Derivative Space

�� ��Vectors form cone⇒ no solution.

No Solutions to Crossing

-0.6
-0.4

-0.2
0.0

0.2

-0.5

0.0

0.5

0.0

0.5

1.0 1 Axes are derivatives:

F′∆,l(x),F′′∆,l(x),F′′′∆,l(x)

2

�� ��Vectors represents operators

3 All operators lie inside half-space.
4 ~0 not in positive cone.
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Cones in Derivative Space

�� ��Cone “unfolds” giving unique solution.

Unique Solution to Crossing

-0.5
0.0

0.5

-0.5
0.0

0.5

0.0

0.5

1.0

1 Axes are derivatives:

F′∆,l(x),F′′∆,l(x),F′′′∆,l(x)

2

�� ��Vectors represents operators

3 Boundary of cone (red) spans a plane.
4 ~0 in span of red vectors.
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Cones in Derivative Space�� ��As more operators added solutions no longer unique.

Many Solutions to Crossing

-0.5
0.0

0.5

-0.5
0.0

0.5

1.0

-0.5

0.0

0.5

1.0

1 Axes are derivatives:

F′∆,l(x),F′′∆,l(x),F′′′∆,l(x)

2

�� ��Vectors represents operators

3 Vectors span full space.
4 Many ways to form ~0.
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Spectrum and OPE from crossing?
Checking the extremal functional method

20



How Powerful is Crossing Symmetry?

To check our technique lets apply to
2d Ising model.

I Same plot in 2d.

I Completely solvable theory.
I Using Virasoro symmetry

can compute full spectrum
& OPE.
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Can we reproduce using crossing symmetry & only “global” conformal group?
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Crossing Symmetry vs. Exact Results

Exact (Virasoro) results compared to unique solution at “kink” on boundary:

Spin 0

L Bootstrap Virasoro ∆ Error Bootstrap Virasoro OPE Error
∆ ∆ (in %) OPE OPE (in %)

0 1. 1 0.0000106812 0.500001 0.5 0.000140121
0 4.00145 4 0.03625 0.0156159 0.015625 0.0582036
0 8.035 8 0.4375 0.00019183 0.000219727 12.6962
0 12.175 12 1.45833 3.99524× 10−6 6.81196× 10−6 41.3496

Mileage from Crossing Symmetry?

I 12 OPE coefficients to < 1% error.

I Spectrum better:

1 In 2d Ising expect operators at L, L + 1, L + 4.
2 We find this structure up to L = 20
∼ 38 operator dimensions < 1% error!
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What about 3d Ising Model?
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Current “State-of-the-Art”

3d Ising model

Using E-expansion, Monte Carlo and other techniques find partial spectrum:

Field: σ ε ε′ Tµν Cµνρλ
Dim (∆): 0.5182(3) 1.413(1) 3.84(4) 3 5.0208(12)
Spin (l): 0 0 0 2 4

Only 5 operators and no OPE coefficients known for 3d Ising!

Lots of room for improvement!

Our Goal

Compute these anomolous dimensions (and many more) and OPE coefficients
using the bootstrap applied along the boundary curve.
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Spectrum of the 3d Ising Model
Computing 3d Spectrum from Boundary Functional?

A first problem: what point on the boundary? what is correct value of σ?

Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80
DΣ1.0

1.2

1.4

1.6

1.8

DΕ

Ising

0.510 0.515 0.520 0.525 0.530
DΣ1.38

1.39

1.40

1.41

1.42

1.43

1.44
DΕ

1 In D = 2 we know σ by other means.
2 “Kink” is not so sharp when we zoom in.
3 Gets sharper as we increase number of constraints

⇒ should taylor expand to higher order!
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Origin of the Kink
Re-arrangment of spectrum?

Spectrum near the kink undergoes rapid re-arrangement.

Plots for next Scalar and Spin 2 Field

Ising

0.50 0.52 0.54 0.56 0.58 0.60
DΣ3.0

3.5

4.0

4.5

5.0

5.5

6.0
DT '

Ising

0.50 0.52 0.54 0.56 0.58 0.60
DΣ2.0

2.5

3.0

3.5

4.0

4.5
DΕ'

1 “Kink” in (ε, σ) plot due to rapid rearrangement of higher dim spectrum.
2 Important to determine σ to high precision.
3 Does this hint at some analytic structure we can use?
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The Future
What’s left to do?

Honing in on the Ising model?
I Fix dimension of σ in 3d Ising using “kink” or other features.

I Use boundary functional to compute spectrum, OPE for 3d Ising.

I Compare with lattice or experiment!

I Additional constraints: add another correlator 〈σσεε〉.
I Study spectrum, OPE as a function of spacetime dimension.

Exploring the technology
I How specific is this structure to Ising model?

I Can we impose more constraints and find new “kinks” for other CFTs?

I Can any CFT be “solved” by imposing a few constraints (gaps) and then solving
crossing symmetry?

I What about SCFTs? Need to know structure of supersymmetric conformal blocks.
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The Future
What’s left to do?

More Questions/Thoughts
I Technology still begin refined⇒ lots to do!
I Why is Ising model on boundary? Why at a “kink”?
I Do these features have physical meanings or artifacts of method?
I Only just begun to take advantage of conformal symmetry in D > 2.

AdS/CFT Applications
I Generalized Free Field CFTs are dual to free (N ∼ ∞) fields in AdS

[Heemskerk et al, SE and Papadodimas]

I Higher spin GFFs are “multi-particle states” in bulk:

O ∼ φ∂{µ1 . . . ∂µn}φ

with ∆O = n + 2∆φ and ∆φ >
D−2

2 .

I Tentative result: Bound on gap for any spins is saturated by GFFs.

I If true then: leading 1/N2 always negative!
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Thanks
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