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The Fractional Quantum Hall Effect
I In systems with 2D electron gases, at very low temperatures,

high magnetic fields, clean samples :

[Tsui+Stoermer]



The Fractional Quantum Hall Effect

I FQHE states are gapped and incompressible states with
quantized Hall conductvitiy

σxy =
p
q

(
e2

h

)
, p,q ∈ Z , q odd

I Physics of pseudoparticle excitations invariant under Modular
Group Action : σ = σxy + iσxx

σ 7→ aσ + b
cσ + d

,

(
a b
c d

)
∈ Γ0(2) ⊂ SL(2,Z) , c even

Group action commuting with the RG flow implies that fixed
points are Γ0(2) invariants, structure imprinted on σ flows in
σxx − σxy plane

I Γ0(2) action maps between Phases of 2D Electron Gas
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The Fractional Quantum Hall Effect

[Burgess+Lutken 1997, Dolan 1999, Lutken+Ross 2009]



The Fractional Quantum Hall Effect

[S.S. Murzin et al 2002]



The Fractional Quantum Hall Effect

I Semicircle law: Conductivity sweeps out a semicircle in σ plane
during QH transitions [e.g. Burgess etal 1008.1917]

I Any p/q can be reached from the σ : 0→ 1 transition by a Γ0(2)

⇒ Selection Rule: p′q − pq′ = 1 [Dolan 1998]
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The Fractional Quantum Hall Effect

I QHL-QHI Transition: Bc is temperature independent and ρxx (Bc)
largely sample-independent

[cond-mat/9805143]

I Nonlinear inversion symmetry around critial point

I Simple scaling⇒ σ(T ,∆B,n, ...) = σ(∆B/Tκ,n/Tκ′ , ...)

I σxy : p
q →

p′

q′ is a 2nd order QPT : ξ ∼ |B − Bc|−νξ [Fisher ’90]

I Superuniversality: κ and κ′ are same for all transitions
I Experimentally: κ = κ′ = 0.42± 0.01 [Wanli et al 2009]

I CAN WE REPRODUCE THIS IN A SINGLE HOLOGRAPHIC
MODEL?
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SL(2,R) and Black Hole Charges
I The main idea of [1007.2490,1008.1917,WIP] is to use an

SL(2,R) or SL(2,Z) invariant gravity action. These groups act on
the electric and magnetic charges of the black hole solutions,
which label the QH plateaux with charge density and external
magnetic field. The filling fraction n/B inherits the group action,
as do the conductivity and other observables.

I The starting point of [1007.2490] is the SL(2,R) invariant action

S =

∫
d4x
√
−g
[
R − 2Λ− 1

2
(∂φ)2 − 1

2
e2φ(∂a)2 − 1

4
(e−φF 2 + aFF̃ )

]

I SL(2,R) acts as

τ = a + ie−φ = τ1 + iτ2 , τ → aτ + b
cτ + d

and

F → F ′ = (cτ1 + d)F − cτ2F̃
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SL(2,R) and Black Hole Charges
I We are interested in black branes , i.e. black holes with planar

(R2) horizon.

I If the space-time is ds2 = −A(z)dt2 + B(z)dz2 + C(z)d~x2 and
the black brane is purely electrically charged,

Fzt = A′t (z) = −
Qe
√

A(z)B(z)

C(z)Z (φ(z))
, Z (φ) = τ2 = e−φ ,

the SL(2,R) action generates dyonic black branes with [1007.2490]

Q′e = aQe , Q′m = cQe

N.B.: The metric is SL(2,R) invariant.

I Any filling fraction can be generated in this way:

ν =
Q′e
Q′m

=
a
c
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SL(2,R) and Black Hole Charges
I The electric solution flows in the IR to τ1∗ = 0 , τ2∗ = +∞, which

after SL(2,R) becomes τ ′1∗ = a
c and τ ′2∗ = τ2∗

−1 = 0. The filling
fraction in the IR is hence equal to the value of the (transformed)
axion

ν =
Q′e
Q′m

=
a
c

= τ ′1∗ ,

which can be roughly though of setting the Chern-Simons level
in the dual field theory. [1007.2490] .

I Are these black branes the QH plateaux?
Evidence 1: The attractor mechanism shows that these are the
unique IR attractors (in the absence of a potential V (a, φ)). The
effective potential

Veff =
(Qe −Qmτ1)2

τ2
+ Qmτ2

is minimized by either Qm = 0, τ2 →∞ (electric solution),
or by Qe = τ1Qm and τ2 = 0 (dyonic solution ).
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SL(2,R) and Black Hole AC Conductivities
I Evidence 2: Hall Conductivity [1007.2490] used the known AC

conductivity of the purely electric solution,

σxx = C′
T 2

µ2 + iC′′
µ

ω
+ ... , σyx = 0

and the action of SL(2,R) on the AC conductivity

σ± →
aσ± + b
cσ± + d

, σ± = σyx ± iσxx

to show that at low frequencies the AC conductivity of the dyonic
attractor solution behaves as

σ′yx =
a
c
(
1 + O(ω2)

)
, σ′xx =

16
i(Q′m)2C′′

ω

µ
(1 + O(ω)) .



SL(2,R) and Black Hole AC Conductivities
I Evidence 2: Hall Conductivity [1007.2490] used the known AC

conductivity of the purely electric solution,

σxx = C′
T 2

µ2 + iC′′
µ

ω
+ ... , σyx = 0

and the action of SL(2,R) on the AC conductivity

σ± →
aσ± + b
cσ± + d

, σ± = σyx ± iσxx

to show that at low frequencies the AC conductivity of the dyonic
attractor solution behaves as

σ′yx =
a
c
(
1 + O(ω2)

)
, σ′xx =

16
i(Q′m)2C′′

ω

µ
(1 + O(ω)) .

The Hall conductivity thus agrees with the filling fraction and
also with the attractor value of the axion in the IR. σxx has no
ω−1 pole and no delta function any more, as momentum is not
conserved in a magnetic field.



Summary: SL(2,R) invariant model of [1007.2490]
I We have seen that the model has attractor solutions with the

right filling fraction (if we restrict SL(2,R) to Γ0(2)) and Hall
conductivity . [1007.2490] .

I However, the DC conductivity does not show the features
expected from a QH plateaux:

1. There is no hard gap in the
charged excitations, i.e. σDC

does not vanish as e−
∆
T at

low temperatures (T � µ),
but as a power law.

2. Performing a SL(2,R) trafo
from one filling fraction to
another, σDC(T = 0) = 0
along the way, while the Hall
conductivity changes. This is
not the experimentally
observed behavior.
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Gapped Spectra in Charged Systems and the FQHE
[WIP with Elias Kiritsis, Matthew Lippert, Anastasios Taliotis]

I In string theory, SL(2,R) is usually broken to SL(2,Z) by stringy
or nonperturbative effects. This typically will generate a SL(2,Z)
invariant potential for the axio-dilaton (τ = τ1 + iτ2 = a + ieγφ)

S = M2
Pl

∫
d4x
√
−g
[
R − 1

2γ2
∂τ∂τ̄

τ2
2

+ V (τ, τ̄)− 1
4

(
τ2F 2 + τ1FF̃

)]

I A simple choice is the real-analytic Eisenstein series

V (τ, τ̄) = Es(τ, τ̄) =
∑

m,n∈Z2/0,0

(
|m + nτ |

τ2

)−s

I For large τ2 there is a expansion

Es = 2ζ(2s)τ s
2 +2
√
π

Γ(s − 1/2)

Γ(s)
ζ(2s−1)τ1−s

2 +instanton contributions
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Gapped Spectra in Charged Systems and the FQHE
I For large τ2 = eγφ there is a expansion

Es = 2ζ(2s)τ s
2 + 2

√
π

Γ(s − 1/2)

Γ(s)
ζ(2s − 1)τ1−s

2 + . . .

The system has two parameters, (γ, s). The leading behavior of
V for large τ2 is eγsφ, and falls into the general class of scaling
solutions of [1005.4690] with δ = −γs .
Depending on (γ, δ) the spectrum of charge excitations can be
discrete and gapped: (for ∆φ < 1)



Gapped Spectra in Charged Systems and the FQHE
I Imposing Gubser’s constraint, thermodynamic instability of small

black holes, consistency of the spin 1 fluctuation problem and
existence of a discrete and gapped spectrum narrows down the
allowed region:



Gapped Spectra in Charged Systems and the FQHE
I QH Plateaux? Since Es is SL(2,Z) invariant it has runaway

minima at τ1 = p
q , τ2 = 0, the images of the CDBH at τ2 =∞.

Their charges fulfill
Qe

Qm
=

p
q

= τ1∗ ,

and their metric and dilaton solution are known.

I RG Flows: Es is stationary in the fundamental domain at the
SL(2,Z) fixed points τ (1)

∗ = i , τ
(2)
∗ = e±2πi/3 :
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Gapped Spectra in Charged Systems and the FQHE
I Since SL(2,Z) commutes with the RG flow it suffices to construct

the RG flows inside the fundamental domain:



Gapped Spectra in Charged Systems and the FQHE
I By SL(2,Z) we can generate flows to any QH plateaux τ1 = p/q.

E.g. ν = 1 :



Gapped Spectra in Charged Systems and the FQHE
I Our flows are the IR scaling geometries of [1005.4690]



Gapped Spectra in Charged Systems and the FQHE
I Conductivities: At low enough temperatures the purely electric

state is discrete and gapped. Hence the conductivity at small ω
is dominated by the contribution from translation invariance:

σxx (ω) ' iC′′µ
ω + O(1) , σxy = 0

I We calculated the conductivity at small frequencies by
numerically solving the gauge field fluctuation equations in our
flow geometries. The appropriate (real) boundary conditions are
given by the Schrödinger problem

−Ψ′′(z) + c
z2 Ψ(z) = ω2Ψ(z) , c > 0 , z → 0+ .

We find Reσxx = C′′δ(ω) with C′′ = O(1) .

I Thus the QH plateaux have vanishing σxx (w.out the 1/ω pole),
and the correct Hall conductivity

σxy =
a
c

But are they gapped as well?
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Gapped Spectra in Charged Systems and the FQHE
I In electrically charged black branes (and with varying axion) a

consistent fluctuation Ansatz needs two gauge field fluctuations
Ax,y , sourcing two metric perturbations δgtx,y . One can use the
constraint equation [1005.4690] to decouple the metric from the
gauge field fluctuations by directly replacing δg′tx,y (r) in the
Maxwell equation.

I In dyonic solutions the equations can be decoupled into a single
second order equation after taking linear combinations [0910.0645]

Ez = ω(Ax + iAy ) + hgrr (δgx
t − iδgy

t ) .

I The fluctuations completely decouple

E ′′z + F (r)E ′z + G(r)Ez = w2H(r)Ez

I This is equivalent to the Schrödinger problem
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Gapped Spectra in Charged Systems and the FQHE
I For our choice of γ, s the potential

V (z,w) = 1
4

(
F 2 − 4

(G
H − w2

)
+ 2F ′

)
diverges in the IR. In the UV we can establish the existence of a
gap at small enough ω . E.g. Flow to τ = i :

w = 0 , w = 10−3 , w = 10−1 , w = 1



Gapped Spectra in Charged Systems and the FQHE
I The behaviour at w ≈ O(1) is more complicated:

Interpretation unclear so far



Gapped Spectra in Charged Systems and the FQHE
I There is little difference for the flows with varying axion:
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Conclusions
I Several holographic bottom-up models of the FQHE so far have

employed SL(2,R) transformations to infer the properties of the
QH state from an ungapped state at zero magnetic field. The
resulting QH state was ungapped. [1007.2490(,1008.1917)]

I We use a SL(2,Z) invariant Eisenstein potential which allows us
to tune the electric state to have a gapped and discrete charge
spectrum at low temperatures. We constructed the RG flows to
CDBHs in the fundamental domain, and hence all RG flows to
QH plateaux states, and showed that the QH states have the
correct Hall conductivity, and a real gap (no δ(ω) pole).

I Future Directions/Open Questions:

1. Interpretation of the two flows and UV fixed points, and
walking? Classify IR fixed points?

2. Transitions between QH Plateaux as a QPT?
3. How to break SL(2,Z)? Does this mimic impurities?
4. Phenomenology? Other subgroups such as Γ0(2)/Γθ(2)?

I STAY TUNED!
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SL(2,R) invariant probe branes [1008.1917]
I [Burgess etal 1008.1917] realized that the DC conductivity in the QH state

of [1007.2490] vanishes due to the momentum-conservation pole in
=σxx of the purely electric solution.

I They introduce dissipation by separating the sector that
generates the gravity background of [1007.2490] from the sector of
charge carriers, which they model using a SL(2,R) invariant
probe brane

S = M2
Pl

∫
d4x
√
−g
[
R − 2Λ− 1

2
(
(∂φ)2 + e2φ(∂a)2)]+

+M2
PlSLifshitz + Sgauge

The first two terms are assumed to be separately SL(2,R)
invariant, and SLifshitz to be chosen such as to generate the
metric of the z = 5 Lifshitz black hole of [1007.2490] , together with
an appropriate axio-dilaton profile.
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Backup Slides



SL(2,R) invariant probe branes [1008.1917]
I Sgauge is taken to be a SL(2,R) invariant version of the DBI

action, treated in the probe limit:

Sgauge = −T
∫

d4x
[√
−det

(
gµν + `2e−φ/2Fµν

)
−
√
−g
]

−1
4

∫
d4x
√
−gaFµν F̃µν

I This describes self-interacting charge carriers coupled to a large
reservoir of quantum critical excitations into which they can
loose energy via dissipation:
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SL(2,R) invariant probe branes [1008.1917]
I The method of [Karch, O’Bannon ’07] is used to calculate the

(nonlinear) DC conductivity in the purely electric background
solution

I The QH state conductivity is then inferred by a SL(2,R) (or a
subgroup such as Γ0(2)) transformation

σxx =
σ0

d2 + c2σ2
0
, σxy =

acσ2
0 + bd

d2 + c2σ2
0
,

with σ0(T/µ) the DC conductivity of the probe brane in the
purely electric state (with σyx = 0). For probe branes in Lifshitz
backgrounds like

ds2
z = L2

[
−h(r)

dt2

r2z +
dr2

r2h(r)
+

dx2 + dy2

r2

]
σ0 grows monotonically with falling temperature ∝ T−2/z , and
parametrizes the RG flow of the conductivity in the QH state.

I This temperature flow commutes with SL(2,R) or any subgroup.
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SL(2,R) invariant probe branes [1008.1917]
I The four parameters of the necessary SL(2,R) transformation

are fixed by the data of the endpoint (Q′e,Q′m,a,e−φ). The
temperature flow of the conductivities then trace out semi-circles
in the σ plane, and for small T asymptote to (in linear response)

σxx ∼ ρT 2/z

B2 → 0
σxy = ν = a

c

This also predicts the superuniversality exponents κ ≈ 2
z = κ′

close to the measured value if z = 5 as in [1007.2490] .
However there is still no hard gap. .
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