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In certain higher-derivative field theories scattering can take
place at a length scale r∗ much larger than the typical scale L∗ of
the nonrenormalizable terms in the Lagrangian.
(Dvali, GIudice, Gomez, Kehagias, Pirtskhalava, Grojean...)
The center-of-mass energy can be used to define the analogue
of the Schwarzschild radius: classicalization radius r∗.
If all scattering takes place at r∗ � L∗, the fundamental scale L∗

is irrelevant and no UV completion of the theory is needed.
I shall present a numerical study of the scenario in certain
higher-derivative theories.
Classical solutions that describe shock fronts may also be
relevant for scattering. These solutions also describe throats
connecting two branes.
The effective theory of embedded surfaces can be used in order
to reproduced the Galileon theory at low energies (de Rham,
Tolley).
Does this connection persist after renormalization?
There is a connection with asymptotic safety in gravity.
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Outline

Classical evolution in field-theoretical models: quartic, DBI.

Study of an idealized scattering process. Classicalization?

Classical solutions of higher-derivative theories that describe
surfaces embedded in Minkowski space.

Branes with throats or shock fronts. Classicalization?

Quantum evolution in a toy model.

Renormalization of theories that describe surfaces. Connection
with the Galileon theory and asymptotic safety.

N. Tetradis University of Athens

Higher-Derivative Scalar Theories



Introduction Classical models Exact analytical solutions Quantum toy model Renormalization and asymptotic safety

N. Brouzakis, J. Rizos, N. T.
arXiv:1109.6174 [hep-th] , Phys.Lett. B 708:170 (2012)

J. Rizos, N.T.
arXiv:1112.5546 [hep-th], JHEP 1204 (2012) 110

J. Rizos, N.T., G. Tsolias
arXiv:1206.3785 [hep-th]], JHEP 1208 (2012) 054

J. Rizos, N.T.
arXiv:1210.4730 [hep-th], JHEP 1302 (2013) 112

A. Codello, N.T., O. Zanusso, arXiv:1212.4073 [hep-th]

N.T., arXiv:1212.6528 [hep-th]

N. Tetradis University of Athens

Higher-Derivative Scalar Theories



Introduction Classical models Exact analytical solutions Quantum toy model Renormalization and asymptotic safety

Quartic model
Lagrangian density (δ1 = ±1)

L =
1
2

(∂µφ)2 − δ1
L4
∗

4

(

(∂µφ)2
)2
.

Equation of motion

∂µ
[

∂µφ
(

1 − δ1L4
∗
(∂νφ)2

)]

= 0.

Idealized scattering process: collapsing spherical wavepacket

φ0(t, r) =
A
r

exp

[

− (r + t − r0)
2

a2

]

.

Perturbation theory (Dvali, Pirtskhalava): strong deformation at
the classicalization radius

r∗ ∼ L∗

(

A2L∗/a
)1/3

.

We have r∗ � L∗ when the center-of-mass energy
√

s ∼ A2/a is
much larger than 1/L∗.

N. Tetradis University of Athens

Higher-Derivative Scalar Theories



Introduction Classical models Exact analytical solutions Quantum toy model Renormalization and asymptotic safety

Alternative point of view
With spherical symmetry, the equation of motion is (λ = δ1L4

∗
)

(

1 − 3λφ2
t + λφ2

r

)

φtt −
(

1 − λφ2
t + 3λφ2

r

)

φrr + 4λφrφt φtr

=
2φr

r

(

1 − λφ2
t + λφ2

r

)

.

This is a quasilinear second-order partial differential equation

A(φt , φr )φtt + B(φt , φr )φtr + C(φt , φr )φrr = D(φt , φr , r),

with discriminant

∆ =
1
4

(B2 − 4AC) = 3
(

1
3
− λφ2

t + λφ2
r

)

(

1 − λφ2
t + λφ2

r

)

.

∆ > 0: hyperbolic, ∆ = 0: parabolic, ∆ < 0: elliptic.
Hyperbolic equations admit wave-like solutions, while elliptic
ones do not support propagating solutions.
If A, B, C are evaluated for the unperturbed configuration, the
discriminant switches sign in the vicinity of the classicalization
radius. The equation is of mixed type.
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DBI model

Lagrangian density

L = −1
λ

√

1 − λ (∂µφ)
2
,

Equation of motion

∂µ

[

∂µφ/

√

1 − λ (∂νφ)2
]

= 0.

With spherical symmetry, the equation of motion is

(

1 + λφ2
r

)

φtt −
(

1 − λφ2
t

)

φrr − 2λφrφt φtr =
2φr

r

(

1 − λφ2
t + λφ2

r

)

.

Discriminant: ∆ = 1
4(B2 − 4AC) = 1 − λφ2

t + λφ2
r ≥ 0.

Local energy density: ρ =
1+λφ2

r

λ
√

1−λφ2
t +λφ2

r

− 1
λ .

The total energy is conserved during the evolution.
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Possible problems

At some stage the solution develops a shock front. From this
point on, the numerical integration cannot be continued, as the
evolution of the shock depends on additional physical
assumptions about its nature (discontinuities in the field
configuration, or its derivatives).

At some time a real solution ceases to exist within a certain range
of r . This possibility is also apparent in exact analytical solutions.

The equation of motion switches type within a range of r . When it
becomes elliptic, its solution requires (Dirichlet or Neumann)
boundary conditions on a closed contour. The scattering problem
that we are considering cannot provide such conditions, as it is
set up through Cauchly boundary conditions at the initial time.
Boundary conditions on a closed contour would require the
values of φ or its derivatives at times later than the time of
interest.
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Figure: The nonlinear wavepacket at various times (solid lines) vs. the linear
wavepacket (dotted lines), in the context of the DBI model with λ = 1. The
initial wavepacket has A = 20, a = 1. The vertical dashed line denotes the
classicalization radius.
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Figure: The derivatives φt (dashed) and φr (solid) of the nonlinear field, and
the discriminant ∆ (solid grey), at two different times, before and after the
crossing of the classicalization radius. The model is the DBI model with
λ = 1. The vertical dashed line denotes the classicalization radius.
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Figure: The nonlinear field φ (solid) and the product 4πr2ρ, with ρ the energy
density (dashed). The model is the DBI model with λ = 1. The vertical
dashed line denotes the classicalization radius. The energy density is
multiplied by 5 × 10−4.
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Figure: The derivative of the function g(r − t) appearing in the asymptotic
form φ(t , r) = g(r − t)/r . A good fit can be obtained with two terms of the
form A/(r − t + c)n, with n ∼ 3 − 5. The model is the DBI model with λ = 1.

N. Tetradis University of Athens

Higher-Derivative Scalar Theories



Introduction Classical models Exact analytical solutions Quantum toy model Renormalization and asymptotic safety

Features

The classicalization radius sets the scale for the onset of
significant deformations of a collapsing classical configuration
with large energy concentration in a central region.

Shock fronts develop during the scattering process at distances
comparable to the classicalization radius.

An observable feature of the classical evolution is the creation of
an outgoing field configuration that extends far beyond the
classicalization radius. However, the scattering during the
classical evolution seems to be minimal.

Within the DBI model (λ > 0) the collapsing wavepacket can
approach distances ∼ L∗ = λ1/4 before strong scattering
appears.

Within the ”wrong”-sign DBI model (λ < 0), the scattering
problem may not have real solutions over the whole space. What
happens in the quantum theory?
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Exact analytical solutions
Lagrangian density

L = −1
λ

√

1 − λ (∂µφ)2.

Static classicalons (c > 0):

φr = ± c√
r4 − λc2

.

λ < 0: Field configuration induced by a δ-function source
resulting from the concentration of energy around r = 0
(Dvali, Giudice, Gomez, Kehagias).
Similar to BIons (Gibbons).
λ > 0: The solutions have a square-root singluarity at
rs = λ1/4c1/2. They can be joined smoothly in a continuous
double-valued function of r for r ≥ rs: throat connecting two
(d − 1)-branes embedded in (d + 1)-dimensional Minkowski
space. The field φ corresponds to the Goldstone mode of the
broken translational invariance (Gibbons).

N. Tetradis University of Athens

Higher-Derivative Scalar Theories



Introduction Classical models Exact analytical solutions Quantum toy model Renormalization and asymptotic safety

Exact dynamical solutions φ = φ(z), with z = r2 − t2 , satisfying

dφ/dz = ± 1√
cz4 − 4λz

.

For both signs of λ, the solutions display square-root singularities
at z = 0 and at the value zs that satisfies z3

s = 4λ/c (c > 0).

For λ > 0, the singularity is located at r2
s = t2 + (4λ/c)1/3.

Shock fronts associated with meson production (Heisenberg).

They display strong scattering at a length scale ∼ (4λ/c)1/6.

The collapsing wavepacket of the numerical analysis does not
evolve into this type of solution. The general solution is very
sensitive to the initial conditions.
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Annihilating branes

By joining solutions with opposite signs, one can create evolving
networks of throats or wormholes, connecting two branes.

When the throat expands, the worldvolume of the part of the
branes that is eliminated reappears as energy distributed over
the remaining part of the branes.

The solutions can be generalized in the context of
higher-derivative effective actions that describe surfaces
embedded in Minkowski space.
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Brane effective action

Consider a (3+1)-dimensional surface (brane) embedded in
(4+1)-dimensional Minkowski space.
Induced metric in the static gauge: gµν = ηµν + ∂µπ ∂νπ

Iinduced extrinsic curvature: Kµν = −∂µ∂νπ/
√

1 + (∂π)2.
Leading terms in the effective action (de Rham, Tolley)

Sλ = −λ
∫

d4x
√−g = −λ

∫

d4x
√

1 + (∂π)2

SK = −M3
5

∫

d4x
√−g K = M3

5

∫

d4x
(

[Π] − γ2[φ]
)

SR = (M2
4/2)

∫

d4x
√−g R

= (M2
4/2)

∫

d4x γ
(

[Π]2 − [Π2] + 2γ2([φ2] − [Π][φ])
)

Notation: ηµν = diag(−1, 1, 1, 1), γ = 1/
√−g = 1/

√

1 + (∂π)2,
Πµν = ∂µ∂νπ, square brackets represent the trace,
[φn] ≡ ∂π · Πn · ∂π.
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Galileon theory

The Galileon theory can be obtained in the nonrelativistic limit
(∂π)2 � 1.

Terms involving second derivatives of the field, such as �π, are
not assumed to be small.

The action becomes

SNR =

∫

d4x

{

−λ
2

(∂π)2+
M3

5

2
(∂π)2

�π+
M2

4

4
(∂π)2 ((�π)2 − (∂µ∂νπ)2)

}

.

Invariant under δπ = c + vµxµ.

The term of highest order in the Galileon theory, omitted here,
can be obtained by including in the brane action the
Gibbons-Hawking-York term associated with the Gauss-Bonnet
term of (4 + 1)-dimensional gravity.
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Equations of motion

Brane theory

λγ
{

([Π] − γ2[φ]
}

− M3
5γ

2
{

[Π]2 − [Π2] + 2γ2
(

[φ2] − [Π][φ]
)

}

−M2
4

2 γ
3
{

[Π]3 + 2[Π3] − 3[Π][Π2]

+3γ2
(

2
(

[Π][φ2] − [φ3]
)

−
(

[Π]2 − [Π2]
)

[φ]
)

}

= 0.

Galileon theory

λ [Π] − M3
5

(

[Π]2 − [Π2]
)

− M2
4

2

(

[Π]3 + 2[Π3] − 3[Π][Π2]
)

= 0,

They have solutions of the form π = π(r2) and π = π(z) with
z = r2 − t2.
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Solutions

Brane theory
a) For M5 = M4 = 0 and c > 0

πz = ± c√
z4 − 4c2z

. (1)

b) For M4 = 0 and κ = 12M3
5/λ

πz = ±
√

2c
√

z4 + z3
√

z2 − 2κc − 8c2z − κc z2
. (2)

Galileon theory
For M4 = 0 and κ = 12M3

5/λ

πz =
1
κ

(

1 −
√

1 ± 2κc
z2

)

. (3)

N. Tetradis University of Athens

Higher-Derivative Scalar Theories



Introduction Classical models Exact analytical solutions Quantum toy model Renormalization and asymptotic safety

1 2 3 4
z

-2

-1

0

1

2
Πz

Figure: The solution πz = dπ/dz for:
a) The brane theory with M4 = M5 = 0 (blue).
b) The brane theory with M4 = 0, 12M3

5/λ = 1 (green).
c) The Galileon theory with M4 = 0, 12M3

5 /λ = 1 (red).
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The throat solutions of the DBI theory can be generalized to
solutions of the (quantum corrected) brane theory.

The Galileon theory reproduces correctly the shape of the
throats at large distances, but fails to do so at short distances.

Similar solutions exist in the context of the generalized Galileon
theory, and in particular in theories with kinetic gravity braiding.
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DBI model

L = − 1
λ

√

1 − λ (∂µφ)
2

Momentum conjugate to the field

π =
φ̇

√

1 − λφ̇2 + λ(~∇φ)2
, φ̇ = π

[

1 + λ(~∇φ)2

1 + λπ2

]1/2

.

A consistent classical evolution requires 1 + λπ2 > 0 and
1 + λ(~∇φ)2 > 0 for both signs of λ.
Hamiltonian density

H =
1
λ

[

(1 + λπ2)
(

1 + λ(~∇φ)2
)]1/2

.

The numerical integration of the equation of motion for the DBI
theory with λ = −1 breaks down when 1 + λφ2

r = 0 at some point
in space.

N. Tetradis University of Athens
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Figure: The Hamiltonian density for λ = −1, as a function of π and |~∇φ|.
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Quantum toy model

Analogue of the DBI model (δ = ±1)

L = −1
δ

√

1 − δ ẋ2 − 1
2
ω2x2

Equation of motion: ẍ + (1 − δ ẋ2)3/2 ω2x = 0.

Conserved energy: E = 1

δ
√

1−δ ẋ2
+ 1

2ω
2x2 = 1

δ + 1
2ω

2x2
0

δ = 1: Relativistic oscillator. Analogous to DBI model with λ > 0.

δ = −1: Analogous to ”wrong”-sign DBI model with λ < 0.
For x2

0 < 2/ω2 a real oscillating solution exists.
For x2

0 > 2/ω2 no real solution below x2 = x2
0 − 2/ω2, where ẋ

diverges. Energy cannot be conserved.

Similar situation in the ”wrong”-sign DBI model (λ < 0) when
1 + λφ2

r = 0.

N. Tetradis University of Athens
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Toy model (δ = −1):
Conjugate momentum: p = ẋ/

√
1 + ẋ2.

It has a maximum, equal to 1, obtained for ẋ → ∞.

Toy model Hamiltonian: H = −
√

1 − p2 + 1
2ω

2x2.

Compare with Hamiltonian density in the DBI model with λ = −1:

H = −
[

(1 − π2)
(

1 − (~∇φ)2
)]1/2

.

Solve the Schrödinger equation in momentum space with

Ĥ = −
√

1 − p2 − 1
2
ω2 d2

dp2 ,

requiring that the wavefunction ψ(p) vanishes outside the interval
[−1, 1].

Construct localized wavepackets and study their evolution in
x -space.

N. Tetradis University of Athens
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Figure: The potential for the solution of the Schrödinger equation in
momentum space and the wavefunctions of several energy eigenstates.
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Figure: The evolution of a wavepacket initially located at x0 = 15 (ω = 0.04).
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Figure: The decomposition of the wavepacket in terms of eigenstates of the
harmonic oscillator.
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Figure: The evolution of a wavepacket initially located at x0 = 40 (ω = 0.04).
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Figure: The decomposition of the wavepacket in terms of eigenstates of the
harmonic oscillator.
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Figure: The evolution of a spherical wavepacket initially located at r0 = 15
(ω = 0.04).
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Figure: The evolution of a spherical wavepacket initially located at r0 = 40
(ω = 0.04).
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Theories which may lack a UV completion, such as the
”wrong”-sign DBI theory, seem very interesting as well.

The quantum-mechanical toy model we studied gives some hints
on their properties.

The model has a fundamental length scale and all physical
states have momenta below the inverse of this scale.

”Scattering” within this model consists essentially of tunnelling
through a region that is classically forbidden.

The DBI theory with λ < 0 contains instanton-like configurations.
These are the classicalons of the Euclidean version of the theory.

It remains to be seen how these elements can be implemented
within a consistent quantum field theory.
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Brane effective action

Leading terms in the effective action (Euclidean space)

Sλ = µ
∫

d4x
√

g = µ
∫

d4x
√

1 + (∂π)2

Sν = ν
∫

d4x
√

g = −ν
∫

d4x
(

[Π] − γ2[φ]
)

Sκ = (κ/2)
∫

d4x
√

g K 2 = (κ/2)
∫

d4x
√

g
(

[Π] − γ2[φ]
)2

Sκ̄ = (κ̄/2)
∫

d4x
√

g R

= (κ̄/2)
∫

d4x γ
(

[Π]2 − [Π2] + 2γ2([φ2] − [Π][φ])
)

The first Gauss-Codazzi equation gives R = K 2 − K µνKµν .

The term Sκ becomes ∼ π�
2π in the nonrelativistic limit

(∂π)2 � 1. This term is not included in the Galileon theory.

N. Tetradis University of Athens

Higher-Derivative Scalar Theories



Introduction Classical models Exact analytical solutions Quantum toy model Renormalization and asymptotic safety

Renormalization

We use the Wilsonian (exact) renormalization group.

The evolution equations for the couplings take the form
∂tµk = kd

(4π)d/2Γ( d
2 +1)

2κk k2+µk
κk k2+µk

∂tνk = − kd

(4π)d/2Γ( d
2 +2)

d−2
2

(2κk k2+µk )νk

(κk k2+µk )2

∂tκk = 2kd

(4π)d/2Γ( d
2 +2)

{

d+4
4

(2κk k2+µk )κk

(κk k2+µk )2 + (d2
−2d+4)
d+4

(2κk k2+µk )ν2
k

(κk k2+µk )3

}

∂t κ̄k = kd

(4π)d/2Γ( d
2 +2)

{

d(d+2)
12

2κk k2+µk
(κk k2+µk )k2 − 16

d+4
(2κk k2+µk )ν2

k
(κk k2+µk )3

−
[

(d + 2)µk
k2 + 2dκk + 3(d−2)

2 κ̄k

]

2κk k2+µk
(κk k2+µk )2

}

.
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We can obtain the β-functions of κk , κ̄k for two-dimensional fluid
membranes for which the volume (now area) term is considered
subleading.

We set d = 2, µk = νk = 0 and obtain

∂tκk =
3

4π
, ∂t κ̄k = − 5

6π
. (4)

These expressions reproduce known results (Polyakov, Kleinert,
Forster) for the renormalization of the bending and Gaussian
rigidities of fluctuating membranes in a three-dimensional bulk
space.

A nonzero value of κ is generated at the quantum level with a
coefficient ∼ ν2. This corresponds to a term ∼ ν2π�

2π at one
loop in perturbation theory.

The analysis of quantum corrections within the Galileon theory
(Luty, Porrati, Rattazzi, Nicolis) indicates that the first correction
is ∼ ν2π�

4π . The difference lies in the regularization scheme.
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Consider the theory with d = 4, ν = κ = 0. It includes a
cosmological constant and an Einstein term.
Define the dimensionless cosmological and Newton’s constants
through

µk

k4 =
Λk

8πGk
,

κ̄k

k2 = − 1
8πGk

. (5)

Their scale dependence is given by

∂tΛk = −2Λk +
1

6π
Gk(3 − 2Λk ) (6)

∂tGk = 2Gk +
1

12π
G2

k

Λk
(3 − 4Λk ). (7)

This system of equations has two fixed points at which the
β-functions vanish:
a) the Gaussian one, at Λk = Gk = 0, and
b) a nontrivial one, at Λk = 9/8, Gk = 18π.
The flow diagram is very similar to that in the scenario of
asymptotic safety.
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Figure: The flow diagram.
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