Monte Carlo studies of the spontaneous rotational symmetry breaking in dimensionally reduced super Yang-Mills models

K. N. Anagnostopoulos¹ T. Azuma² J. Nishimura³

¹Department of Physics, National Technical University of Athens

²Institute for Fundamental Sciences, Setsunan University

³KEK Theory Center and SOKENDAI, Tsukuba

Crete 2013: Heraclion, June 14, 2013

Monte Carlo Simulations

Outline

2 Monte Carlo Simulations

- Phase Quenched Model
- Complex Action Problem
- The Factorization Method
- Simulations

Results

3 D

Outline

Monte Carlo Simulations

- Phase Quenched Model
- Complex Action Problem
- The Factorization Method
- Simulations

3 Results

4 Conclusions

E ► < E ►

IIB Matrix Model: Overview

- A non-perturbative definition of string theory in the large N limit
- A theory with only one scale, possibility to dynamically choose a unique vacuum
- Dynamical emergence of space-time and matter content
- Dynamical compactification of extra dimensions
- Tackle cosmological questions, like expansion of 3 + 1 dimensional space-time, resolution of cosmic singularity

The IKKT or IIB Matrix Model [Ithibashi, Kawat, Kitazawa, Tsuchiya hep-th/9612115]

$$Z = \int dA \, d\Psi \, e^{iS}$$

$$S = \underbrace{-\frac{1}{4g^2} \operatorname{tr}\left([A_{\mu}, A_{\nu}][A^{\mu}, A^{\nu}]\right)}_{=S_B} - \underbrace{\frac{1}{2g^2} \operatorname{tr}\left(\Psi_{\alpha}(\mathcal{C}\Gamma^{\mu})_{\alpha\beta}[A_{\mu}, \Psi_{\beta}]\right)}_{=S_F}.$$

 $A_{\mu}(\mu = 0, \dots, 9),$ $\Psi_{\alpha}(\alpha = 1, \dots, 16)$ (10D Majorana-Weyl spinor), $(A_{\mu})_{ij}, (\Psi_{\alpha})_{ij}, i, j = 1, \dots, N$ hermitian matrices.

- manifest SO(9,1) symmetry and SU(N) gauge invariance
- $\mathcal{N} = 2$ Supersymmetry

伺 ト イ ヨ ト イ ヨ ト

Relation to String Theory

• Matrix regularization of IIB string action in the large N limit:

$$\begin{split} S_{\text{Schild}} &= -\int d^2 \sigma \sqrt{g} \, \left(\frac{1}{4} \left\{ X_{\mu}(\sigma), X_{\nu}(\sigma) \right\}^2 + \frac{1}{2} \Psi(\sigma) \mathcal{C} \Gamma^{\mu} \left\{ X_{\mu}(\sigma), \Psi(\sigma) \right\} \right) \\ & X_{\mu}(\sigma) \to \left(A_{\mu} \right)_{ij} \qquad \Psi_{\alpha}(\sigma) \to \left(\Psi_{\alpha} \right)_{ij} \\ & \left\{ \cdot, \cdot \right\} \to -i \left[\cdot, \cdot \right] \qquad \int d^2 \sigma \, \sqrt{g} \to \text{tr} \end{split}$$

- non-commutative world sheet
- block structure in matrices \rightarrow second quantized string theory
- reproduce interaction between D-branes at one loop level
- loop equation for Wilson loops \rightarrow light cone IIB string field theory: $w(C) = \operatorname{tr} P \exp \left[i \int_C k^{\mu} A_{\mu} \right] \rightarrow \Psi \left[k(\cdot) \right]$

[Fukuma, Kawai, Kitazawa, Tsuchiya ('97)]

ロト (得) (き) (き)

$\mathcal{N} = 2$ Supersymmetry

$$\begin{cases} \delta^{(1)}A_{\mu} &= i\epsilon_{1}C\Gamma_{\mu}\Psi \\ \delta^{(1)}\Psi &= \frac{i}{2}\Gamma^{\mu\nu}[A_{\mu},A_{\nu}]\epsilon_{1} \end{cases} \begin{cases} \delta^{(2)}A_{\mu} &= 0 \\ \delta^{(2)}\Psi &= \epsilon_{2}\mathbf{1} \end{cases}$$

and bosonic symmetry

$$\begin{cases} \delta^{(1)}A_{\mu} &= c_{\mu} \\ \delta^{(1)}\Psi &= 0 \end{cases}$$

Generators: $Q^{(1)}, Q^{(2)}, P_{\mu}$ resp.

$$\begin{split} \tilde{Q}^{(1)} &= Q^{(1)} + Q^{(2)} , \qquad \tilde{Q}^{(1)} = i(Q^{(1)} - Q^{(2)}) \\ &[\epsilon_1 \mathcal{C} \tilde{Q}^{(i)}, \epsilon_2 \mathcal{C} \tilde{Q}^{(j)}] = -2\delta^{ij} \epsilon_1 \mathcal{C} \Gamma^{\mu} \epsilon_2 P_{\mu} \end{split}$$

Identify as D = 10, $\mathcal{N} = 2$ SUSY and P_{μ} as translations \Rightarrow eigenvalues of $A_{\mu} D = 10$ space-time coordinates [Aoki et al hep-th/9802985]

3 N A 3 N

Space–Time Interpretation

- non-commutative space-time [Iso,Kawai 99, Ambjørn,KNA,Bietenholz,Hotta,Nishimura et al 00]
- possibility of dynamical compactification of extra dimensions
- possibility of built-in mechanism that generates (3 + 1)-dim space-time

Emergence of (3 + 1) dimensional spacetime

- Simulations of Lorentzian model: no sign problem, introduce large scale cutoffs in $tr(A_0^2)$ and $tr(A_i^2)_{[Kim,Nishimura,Tsuchiya 1108.1540]}$
 - dynamical time from A^0 (SUSY crucial)
 - expanding 3+1 universe after a critical time
- classical, expanding solutions at late times [Kim,Nishimura,Tsuchiya 1110.4803,1208.0711]
- local field theory as fluctuations around classical solns representing commutative space-time [1208.4910]
- constructively realize chiral fermions at finite-N by imposing conditions on extra dims [1305.5547]

Euclidean Model

$$A_0 \rightarrow i A_{10} \qquad \Gamma^0 \rightarrow -i \Gamma^{10}$$

- SO(10) rotational symmetry
- Finite: quantum effects, despite flat directions

[Krauth,Nicolai,Staudacher 98, Austing, Wheater 01]

- Gaussian Expansion Method Calculations [Nishimura,Sugino 02, Kawai et.al. 03,06] show that: [Nishimura,Okubo,Sugino 1108.1293]
 - d = 3 configurations have lowest free energy
 - extent of the shrunken dimensions r is independent of d
 - the extent of the large dimensions *R* depends on *d* so that the 10 dimensional volume is a finite constant and independent of *d*:
 R^dr^{10-d} = l¹⁰
 - the ratio R/r remains finite in the large N limit

Dynamical compactification by SSB of SO(10) \rightarrow SO(3)

6 dimensional Euclidean model

- Need a simpler model to study the above results using Monte Carlo simulations
- D = 4 studied before, no SSB of SO(4) [Ambjørn,KNA,Bietenholz,Hotta,Nishimura et al 00]
- D = 6 the simplest model with SSB of SO(6):

$$Z = \int dA \, d\psi \, d\bar{\psi} \, \mathrm{e}^{-S_b - S_f}$$

$$S_b = -\frac{1}{4g^2} \operatorname{tr}[A_\mu, A_\nu]^2 \qquad S_f = -\frac{1}{2g^2} \operatorname{tr}\left(\bar{\psi}_\alpha(\Gamma_\mu)_{\alpha\beta}[A_\mu, \psi_\beta]\right)$$

- A_{μ} are $N \times N$, hermitian, traceless, vectors w.r.t. SO(6)
- $\psi_{\alpha}, \bar{\psi}_{\alpha}$ are $N \times N$, grassmannian entries, Weyl spinors w.r.t. SO(6)

Similar to D = 10: SO(6) rotational symmetry, $\mathcal{N} = 2$ SUSY, SU(N) symmetry

Dynamical Compactification

Order Parameter

$$T_{\mu\nu} = \frac{1}{N} \mathrm{tr} \left(A_{\mu} A_{\nu} \right)$$

• Eigenvalues of $T_{\mu\nu}$: $\lambda_n, n = 1, \dots, 6$

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_{10}$$

• Extended *d*-dimensions if e.g. in the *large N limit*

$$\langle \lambda_1 \rangle = \ldots = \langle \lambda_d \rangle \equiv R^2$$

Shrunk (6 - d)-dimensions if e.g.

$$\langle \lambda_{d+1} \rangle = \ldots = \langle \lambda_{10} \rangle \equiv r^2$$

• SSB of SO(6) invariance

$$\mathrm{SO}(6) \to \mathrm{SO}(d)$$

伺き くきき くきき

Gaussian Expansion Method (GEM) -Improved Mean Field Approximation

[P.M.Stevenson 81], [Kabat,Lifschytz,Lowe 00-02], [Nishimura,Sugino 01], [Kawai et.al. 02]

- a systematic expansion method to study non perturbative effects
- introduce Gaussian $S_0[M_\mu, A_{\alpha\beta}]$ where $M_\mu, A_{\alpha\beta}$ parameters

$$S = (S + S_0) - S_0 = (S_b + S_f + S_0) - S_0$$

$$S_0[M_{\mu}, \mathcal{A}_{\alpha\beta}] = M_{\mu} \operatorname{tr}(A_{\mu}^2) + \mathcal{A}_{\alpha\beta} \operatorname{tr}(\bar{\psi}_{\alpha}\psi_{\beta})$$

- expand $\tilde{S} = S_0 + \epsilon S_b + \sqrt{\epsilon} S_f$ w.r.t ϵ
- replace $M \to (1 \epsilon)M, A \to (1 \epsilon)A$
- reorganize series, truncate, set $\epsilon = 1$
- look for "plateaux" in parameter space $(M_{\mu}, \mathcal{A}_{\alpha\beta})$, in practice by solving

$$\frac{\partial F}{\partial M_{\mu}} = 0 \qquad \frac{\partial F}{\mathcal{A}_{\alpha\beta}} = 0$$

伺 ト イ ヨ ト イ ヨ ト

GEM results (Auyanna, Nishimura, Okuba (ar Niv; 1007.0883)

• parameter space is very large: simplify by considering SO(d) invariant ansätze, $2 \le d \le 5$

$$\langle \lambda_1 \rangle_{{
m SO}(d)} = \ldots = \langle \lambda_d \rangle_{{
m SO}(d)} = (R_d)^2$$

- compute free energy and observables at solutions in the large N limit
- compare free energy of ansätze, minimum free energy for the d = 3 ansatz, i.e. conclude SO(6) \rightarrow SO(3)
- The extent of the shrunken dimensions *r* ("compactification scale") is independent of *d*
- The extent of the large dimensions *R* depends on *d* so that the 6 dimensional volume is a finite constant and independent of *d*:

$$R^d r^{6-d} = \ell^6$$
 $r^2 \approx 0.223$ $\ell^2 \approx 0.627$

• The ratio R_d/r is finite

(in units where $g\sqrt{N} = 1$)

(1日) (日) (日)

Monte Carlo Simulations

Outline

2 Monte Carlo Simulations

- Phase Quenched Model
- Complex Action Problem
- The Factorization Method
- Simulations

∃ >

-

Monte Carlo Simulation(KNA, Azuma, Nishimura (unpublished))

Integrate out fermions first:

$$egin{aligned} Z &= \int dA dar{\psi} d\psi \, \mathrm{e}^{-S_b-S_f} = \int dA \, \mathrm{e}^{-S_b} \, Z_f[A] \ &Z_f[A] = \int dar{\psi} d\psi \, \mathrm{e}^{-S_f} = \det \mathcal{M} \end{aligned}$$

Monte Carlo simulations hard due to the strong complex action problem

$$\det \mathcal{M} = |\det \mathcal{M}| e^{\imath \Gamma} \qquad \text{is Complex}$$

-

Introduction Phase Monte Carlo Simulations Comp Results The Fa Conclusions Simula

Phase Quenched Model Complex Action Problem The Factorization Method Simulations

The Algorithm

Phase Quenched Model: ignore the phase $e^{i\Gamma}$

$$Z_0 = \int dA \, \mathrm{e}^{-S_0} \qquad S_0 = S_b - \log |\det \mathcal{M}|$$

Simulate using Rational Hybrid Monte Carlo: use rational approximation

$$x^{-1/2} \simeq a_0 + \sum_{k=1}^{Q} \frac{a_k}{x+b_k}$$

- increased accuracy and range of x requires higher Q
- coefficients a_k and b_k computed using Remez algorithm

[E. Remez 34, Clark and Kennedy 05 github.com/mikeaclark/AlgRemez]

Introduction Phase Q Monte Carlo Simulations Comple Results The Fac Conclusions Simulat

Phase Quenched Model Complex Action Problem The Factorization Method Simulations

The Algorithm

Define $\mathcal{D} = \mathcal{M}^{\dagger}\mathcal{M} \Rightarrow \det \mathcal{D}^{1/2} = |\det \mathcal{M}|$, then we can approximate

det
$$\mathcal{D}^{1/2} \simeq \int dF \, dF^* \, \mathrm{e}^{-S_{PF}[F,F^*,A]} \qquad (F_{\alpha})_{ij}$$
 pseudofermions

where

$$S_{PF}[F,F^*,A] = \operatorname{tr}\left\{a_0F^{\dagger}F + \sum_{k=1}^{Q}a_kF^{\dagger}(\mathcal{D}+b_k)^{-1}F\right\}$$

• spectrum of \mathcal{D} determines Q

• rescale A, F to adjust spectrum to desired range

Image: Image:

Introduction Pha Monte Carlo Simulations Co Results The Conclusions Sim

Phase Quenched Model Complex Action Problem The Factorization Method Simulations

The Algorithm

$$H = \frac{1}{2} \operatorname{tr} \Pi^2 + \operatorname{tr} \tilde{\Pi}^{\dagger} \tilde{\Pi} + S_{\text{eff}}[F, F^*, A]$$

where

$$S_{\rm eff}[F,F^*,A]=S_0[A]+S_{PF}[F,F^*,A]$$

- $\Pi^{\mu}_{ij} = (\Pi^*)^{\mu}_{ji}, \tilde{\Pi}^{\alpha}_{ij}$ canonical momenta of $((A_{\mu})_{ij}, (F_{\alpha})_{ij})$
- $\int d\tilde{\Pi} d\tilde{\Pi}^* d\Pi dF dF^* dA e^{-H} = \int dF dF^* dA e^{-S_{\text{eff}}}$
- τ -evolution according to eom preserve *H*:

$$\frac{dA_{\mu}}{d\tau} = \frac{\partial H}{\partial \Pi^{\mu}} = \Pi^{*}_{\mu} , \qquad \qquad \frac{dF_{\beta}}{d\tau} = \frac{\partial H}{\partial \tilde{\Pi}^{\beta}} = \tilde{\Pi}^{*}_{\beta} ,$$
$$\frac{d\Pi^{\mu}}{d\tau} = -\frac{\partial H}{\partial A_{\mu}} = -\frac{\partial S_{\text{eff}}}{\partial A_{\mu}} , \qquad \qquad \frac{d\tilde{\Pi}^{\beta}}{d\tau} = -\frac{\partial H}{\partial F_{\beta}} = -\frac{\partial S_{\text{eff}}}{\partial F_{\beta}}$$

Image: Image:

Introduction Phase Monte Carlo Simulations Comp Results The F Conclusions Simul

Phase Quenched Model Complex Action Problem The Factorization Method Simulations

The Algorithm

- Discretize eom: $\tau_f = N_{\tau} \Delta \tau$
- Discretization errors: ΔH ~ O(Δτ²). To maintain detailed balance condition use a Metropolis accept/reject decision. Acceptance rate depends on ΔH, tune parameters in order to maximize acc. ratio and minimize autocorrelation times.
- Main part of computational effort: terms $(\mathcal{D} + b_k)^{-1}F$. Replace by solutions χ of $(\mathcal{D} + b_k)\chi_k = F$
- Use conjugate gradient method for the smallest of b_k 's. $(\mathcal{O}(N^3)$ ops if cleverly done)
- Use multimass Krylov solvers for other b_k ($\mathcal{O}(Q)$ gain).
- Conjugate gradient method needs $\mathcal{O}(N^2)$ iterations to converge. (instead of $\mathcal{O}(1)$ in typical LQCD)

Results

- In the large–*N* limit $\langle \lambda_1 \rangle_0 = \ldots = \langle \lambda_6 \rangle_0 = \ell^2 \approx 0.627$ consistent with GEM result
- No SO(6) SSB ⇒ phase fluctuations are important in inducing SSB as expected

∃ ► < ∃ ►</p>

Phase Quenched Model Complex Action Problem The Factorization Method Simulations

Complex Action Problem

$$Z = \int dA \, \mathrm{e}^{-S_0} \, \mathrm{e}^{\imath \Gamma} \qquad Z_f[A] = |\mathrm{det} \, \mathcal{M}| \, \, \mathrm{e}^{\imath \Gamma}$$

- no ordinary Monte Carlo importance sampling possible: not a positive definite probability measure
- A serious and important technical problem
 - Lattice QCD at high T/finite μ [1302.3028]
 - Lattice QCD with θ -vacua [0803.1593]
 - Real time QFT [hep-lat/0609058]
 - Electron structure calculation [PRL 71(93)1148, J.Chem.Phys 102,4495+109,6219]
 - Repulsive Hubbard model [PRB 41(90) 9301]
 - Nuclear shell model [Phys.Repts. 278(97)1]
 - Polymer theory [Phys.Repts. 336(00)167]

Phase Quenched Model Complex Action Problem The Factorization Method Simulations

Complex Action Problem

Possible approach: use the phase quenched model $Z_0 = \int dA e^{-S_0}$:

$$\langle \lambda_n
angle = rac{\langle \lambda_n \, \mathrm{e}^{\imath \Gamma}
angle_0}{\langle \mathrm{e}^{\imath \Gamma}
angle_0}$$

- ⟨e^{iΓ}⟩₀ decreases as e^{-N²Δf} ~ Z/Z₀, Δf > 0. Need O(e^{cN²}) statistics for given accuracy goal.
- Overlap problem: distribution of sampled configs in Z₀ has exponentially small overlap with Z

Dominant configurations determined by competition of entropy, action and phase fluctuations.

(口) (同) (同) (同)

Introduction Ph Monte Carlo Simulations Co Results Th Conclusions Sir

Phase Quenched Model Complex Action Problem The Factorization Method Simulations

Factorization Method (KNA, Nishimura 01)

$$\tilde{\lambda}_n = \frac{\lambda_n}{\langle \lambda_n \rangle_0}$$

• $\langle \tilde{\lambda}_n \rangle_0 \equiv 1$, deviation from 1 is the effect of the phase

• Consider the distribution functions

$$\rho(x_1,\ldots,x_6) = \left\langle \prod_{k=1}^6 \delta(x_k - \tilde{\lambda}_k) \right\rangle \qquad \rho^{(0)}(x_1,\ldots,x_6) = \left\langle \prod_{k=1}^6 \delta(x_k - \tilde{\lambda}_k) \right\rangle_0$$

• Consider the ensemble

$$Z_{x_1,\ldots,x_6} = \int dA \, \mathrm{e}^{-S_0[A]} \prod_{k=1}^6 \delta(x_k - \tilde{\lambda}_k)$$

then $\rho(x_1, \ldots, x_6) = \frac{1}{C} \rho^{(0)}(x_1, \ldots, x_6) w(x_1, \ldots, x_6)$ where $w(x_1, \ldots, x_6) = \langle e^{i\Gamma} \rangle_{x_1, \ldots, x_6}$ $C = \langle e^{i\Gamma} \rangle_0$ not needed in the calculation.

Introduction Phas Monte Carlo Simulations Com Results The Conclusions Simu

Phase Quenched Model Complex Action Problem The Factorization Method Simulations

Factorization Method

$$\langle \tilde{\lambda}_n \rangle = \int \prod_{k=1}^6 dx_k \, x_n \, \rho(x_1, \dots, x_6)$$

• In the large-*N* limit, dominating configs determined by minimum of the "free energy":

$$\mathcal{F}(x_1, \dots, x_6) = -\frac{1}{N^2} \log \rho(x_1, \dots, x_6)$$

= $-\frac{1}{N^2} \log \rho^{(0)}(x_1, \dots, x_6) - \frac{1}{N^2} \log w(x_1, \dots, x_6) + \frac{1}{N^2} \log C$

• The minimum is determined by solutions of

$$\frac{1}{N^2}\frac{\partial}{\partial x_n}\log\rho^{(0)}(x_1,\ldots,x_6) = -\frac{\partial}{\partial x_n}\frac{1}{N^2}\log w(x_1,\ldots,x_6) \quad \text{for} \quad n=1,\ldots$$

Phase Quenched Model Complex Action Problem The Factorization Method Simulations

Factorization Method

$$\frac{1}{N^2}\frac{\partial}{\partial x_n}\log\rho^{(0)}(x_1,\ldots,x_6)=-\frac{\partial}{\partial x_n}\frac{1}{N^2}\log w(x_1,\ldots,x_6)\quad\text{for}\quad n=1,\ldots,6$$

- each function has a well defined large-N limit
- dominating solution can be used as an *estimator* of $\langle \tilde{\lambda}_n \rangle$
- no need to know $\rho(x_1, \ldots, x_6)$ everywhere to compute $\langle \tilde{\lambda}_n \rangle$
- RHS has complex action problem but scales fast with increasing $N \Rightarrow$ extrapolation to larger N
- errors do not propagate exponentially with *N* as with a naive large *N* extrapolation

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Phase Quenched Model Complex Action Problem The Factorization Method Simulations

Factorization Method

- key in using the method: find the right observables to constrain
- determine the ones that are strongly correlated with the phase expectation values of all others computed at the saddle point solution: no sign problem! [KNA,Azuma,Nishimura 1009,4504,1108.1534]
- *d*-dimensional configs: $d = 6 \Rightarrow \det \mathcal{M} \in \mathbb{C}, d = 5 \Rightarrow \det \mathcal{M} \in \mathbb{R}, (\mathbb{R}_+ \text{ dominates at large } N)$ $d = 4, 3 \Rightarrow \det \mathcal{M} \in \mathbb{R}_+, d \le 2 \Rightarrow \det \mathcal{M} = 0$
- phase is stationary w.r.t. perturbations around d < 6 configs [Nishimura, Vernizzi 00]
- strong evidence that $\lambda_1, \ldots, \lambda_6$ found to be the only ones strongly correlated with the phase: our choice for studying their distribution functions [1009.4504]

Strong complex phase fluctuations play central role in the SSB mechanism

[Nishimura, Vernizzi 00, KNA, Nishimura 01]

・ロト ・四ト ・ヨト ・ヨト

Introduction Phase Que Monte Carlo Simulations Complex A Results Conclusions Simulation

Complex Action Problem The Factorization Method Simulations

Simplifications

- hard to solve the saddle point equations in full 6D parameter space
- we study SO(d) symmetric vacua $2 \le d \le 5$, compare to GEM $x_1 = \ldots = x_d > 1 > x_{d+1} = \ldots = x_6$
- we find that large evs, when sufficiently large, decorrelate from the phase
 - \Rightarrow omit large evs from $\rho(x_1, \ldots, x_6)$
- we find that small evs to acquire the same value in the large-*N* limit \Rightarrow omit smallest evs from $\rho(x_1, \dots, x_6)$

Therefore, in order to study the SO(*d*) vacuum, consider only $\rho(x_{d+1})$

・ロト ・ (日) ・ (日) ・ (日)

Observables

We take n = d + 1 for the SO(*d*) vacuum

• Define $w_n(x) = \langle e^{i\Gamma} \rangle_{n,x}$ w.r.t $Z_{n,x} = \int dA \ e^{-S_0[A]} \ \delta(x - \tilde{\lambda}_n)$

• Define
$$\rho_n^{(0)}(x) = \langle \delta(x - \tilde{\lambda}_n) \rangle_0$$

• Let \bar{x}_n be the solution to the saddle point equation

$$\frac{1}{N^2} f_n^{(0)}(x) \equiv \frac{1}{N^2} \frac{d}{dx} \log \rho_n^{(0)}(x) = -\frac{d}{dx} \frac{1}{N^2} \log w_n(x)$$

in the x < 1 region. Then we define the estimator

$$\langle \tilde{\lambda}_n \rangle_{\mathrm{SO}(d)} = \bar{x}_n , \qquad n = d+1$$

< ∃ > < ∃ >

Observables

Given \bar{x}_n we also use the estimators

•
$$\langle \tilde{\lambda}_k \rangle_{\mathrm{SO}(d)} = \langle \tilde{\lambda}_k \rangle_{n,\bar{x}_n}$$

Compute free energy

$$\mathcal{F}_{SO(d)} = \int_{\bar{x}_n}^1 \frac{1}{N^2} f_n^{(0)}(x) dx - \frac{1}{N^2} \log w_n(\bar{x}_n) , \text{ where } n = d+1$$

By computing $\mathcal{F}_{SO(d)}$ for different *d* we can in principle determine the true vacuum

Simulations

We simulate the system

$$Z_{n,V} = \int dA \, e^{-S_0[A] - V(\lambda_n[A])} , \quad V(z) = \frac{1}{2} \, \gamma \, (z - \xi)^2$$

•
$$\gamma$$
 large enough $e^{-V} \to \delta(x - \tilde{\lambda}_n)$

- $\bullet\,$ in practice, we make sure that results are independent of $\gamma\,$
- study the distribution function

$$\rho_{n,V}(x) = \left\langle \delta(x - \tilde{\lambda}_n) \right\rangle_{n,V} \propto \rho_n^{(0)}(x) \exp\left\{-V\left(x \left\langle \lambda_n \right\rangle_0\right)\right\}$$

⊒▶ ∢ ⊒≯

Simulations

Simulations

• position of the peak of $\rho_{n,V}(x)$ solution of

$$0 = \frac{d}{dx} \log \rho_{n,V}(x) = f_n^{(0)}(x) - \langle \lambda_n \rangle_0 V'(x \langle \lambda_n \rangle_0)$$

• we take the peak sharp and use

$$x_p = \langle \tilde{\lambda}_n \rangle_{n,V}$$

• we define the estimators

$$\begin{split} w_n(x_{\rm p}) &= \langle \cos \Gamma \rangle_{n,V} , \\ f_n^{(0)}(x_{\rm p}) &= \langle \lambda_n \rangle_0 \, V' \left(\langle \lambda_n \rangle_{n,V} \right) = \gamma \langle \lambda_n \rangle_0 \left(\langle \lambda_n \rangle_{n,V} - \xi \right) \, . \end{split}$$

• γ too small, distribution of $\tilde{\lambda}_n$ wide, large error in $\langle \tilde{\lambda}_n \rangle_{n,V}$ γ too large, small error in $\langle \tilde{\lambda}_n \rangle_{n,V}$ propagates by factor of γ to $f_n^{(0)}(x_p)$ $(\langle \tilde{\lambda}_n \rangle_{n,V} - \xi \sim 1/\gamma)$

Monte Carlo Simulations	
	Simulations

Simulations

- It is possible to compute $f_n^{(0)}(x)$, $w_n(x)$ for x suppressed by many orders of magnitude in Z_0
- $w_n(x)$ hard due to the complex action problem, but

$$\Phi_n(x) = \lim_{N \to \infty} \frac{1}{N^2} \log w_n(x)$$

scales for small enough N

- $f_n^{(0)}(x)$, $w_n(x)$ computed by interpolation or fits. Fitting functions determined by simple scaling arguments for small x
- We find that the function $f_n^{(0)}(x)$ scales as $\frac{1}{N}f_n^{(0)}(x)$ for $x \ge 0.4$, but as $\frac{1}{N^2}f_n^{(0)}(x)$ for smaller *x*. Need to subtract the $\mathcal{O}(1/N)$ finite size effects in the calculations.

Outline

Introduction

Monte Carlo Simulation

- Phase Quenched Model
- Complex Action Problem
- The Factorization Method
- Simulations

3 Results

4 Conclusions

E ► < E ►

$$\langle \tilde{\lambda}_n \rangle$$

Compute the solution to $\frac{1}{N^2} f_n^{(0)}(x) = -\Phi'(x)$ (after subtracting finite size effects): Compare to the GEM result $r^2/\ell^2 \approx 0.223/0.627 = 0.355$

 $\langle \tilde{\lambda}_3 \rangle_{SO(2)} = \bar{x}_3 = 0.31(1) \qquad \langle \tilde{\lambda}_4 \rangle_{SO(3)} = \bar{x}_4 = 0.35(1)$

$$\langle \tilde{\lambda}_n \rangle$$

Compute the solution to $\frac{1}{N^2} f_n^{(0)}(x) = -\Phi'(x)$ (after subtracting finite size effects): Compare to the GEM result $r^2/\ell^2 \approx 0.223/0.627 = 0.355$

 $\langle \tilde{\lambda}_5 \rangle_{SO(4)} = \bar{x}_5 = 0.34(2) \qquad \langle \tilde{\lambda}_6 \rangle_{SO(5)} = \bar{x}_6 = 0.36(3)$

Constant volume property

 $\langle \lambda_k \rangle_{\text{SO}(d)}, k \neq n = d + 1$, is estimated from $\langle \lambda_k \rangle_{x_p} = \langle \lambda_k \rangle_{n,V}$ In order to minimize the finite size effects, we compute

$$L_n^2(x) = \left(\prod_{k=1}^6 \langle \lambda_k \rangle_{n,x}\right)$$

and find that $L_n^2(x) \approx \ell^2 \approx 0.627$ for 0.5 < x < 1

Free Energy

Hard!

After subtracting finite size effects, we fit $\frac{1}{N^2} f_n^{(0)}(x) = p_n e^{-q_n x}$. Attempt e.g. to substitute in $\mathcal{F}_{SO(d)} = \int_{\bar{x}_n}^1 \frac{1}{N^2} f_n^{(0)}(x) dx - \frac{1}{N^2} \log w_n(\bar{x}_n)$ for $\bar{x}_n \approx 0.355$. Still working!! TBA...

Outline

Introduction

Monte Carlo Simulation

- Phase Quenched Model
- Complex Action Problem
- The Factorization Method
- Simulations

3 Results

E ► < E ►

Conclusions

- Simulation from first principles 6D version of IIB matrix model
- Complex action problem very strong, use factorization method successfully
- Computed numerically the maxima of λ_n distributions and estimated $\langle \lambda_n \rangle$ for SO(*d*) vacua
- Large-*N* and small-*x* scaling properties of distribution functions play important role in the calculation
- Short distance, non-perturbative, dynamics of eigenvalues of matrices *A* play crucial role in determining *r*
- Results are consistent with GEM prediction $R^d r^{6-d} = \ell^6$, $r^2 \approx 0.223$, $\ell^2 \approx 0.627$
- Consistent with the GEM scenario of dynamical compactification with SSB of $SO(6) \rightarrow SO(3)$
- Consistent with (euclidean) spacetime having volume independent of d and R/r finite

2

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト

K. N. Anagnostopoulos, T. Azuma, J. Nishimura MC Simulation of a SUSY Matrix Model...