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IIB Matrix Model: Overview

A non-perturbative definition of string theory in the large N limit
A theory with only one scale, possibility to dynamically choose a
unique vacuum
Dynamical emergence of space–time and matter content
Dynamical compactification of extra dimensions
Tackle cosmological questions, like expansion of 3 + 1 dimensional
space–time, resolution of cosmic singularity
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The IKKT or IIB Matrix Model [Ishibashi,Kawai,Kitazawa,Tsuchiya hep-th/9612115]

Z =

∫
dA dΨ eiS

S = − 1
4g2 tr ([Aµ,Aν ][Aµ,Aν ])︸ ︷︷ ︸

=SB

− 1
2g2 tr (Ψα(CΓµ)αβ [Aµ,Ψβ ])︸ ︷︷ ︸

=SF

.

Aµ(µ = 0, . . . , 9),
Ψα(α = 1, . . . , 16) (10D Majorana-Weyl spinor),
(Aµ)ij, (Ψα)ij, i, j = 1, . . . ,N hermitian matrices.

manifest SO(9,1) symmetry and SU(N) gauge invariance
N = 2 Supersymmetry
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Relation to String Theory

Matrix regularization of IIB string action in the large N limit:

SSchild = −
∫

d2σ
√

g
(

1
4
{Xµ(σ),Xν(σ)}2

+
1
2

Ψ(σ)CΓµ {Xµ(σ),Ψ(σ)}
)

Xµ(σ)→ (Aµ)ij Ψα(σ)→ (Ψα)ij

{·, ·} → −ı [·, ·]
∫

d2σ
√

g→ tr

non-commutative world sheet
block structure in matrices→ second quantized string theory
reproduce interaction between D-branes at one loop level
loop equation for Wilson loops→ light cone IIB string field theory:
w(C) = trP exp

[
ı
∫

C kµAµ
]
→ Ψ [k(·)]

[Fukuma, Kawai, Kitazawa, Tsuchiya (’97)]
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N = 2 Supersymmetry

{
δ(1)Aµ = iε1CΓµΨ
δ(1)Ψ = i

2 Γµν [Aµ,Aν ]ε1

{
δ(2)Aµ = 0
δ(2)Ψ = ε21

and bosonic symmetry {
δ(1)Aµ = cµ1
δ(1)Ψ = 0

Generators: Q(1), Q(2), Pµ resp.

Q̃(1) = Q(1) + Q(2) , Q̃(1) = i(Q(1) − Q(2))

[ε1CQ̃(i), ε2CQ̃(j)] = −2δijε1CΓµε2Pµ

Identify as D = 10, N = 2 SUSY and Pµ as translations⇒ eigenvalues of
Aµ D = 10 space-time coordinates [Aoki et al hep-th/9802985]
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Space–Time Interpretation

4d (large)

(small)6d

non-commutative space–time [Iso,Kawai 99, Ambjørn,KNA,Bietenholz,Hotta,Nishimura et al 00]

possibility of dynamical compactification of extra dimensions
possibility of built-in mechanism that generates (3 + 1)-dim space-time
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Emergence of (3 + 1) dimensional spacetime

Simulations of Lorentzian model: no sign problem, introduce large scale
cutoffs in tr(A2

0) and tr(A2
i )[Kim,Nishimura,Tsuchiya 1108.1540]

dynamical time from A0 (SUSY crucial)
expanding 3+1 universe after a critical time

classical, expanding solutions at late times [Kim,Nishimura,Tsuchiya 1110.4803,1208.0711]

local field theory as fluctuations around classical solns representing
commutative space-time [1208.4910]

constructively realize chiral fermions at finite-N by imposing conditions on
extra dims [1305.5547]
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Euclidean Model

A0 → iA10 Γ0 → −iΓ10

SO(10) rotational symmetry
Finite: quantum effects, despite flat directions
[Krauth,Nicolai,Staudacher 98, Austing, Wheater 01]

Gaussian Expansion Method Calculations [Nishimura,Sugino 02, Kawai et.al. 03,06]

show that: [Nishimura,Okubo,Sugino 1108.1293]

d = 3 configurations have lowest free energy
extent of the shrunken dimensions r is independent of d
the extent of the large dimensions R depends on d so that the 10
dimensional volume is a finite constant and independent of d:
Rdr10−d = l10

the ratio R/r remains finite in the large N limit

Dynamical compactification by SSB of SO(10)→SO(3)

K. N. Anagnostopoulos, T. Azuma, J. Nishimura MC Simulation of a SUSY Matrix Model...
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6 dimensional Euclidean model

Need a simpler model to study the above results using Monte Carlo
simulations
D = 4 studied before, no SSB of SO(4) [Ambjørn,KNA,Bietenholz,Hotta,Nishimura et al 00]

D = 6 the simplest model with SSB of SO(6):

Z =

∫
dA dψ dψ̄ e−Sb−Sf

Sb = − 1
4g2 tr[Aµ,Aν ]2 Sf = − 1

2g2 tr
(
ψ̄α(Γµ)αβ [Aµ, ψβ ]

)
Aµ are N × N, hermitian, traceless, vectors w.r.t. SO(6)
ψα,ψ̄α are N × N, grassmannian entries, Weyl spinors w.r.t. SO(6)

Similar to D = 10:
SO(6) rotational symmetry, N = 2 SUSY, SU(N) symmetry
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Dynamical Compactification

Order Parameter
Tµν =

1
N

tr (AµAν)

Eigenvalues of Tµν : λn, n = 1, . . . , 6

λ1 ≥ λ2 ≥ . . . ≥ λ10

Extended d–dimensions if e.g. in the large N limit

〈λ1〉 = . . . = 〈λd〉 ≡ R2

Shrunk (6− d)–dimensions if e.g.

〈λd+1〉 = . . . = 〈λ10〉 ≡ r2

SSB of SO(6) invariance

SO(6)→ SO(d)
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Gaussian Expansion Method (GEM) -
Improved Mean Field Approximation

[P.M.Stevenson 81], [Kabat,Lifschytz,Lowe 00-02], [Nishimura,Sugino 01],[Kawai et.al. 02]

a systematic expansion method to study non perturbative effects
introduce Gaussian S0[Mµ,Aαβ ] where Mµ,Aαβ parameters

S = (S + S0)− S0 = (Sb + Sf + S0)− S0

S0[Mµ,Aαβ ] = Mµtr(A2
µ) +Aαβ tr(ψ̄αψβ)

expand S̃ = S0 + ε Sb +
√
ε Sf w.r.t ε

replace M → (1− ε)M, A → (1− ε)A
reorganize series, truncate, set ε = 1
look for “plateaux” in parameter space (Mµ,Aαβ), in practice by
solving

∂F
∂Mµ

= 0
∂F
Aαβ

= 0

K. N. Anagnostopoulos, T. Azuma, J. Nishimura MC Simulation of a SUSY Matrix Model...
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GEM results[Aoyama, Nishimura, Okubo (arXiv:1007.0883)]

parameter space is very large: simplify by considering SO(d) invariant
ansätze, 2 ≤ d ≤ 5

〈λ1〉SO(d) = . . . = 〈λd〉SO(d) = (Rd)2

compute free energy and observables at solutions in the large N limit
compare free energy of ansätze, minimum free energy for the d = 3
ansatz, i.e. conclude SO(6)→ SO(3)
The extent of the shrunken dimensions r (“compactification scale”) is
independent of d
The extent of the large dimensions R depends on d so that the 6
dimensional volume is a finite constant and independent of d:

Rdr6−d = `6 r2 ≈ 0.223 `2 ≈ 0.627

The ratio Rd/r is finite

(in units where g
√

N = 1)
K. N. Anagnostopoulos, T. Azuma, J. Nishimura MC Simulation of a SUSY Matrix Model...
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Monte Carlo Simulation[KNA, Azuma, Nishimura (unpublished)]

Integrate out fermions first:

Z =

∫
dAdψ̄dψ e−Sb−Sf =

∫
dA e−Sb Zf [A]

Zf [A] =

∫
dψ̄dψ e−Sf = detM

Monte Carlo simulations hard due to the strong complex action problem

detM = | detM| eıΓ is Complex

K. N. Anagnostopoulos, T. Azuma, J. Nishimura MC Simulation of a SUSY Matrix Model...
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The Algorithm

Phase Quenched Model: ignore the phase eıΓ

Z0 =

∫
dA e−S0 S0 = Sb − log |detM|

Simulate using Rational Hybrid Monte Carlo: use rational approximation

x−1/2 ' a0 +

Q∑
k=1

ak

x + bk

increased accuracy and range of x requires higher Q

coefficients ak and bk computed using Remez algorithm
[E. Remez 34, Clark and Kennedy 05 github.com/mikeaclark/AlgRemez]

K. N. Anagnostopoulos, T. Azuma, J. Nishimura MC Simulation of a SUSY Matrix Model...
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The Algorithm

Define D =M†M⇒ detD1/2 = | detM|, then we can approximate

detD1/2 '
∫

dF dF∗ e−SPF[F,F∗,A] (Fα)ij pseudofermions

where

SPF[F,F∗,A] = tr

{
a0F†F +

Q∑
k=1

akF†(D + bk)
−1F

}

spectrum of D determines Q

rescale A,F to adjust spectrum to desired range

K. N. Anagnostopoulos, T. Azuma, J. Nishimura MC Simulation of a SUSY Matrix Model...
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The Algorithm

H =
1
2

trΠ2 + trΠ̃†Π̃ + Seff[F,F∗,A]

where
Seff[F,F∗,A] = S0[A] + SPF[F,F∗,A]

Πµ
ij = (Π∗)µji , Π̃α

ij canonical momenta of ((Aµ)ij, (Fα)ij)∫
dΠ̃dΠ̃∗dΠdFdF∗dA e−H =

∫
dFdF∗dAe−Seff

τ -evolution according to eom preserve H:

dAµ
dτ

=
∂H
∂Πµ

= Π∗µ ,
dFβ
dτ

=
∂H
∂Π̃β

= Π̃∗β ,

dΠµ

dτ
= − ∂H

∂Aµ
= −∂Seff

∂Aµ
,

dΠ̃β

dτ
= − ∂H

∂Fβ
= −∂Seff

∂Fβ

K. N. Anagnostopoulos, T. Azuma, J. Nishimura MC Simulation of a SUSY Matrix Model...
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The Algorithm

Discretize eom: τf = Nτ∆τ

Discretization errors: ∆H ∼ O(∆τ 2). To maintain detailed balance
condition use a Metropolis accept/reject decision. Acceptance rate
depends on ∆H, tune parameters in order to maximize acc. ratio and
minimize autocorrelation times.
Main part of computational effort: terms (D + bk)

−1F. Replace by
solutions χ of (D + bk)χk = F

Use conjugate gradient method for the smallest of bk’s.
(O(N3) ops if cleverly done)
Use multimass Krylov solvers for other bk (O(Q) gain).
Conjugate gradient method needs O(N2) iterations to converge.
(instead of O(1) in typical LQCD)

K. N. Anagnostopoulos, T. Azuma, J. Nishimura MC Simulation of a SUSY Matrix Model...
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In the large–N limit 〈λ1〉0 = . . . = 〈λ6〉0 = `2 ≈ 0.627
consistent with GEM result
No SO(6) SSB⇒ phase fluctuations are important in inducing SSB as
expected
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Complex Action Problem

Z =

∫
dA e−S0 eıΓ Zf [A] = |detM| eıΓ

no ordinary Monte Carlo importance sampling possible: not a positive
definite probability measure
A serious and important technical problem

Lattice QCD at high T/finite µ [1302.3028]

Lattice QCD with θ-vacua [0803.1593]

Real time QFT [hep-lat/0609058]

Electron structure calculation [PRL 71(93)1148, J.Chem.Phys 102,4495+109,6219]

Repulsive Hubbard model [PRB 41(90) 9301]

Nuclear shell model [Phys.Repts. 278(97)1]

Polymer theory [Phys.Repts. 336(00)167]
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Complex Action Problem

Possible approach: use the phase quenched model Z0 =
∫

dA e−S0 :

〈λn〉 =
〈λn eıΓ〉0
〈eıΓ〉0

〈eıΓ〉0 decreases as e−N2∆f ∼ Z/Z0, ∆f > 0.
Need O(ecN2

) statistics for given accuracy goal.
Overlap problem: distribution of sampled configs in Z0 has
exponentially small overlap with Z

Dominant configurations determined by competition of entropy, action and
phase fluctuations.
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Factorization Method [KNA, Nishimura 01]

λ̃n =
λn

〈λn〉0

〈λ̃n〉0 ≡ 1, deviation from 1 is the effect of the phase
Consider the distribution functions

ρ(x1, . . . , x6) =

〈
6∏

k=1

δ(xk − λ̃k)

〉
ρ(0)(x1, . . . , x6) =

〈
6∏

k=1

δ(xk − λ̃k)

〉
0

Consider the ensemble

Zx1,...,x6 =

∫
dA e−S0[A]

6∏
k=1

δ(xk − λ̃k)

then ρ(x1, . . . , x6) = 1
C ρ

(0)(x1, . . . , x6) w(x1, . . . , x6)
where w(x1, . . . , x6) = 〈eiΓ〉x1,...,x6

C = 〈eiΓ〉0 not needed in the calculation.
K. N. Anagnostopoulos, T. Azuma, J. Nishimura MC Simulation of a SUSY Matrix Model...



Introduction
Monte Carlo Simulations

Results
Conclusions

Phase Quenched Model
Complex Action Problem
The Factorization Method
Simulations

Factorization Method

〈λ̃n〉 =

∫ 6∏
k=1

dxk xn ρ(x1, . . . , x6)

In the large-N limit, dominating configs determined by minimum of the
“free energy”:

F(x1, . . . , x6) = − 1
N2 log ρ(x1, . . . , x6)

= − 1
N2 log ρ(0)(x1, . . . , x6)− 1

N2 log w(x1, . . . , x6) +
1

N2 log C

The minimum is determined by solutions of

1
N2

∂

∂xn
log ρ(0)(x1, . . . , x6) = − ∂

∂xn

1
N2 log w(x1, . . . , x6) for n = 1, . . . , 6

K. N. Anagnostopoulos, T. Azuma, J. Nishimura MC Simulation of a SUSY Matrix Model...
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Factorization Method

1
N2

∂

∂xn
log ρ(0)(x1, . . . , x6) = − ∂

∂xn

1
N2 log w(x1, . . . , x6) for n = 1, . . . , 6

each function has a well defined large-N limit
dominating solution can be used as an estimator of 〈λ̃n〉
no need to know ρ(x1, . . . , x6) everywhere to compute 〈λ̃n〉
RHS has complex action problem but scales fast with increasing N ⇒
extrapolation to larger N

errors do not propagate exponentially with N as with a naive large N
extrapolation

K. N. Anagnostopoulos, T. Azuma, J. Nishimura MC Simulation of a SUSY Matrix Model...
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Factorization Method

key in using the method: find the right observables to constrain
determine the ones that are strongly correlated with the phase
expectation values of all others computed at the saddle point solution:
no sign problem! [KNA,Azuma,Nishimura 1009.4504,1108.1534]

d-dimensional configs:
d = 6⇒ detM∈ C, d = 5⇒ detM∈ R, (R+ dominates at large N)
d = 4, 3⇒ detM∈ R+, d ≤ 2⇒ detM = 0
phase is stationary w.r.t. perturbations around d < 6 configs
[Nishimura, Vernizzi 00]

strong evidence that λ1, . . . , λ6 found to be the only ones strongly
correlated with the phase: our choice for studying their distribution
functions [1009.4504]

Strong complex phase fluctuations play central role in the SSB mechanism
[Nishimura, Vernizzi 00, KNA, Nishimura 01]

K. N. Anagnostopoulos, T. Azuma, J. Nishimura MC Simulation of a SUSY Matrix Model...
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Simplifications

hard to solve the saddle point equations in full 6D parameter space
we study SO(d) symmetric vacua 2 ≤ d ≤ 5, compare to GEM
x1 = . . . = xd > 1 > xd+1 = . . . = x6

we find that large evs, when sufficiently large, decorrelate from the
phase
⇒ omit large evs from ρ(x1, . . . , x6)

we find that small evs to acquire the same value in the large-N limit
⇒ omit smallest evs from ρ(x1, . . . , x6)

Therefore, in order to study the SO(d) vacuum, consider only ρ(xd+1)

K. N. Anagnostopoulos, T. Azuma, J. Nishimura MC Simulation of a SUSY Matrix Model...
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Observables

We take n = d + 1 for the SO(d) vacuum
Define wn(x) = 〈eiΓ〉n,x w.r.t Zn,x =

∫
dA e−S0[A] δ(x− λ̃n)

Define ρ(0)
n (x) = 〈δ(x− λ̃n)〉0

Let x̄n be the solution to the saddle point equation

1
N2 f (0)

n (x) ≡ 1
N2

d
dx

log ρ(0)
n (x) = − d

dx
1

N2 log wn(x)

in the x < 1 region. Then we define the estimator

〈λ̃n〉SO(d) = x̄n , n = d + 1

K. N. Anagnostopoulos, T. Azuma, J. Nishimura MC Simulation of a SUSY Matrix Model...
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Observables

Given x̄n we also use the estimators
〈λ̃k〉SO(d) = 〈λ̃k〉n,̄xn

Compute free energy

FSO(d) =

∫ 1

x̄n

1
N2 f (0)

n (x)dx− 1
N2 log wn(x̄n) , where n = d + 1

By computing FSO(d) for different d we can in principle determine the true
vacuum

K. N. Anagnostopoulos, T. Azuma, J. Nishimura MC Simulation of a SUSY Matrix Model...
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Simulations

We simulate the system

Zn,V =

∫
dA e−S0[A]−V(λn[A]) , V(z) =

1
2
γ (z− ξ)2

γ large enough e−V → δ(x− λ̃n)

in practice, we make sure that results are independent of γ
study the distribution function

ρn,V(x) =
〈
δ(x− λ̃n)

〉
n,V
∝ ρ(0)

n (x) exp {−V (x 〈λn〉0)}

K. N. Anagnostopoulos, T. Azuma, J. Nishimura MC Simulation of a SUSY Matrix Model...
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Simulations

position of the peak of ρn,V(x) solution of

0 =
d
dx

log ρn,V(x) = f (0)
n (x)− 〈λn〉0 V ′ (x 〈λn〉0)

we take the peak sharp and use

xp = 〈λ̃n〉n,V

we define the estimators

wn(xp) = 〈cos Γ〉n,V ,

f (0)
n (xp) = 〈λn〉0 V ′ (〈λn〉n,V) = γ〈λn〉0 (〈λn〉n,V − ξ) .

γ too small, distribution of λ̃n wide, large error in 〈λ̃n〉n,V
γ too large, small error in 〈λ̃n〉n,V propagates by factor of γ to f (0)

n (xp)

(〈λ̃n〉n,V − ξ ∼ 1/γ

K. N. Anagnostopoulos, T. Azuma, J. Nishimura MC Simulation of a SUSY Matrix Model...
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Simulations

It is possible to compute f (0)
n (x), wn(x) for x suppressed by many orders

of magnitude in Z0

wn(x) hard due to the complex action problem, but

Φn(x) = lim
N→∞

1
N2 log wn(x)

scales for small enough N

f (0)
n (x), wn(x) computed by interpolation or fits. Fitting functions

determined by simple scaling arguments for small x

We find that the function f (0)
n (x) scales as 1

N f (0)
n (x) for x & 0.4, but as

1
N2 f (0)

n (x) for smaller x. Need to subtract the O(1/N) finite size effects
in the calculations.

K. N. Anagnostopoulos, T. Azuma, J. Nishimura MC Simulation of a SUSY Matrix Model...
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Compute the solution to 1
N2 f (0)

n (x) = −Φ′(x) (after subtracting finite size
effects): Compare to the GEM result r2/`2 ≈ 0.223/0.627 = 0.355

〈λ̃3〉SO(2) = x̄3 = 0.31(1) 〈λ̃4〉SO(3) = x̄4 = 0.35(1)
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〈λ̃n〉
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Compute the solution to 1
N2 f (0)

n (x) = −Φ′(x) (after subtracting finite size
effects): Compare to the GEM result r2/`2 ≈ 0.223/0.627 = 0.355

〈λ̃5〉SO(4) = x̄5 = 0.34(2) 〈λ̃6〉SO(5) = x̄6 = 0.36(3)
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Constant volume property
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〈λk〉SO(d), k 6= n = d + 1, is estimated from 〈λk〉xp = 〈λk〉n,V
In order to minimize the finite size effects, we compute

L2
n(x) =

(
6∏

k=1

〈λk〉n,x

) 1
6

and find that L2
n(x) ≈ `2 ≈ 0.627 for 0.5 < x < 1
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Free Energy
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Hard!
After subtracting finite size effects, we fit 1

N2 f (0)
n (x) = pne−qnx.

Attempt e.g. to substitute in FSO(d) =
∫ 1

x̄n

1
N2 f (0)

n (x)dx− 1
N2 log wn(x̄n) for

x̄n ≈ 0.355. Still working!! TBA...
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Conclusions

Simulation from first principles 6D version of IIB matrix model
Complex action problem very strong, use factorization method
successfully
Computed numerically the maxima of λn distributions and estimated
〈λn〉 for SO(d) vacua
Large-N and small-x scaling properties of distribution functions play
important role in the calculation
Short distance, non-perturbative, dynamics of eigenvalues of matrices A
play crucial role in determining r
Results are consistent with GEM prediction Rdr6−d = `6, r2 ≈ 0.223,
`2 ≈ 0.627
Consistent with the GEM scenario of dynamical compactification with
SSB of SO(6)→SO(3)
Consistent with (euclidean) spacetime having volume independent of d
and R/r finite
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