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L Goal

=
= We investigate cosmological
scenarios in a universe governed by

f('T) gravity

= Note:

A consistent or interesting cosmology
iS not a proof for the consistency of
the underlying gravitational theory

B




L Jalk Plan

L T
= 1) Introduction: Gravity as a gauge theory, modified Gravity

= 2) Teleparallel Equivalent of General Relativity and f(T) modification
= 3) Perturbations and growth evolution
= 4) Bounce in f(T) cosmology

= 5) Non-minimal scalar-torsion theory
= 6) Black-hole solutions
= /) Solar system constraints

= 8) Conclusions-Prospects
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L |Introduction
h
=1 DA
[

Einstein 1916: General Relativity:

energy-momentum source of spacetime Curvature
Levi-Civita connection: Zero Torsion

= Einstein 1928: Teleparallel Equivalent of GR:
Weitzenbock connection: Zero Curvature

= Einstein-Cartan theory: energy-momentum

source of Curvature, spin source of Torsion
[Hehl, Von Der Heyde, Kerlick, Nester Rev.Mod.Phys.48]
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-

L |Introduction

= Gauge Principle: global symmetries replaced by
local ones:

The group generators give rise to the compensating
fields

It works perfect for the standard model of strong,
weak and E/M interactions

SU(3) x SU(2) x U(1)
= Can we apply this to gravity?
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L gintroduction
L -
= Formulating the gauge theory of gravity

(mainly after 1960):
= Start from Special Relativity
—> Apply (Weyl-Yang-Mills) gauge principle to its Poincareé-
group symmetries
—> Get Poinare gauge theory:
Both curvature and torsion appear as field strengths

= Jorsion is the field strength of the translational group
(Teleparallel and Einstein-Cartan theories are subcases of Poincaré theory)
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=

L |Introduction

2
= One could extend the gravity gauge group (SUSY,
conformal, scale, metric affine transformations)

obtaining SUGRA, conformal, Weyl, metric affine
gauge theories of gravity

= In all of them torsion is always related to the gauge
structure.

= Thus, a possible way towards gravity quantization
would need to bring torsion into gravity description.

7
E.N.Saridakis — Crete, May 2013



L 3 Introduction

=1
s 1998: Universe acceleration

—>Thousands of work in Modified Gravity

(f(R), Gauss-Bonnet, Lovelock, nonminimal scalar coupling,

nonminimal derivative coupling, Galileons, Hordenski etc)
[Copeland, Sami, Tsujikawa Int.J.Mod.Phys.D15], [Nojiri, Odintsov Int.J.Geom.Meth.Mod.Phys. 4]

= Almost all in the curvature-based formulation of gravity
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L |Introduction

=1
s 1998: Universe acceleration

—>Thousands of work in Modified Gravity

(f(R), Gauss-Bonnet, Lovelock, nonminimal scalar coupling,

nonminimal derivative coupling, Galileons, Hordenski etc)
[Copeland, Sami, Tsujikawa Int.J.Mod.Phys.D15], [Nojiri, Odintsov Int.J.Geom.Meth.Mod.Phys. 4]

= Almost all in the curvature-based formulation of gravity

= S0 question: Can we modify gravity starting from its
torsion-based formulation?
torsion —  gauge ? = quantization
modification = full theory ? = quantization
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- L g Teleparallel Equivalent of General Relativity (TEGR)
i

.‘ Let’s start from the simplest tosion-based gravity formulation,
namely TEGR:

= Vierbeins e : four linearly independent fields in the tangent space
g,uv(x) — 77AB eﬁ(x) eE(X)

s Use curvature-less Weitzenbock connection instead of torsion-less
. . . A A A
Levi-Civita one: T’ =€xd,8

= Torsion tensor:
A _ 7MW} AW _ A A A inctai o i
Tﬂv = rvﬂ — Fﬂv =€) (aﬂev _ @Veﬂ) [Einstein 1928], [Pereira: Introduction to TG]
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b L g Teleparallel Equivalent of General Relativity (TEGR)
i

.‘ Let’s start from the simplest tosion-based gravity formulation,
namely TEGR:

= Vierbeins e : four linearly independent fields in the tangent space
A B
g,uv(x) — 77AB e,u(x) ev (X)
s Use curvature-less Weitzenbock connection instead of torsion-less
. . . A A A
Levi-Civita one: T =€xd,8l
m Jorsion tensor:
A 7A{W} AW} A4 A A
TW = FW —FW = eA(aﬂeV —aveﬂ)

= Lagrangian (imposing coordinate, Lorentz, parity invariance, and up to 2" order
in torsion tensor)

1_., 1, | " Completely equivalent with
L=T= ZT T ET Toup =TT, GR at the level of equations

[Einstein 1928], [Hayaski,Shirafuji PRD 19], [Pereira: Introduction to TG] 11
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b L g f(T) Gravity and f(T) Cosmology

i
-‘f(T) Gravity: Simplest torsion-based modified gravity

= Generalize T to f(T) (inspired by f(R))

1
162G

= Equations of motion:

S —

Id“x e [T+ f(T)]+S. [Bengochea, Ferraro PRD 79], [Linder PRD 82]

e0, (eefS N1+ f, ) —eiT/S! + €450, (T) fry — % ey[T + f(T)] = 42Ge, T+
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b L g f(T) Gravity and f(T) Cosmology

i
-‘f(T) Gravity: Simplest torsion-based modified gravity

= Generalize T to f(T) (inspired by f(R))

1
162G

= Equations of motion:

S = Id4X e [T+ f(T)]+S, [Bengochea, Ferraro PRD 79], [Linder PRD 82]

e0,(eerS N1+ f, )—eiT/S! + €450, (T) frr —%e;ﬂ' + f(T)] = 42Gef T/EW
s f(T) Cosmology: Apply in FRW geometry:
e’ =diag(l,a,a,a) = ds® =dt® —a’(t)s;dx'dx’ (notunique choice)

= Friedmann equations:

sz%pm_%_zfﬂ_p = Find easily
T = —6H?
__ AnG(Pw + Pn)
1+ f, —12H%f,, 3
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L g f(T) Cosmology: Background
= Effective Dark Energy sector:

pDE_87ZG|: 6 ' 3 T:|
f—TFf +2T%f,,
[+ f, +2TF ][ f —2TF.]

[Linder PRD 82]

WDE

= Interesting cosmological behavior: Acceleration, Inflation etc
= At the background level indistinguishable from other dynamical DE models
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A L 2 f(T) Cosmology: Perturbations

|
= Can I find imprints of f(T) gravity? Yes, but need to go to perturbation level
el =6.1+y), el =Sa(l—¢) = ds®=(1+2y)dt*> —a’*@1—2¢)5,;dx dx’

y7;

= Obtain Perturbation Equations:

LH.S=RH.S

[Chen, Dent, Dutta, Saridakis PRD 83],

L.H.S=R.H.S [Dent, Dutta, Saridakis JCAP 1101]

m

Prm

= Focus on growth of matter overdensity 9 = go to Fourier modes:

3H(L+ f, —12H2f, J, +[(BH? +k? /@) A+ f,) —36H* ., 4, +42Gp, 5, =0

[Chen, Dent, Dutta, Saridakis PRD 83]
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|f(T) Cosmology: Perturbations
-

-‘Application: Distinguish f(T) from quintessence
1) Reconstruct f(T) to coincide with a given quintessence scenario:

10

[ |
Yo,
f(H)=162GH |-—2dH +CH
H 2
[Dent, Dutta, Saridakis JCAP 1101]
-10°
10"}
-10%
---C,,=0
A0l -~ Cy,=10
—41n2
------- Cc,=10
—1n3
o C,=10 |
10° 10° 10
T

with 2o =4"/2+V(#) and H=J_T/6

-0.9; ‘ ,
—w[Exponential]
‘ ---C, =0
-0.92 M
\ -.-.CM—10
. T — 2
-0.94- | CM 10
c,=10°
= -0.96/ M
-0.98+
-1r
-1.02 : : :
10° 10' 10° 10°
1+z 16
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b g f(T) Cosmology: Perturbations
ml § e .
= Application: Distinguish f(T) from quintessence
= 2) Examine evolution of matter overdensity & = @;—m
[Dent, Dutta, Saridakis JCAP 1101]
11x10 ‘ 1.1 :
\ —9 W —3
107% == 8JC\=0] ™ - 8]C,,=0]
oL - - -8]C,,=5000] | 0.9\ ---8JC,,=5000] |
N 8]C,,=-5000] 05l R 81C,,=-5000]|
ol .
) w 0.7
7,
0.6
l 0.5
S/ 0.4+
“ 2 2.5 3 1 2 25 3
1+z 1+z
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b L goounce and Cyclic behavior
=
= Contracting (H <0), bounce ( H =0), expanding ( H >0)
near and at the bounce H >0

= Expanding (#/ >0), turnaround (H =0), contracting # <0
near and at the turnaround H <0
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b L goounce and Cyclic behavior in f(T) cosmology

b

= Contracting ( <0), bounce ( H =0), expanding (H >0)
near and at the bounce H >0

= Expanding (H >0), turnaround (H =0 ), contracting H <0
near and at the turnaround H <0

872G f(T) 5
_o7e L, ) o
3 IOm 6 T

1+ f, —12H?f,,

H2

= Bounce and cyclicity can be easily obtained
[Cai, Chen, Dent, Dutta, Saridakis CQG 28]

19
E.N.Saridakis — Crete, May 2013



L‘.

= Start with a bounching scale factor:

4 2 4JTo+o°
=t(T) =4 — — + 5
3T 3o 3To
6tM 252
— f(t) — 4t2 o me + po-z
(2+ 30t )M o t 2+ 3ot

gBounce in f(T) cosmology

+ /6005 ArcTan(1 /%tﬂ

a(t) = aB(1+—

1/3
3Gt2j
2

T
2.84x10° |-
2.835x10° |

§ 283x10°F

2.825x10° |-

2.82x10° |-

L L L L L
-1.0x107  -8.0x10°  6.0x10°  4.0x10°  -2.0x10° 0.0
T
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gBounce in f(T) cosmology

L
- -
= Start with a bounching scale factor: a(t) = a8(1+§at2j
:>t(T)=i(— 4 _2 +4 ,To*ﬂ;a“] 2.1;35,(104.
3T 3o 3To
_ 4t Lms 6tM EO‘ 2 \/g fz_;zsm.s_
= f(t) = (21 305)M 5 { . + > 32 + /6005 ArcTan( 5 tﬂ -

L L L L L
-1.0x107  -8.0x10°  6.0x10°  4.0x10°  -2.0x10° 0.0
T

= Examine the full perturbations:

. . k?
2 2 _ .
P+ AP+ LD+ C ?ﬂ =0/ with o, p?,c? known interms of H, H, f, f_, f . and matter

S

. . V2 12HHf; -
a 1+ f;

(o2

= —> Primordial power spectrum: % ~3gg,7y?

= — Tensor-to-scalar ratio; r~28x102°

[Cai, Chen, Dent, Dutta, Saridakis CQG 28] 21
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b L |Non-minimally coupled scalar-torsion theory
1
= In curvature-based gravity, apart from R+ f(R) one can use R+ R¢"2
= Let's do the same in torsion-based gravity:

T 1
S = _[d ‘X e [21«2 +5 (5ﬂ(05”(p +S&T (PZ)—V (p) + Lm] [Geng, Lee, Saridakis, Wu PLB704]
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L |Non-minimally coupled scalar-torsion theory

1

In curvature-based gravity, apart from R+ f(R) one can use R+ &Rp"2
= Let's do the same in torsion-based gravity:

B

4 T 1 2
S = .[d X € |:2K-2 + E (a#wu¢ + é:T@ )_V (¢) + Lm [Geng, Lee, Saridakis, Wu PLB704]

= Friedmann equations in FRW universe:

2
H? :%(pm_'_pDE)

H Z—%Z(Pm+pm+pDE+pDE) ¢2 o
with effective Dark Energy sector: #pe = 7+V(¢) —3&H%p

. 2

Poe =%—V(gp)+4§|—|¢(b+§(3H2 +2H )(pz

» Different than non-minimal quintessence! [Geng, Lee, Saridakis,Wu PLB 704]

(no conformal transformation in the present case) -

E.N.Saridakis — Crete, May 2013



b L g\on-minimally coupled scalar-torsion theory

= Main advantage: Dark Energy may lie in the phantom regime or/and
experience the phantom-divide crossing

= Teleparallel Dark Energy:

0
=

-0.4-
-0.6-
-0.8-

-1.0-

-1.2

--——————————-——
-
-

[Geng, Lee, Saridakis, Wu PLB 704]
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h L gObservational constraints on Teleparallel Dark Energy

=
= Use observational data (SNIa, BAO, CMB) to constrain the
parameters of the theory

= Include matter and standard radiation: ou =pue/a’ .0, =p/a*1+z=1/a
s We fit Quo. Qo0 Woeo:& fOr various V (o)
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h;>

|Observational constraints on Teleparallel Dark Energy

W DEo W DEo
-0.9 0.8
-0.9
1
Al
L
A1l
.1
_12 L '1 2 B
REY!
1.3 026 027 028 029 0.3 05 2045 0.4 20.35 0.3
Qmo
WhoEe WbDEo
0.7
0.6}
0.8}
09} 0.8}
-1 -
_1 -
A1}
1ol A2}
-1.3 026 027 028 029 03 031 -0.6 '°-5§ -0.4 -0.3
Qmo

[Geng, Lee, Sarid

kis JCAP 1201]

Exponential potential

Quartic potential
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L gPhase-space analysis of Teleparallel Dark Energy
L

= [ransform cosmological system to its autonomous form:
_ kg kK NV(p)
“Ten T am iéleo

= Q= 3/|ir|n2 =1-X -y 428 s(E), Qe =P8 =5 1 y2 2P sgn(¢)

PE T 3?2

Wpe = Wpe \ X, Y, Z,
DE DE( y 5) [Xu, Saridakis, Leon, JCAP 1207]

= X'=f(X), X'kex.=0

» Linear Perturbations: X=X.+U —=U'=QU
= FEigenvalues of O determine type and stability of C.P
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L =Phase-space analysis of Teleparallel Dark Energy

= Apart from usual quintessence points, there exists an extra
stable one for A* <& correspondingto Q. =1, w.=-1, q=-1

At the critical points Wpg= —1
however during the evolution it can
lie in quintessence or phantom

regimes, or experience the phantom-
divide crossing!

[Xu, Saridakis, Leon, JCAP 1207]
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h L gexact charged black hole solutions

Extend f(T) gravity in D-dimensions (focus on D=3, D=4):
S = [d°x e[T + f(T)—2A]
2K

Add E/M sector: L, Z—%F/\*F with F=dA A=A dx”

Extract field equations:

LLHS=RH.S

[Gonzalez, Saridakis, Vasquez, JHEP 1207]
[Capozzielo, Gonzalez, Saridakis, Vasquez, JHEP 1302]
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L gxact charged black hole solutions

e
= Extend f(T) gravity in D-dimensions (focus on D=3, D=4):

Sz%dix efT + F(T)—2A]

= Add E/M sector: L, Z—%F/\*F with F=dA A=A dx”

= Extract field equations: [LHS=RH.S

= Look for spherically symmetric solutions:

e’ = F(r)dt, e'= 1 dr, e*> =rdx, ,e®=rdx,, ---

1

ds? = F(r)?dt® —
- =Sy

D-2
2 2 2
dro—r E dx.
1

= Radial Electric field: & --3: = F(r)?,G(r)* known

[Gonzalez, Saridakis, Vasquez, JHEP 1207], [Capozzielo, Gonzalez, Saridakis, Vasquez, JHEP 1302] 30
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h L gexact charged black hole solutions

1
= Horizon and singularity analysis:

= 1) Vierbeins, Weitzenbock connection, Torsion invariants:
T(r) known —> obtain horizons and singularities

s 2) Metric, Levi-Civita connection, Curvature invariants:
R(r) and Kretschmann R, R“* (r) known
—> obtain horizons and singularities

[Gonzalez, Saridakis, Vasquez, JHEP1207], [Capozzielo, Gonzalez, Saridakis, Vasquez, JHEP 1302] 31
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gexact charged black hole solutions
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L gexact charged black hole solutions
L o 1

= More singularities in the curvature analysis than in torsion analysis!
(some are naked)

= The differences disappear in the f(T)=0 case, or in the uncharged case.

= Should we go to quartic torsion invariants?
= f(T) brings novel features.

= E/M in torsion formulation was known to be nontrivial (E/M in Einstein-
Cartan and Poinaré theories)
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B

L goolar System constraints on f(T) gravity
i

= Apply the black hole solutions in Solar System:

Assume corrections to TEGR of the form

- F(r2=1- M —Ar2+a[—6A—g—4G|2le}
cr 3 r c?r
Gy —1-2CM Ao, J8A 24 00 2GM
cf 3 c’r

f(T)=aT2+0(T?)

2]
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B

L goolar System constraints on f(T) gravity

mll u
Apply the black hole solutions in Solar System:

Assume corrections to TEGR of the form |f(T)=aT?+0(T?)

= F(r)’ =1—ZGZM —Ar2+a[—6A—%—4GIZVIA}
cr 3 r cr

= G(r)* =1- ZGZM ELYE P 8—1\—2—3'—2A2r2—262|vI (SA—%)
cr 3 3 r cr r

Use data from Solar Sys_tem orbital motions:
AU, ;) <6.2x107°

] [Iorio, Saridakis, Mon.Not.Roy.Astron.Soc 427)
T<<1 so consistent

f(T) divergence from TEGR is very small
This was already known from cosmological observation constraints up to

O(10'-10%) [Wu, Yu, PLB 693], [Bengochea PLB 695]

With Solar System constraints, much more stringent bound. s
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b L gPpen issues of f(T) gravity
mll u
= f(T) cosmology is very interesting. But f(T) gravity and nonminially

coupled teleparallel gravity has many open issues [Li, Sotiriou, Barrow PRD 83a],
[Geng,Lee,Saridakis,Wu PLB 704]

= For nonlinear f(T), Lorentz invariance is not satisfied

= Equivalently, the vierbein choices corresponding to the same metric are
not equivalent (extra degrees of freedom) [LiSotiriou,Barrow PRD 83c], [Li,Miao,Miao JHEP 1107]
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-

gPpen issues of f(T) gravity
=E

f(T) cosmology is very interesting. But f(T) gravity and nonminially
coupled teleparallel gravity has many open issues [Li, Sotiriou, Barrow PRD 83a],

[Geng,Lee,Saridakis,Wu PLB 704]
For nonlinear f(T), Lorentz invariance is not satisfied
Equivalently, the vierbein choices corresponding to the same metric are
not equivalent (extra degrees of freedom) [LiSotiriou,Barrow PRD 83c], [Li,Miao,Miao JHEP 1107]

Black holes are found to have different behavior through curvature and
torsion ana|y5iS [Capozzielo, Gonzalez, Saridakis, Vasquez JHEP 1302]

Thermodynamics also raises issues [Bamba,Geng JCAP 1111], [Miao,Li,Miao JCAP 1111]
[Bamba,Myrzakulov,Nojiri, Odintsov PRD 85]

Cosmological and Solar System observations constraint f(T) very close to
linear-in-T form
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L gGravity modification in terms of torsion?
L -

= S0 can we modify gravity starting from its torsion formulation?

= The simplest, a bit naive approach, through f(T) gravity is interesting, but
has open issues

= Additionally, f(T) gravity is not in correspondence with f(R)

= Even if we find a way to modify gravity in terms of torsion, will it be still in
1-1 correspondence with curvature-based modification?

= What about higher-order corrections, but using torsion invariants (similar
to Gauss Bonnet, Lovelock, Hordenski modifications)?

= Can we modify gauge theories of gravity themselves? E.g. can we modify
Poincaré gauge theory?

38
E.N.Saridakis — Crete, May 2013



L Lconclusions
=

i) Torsion appears in all approaches to gauge gravity, i.e to the first step
of quantization.

ii) Can we modify gravity based in its torsion formulation?
iii) Simplest choice: f(T) gravity, i.e extension of TEGR

iv) f(T) cosmology: Interesting phenomenology. Signatures in growth
structure.

v) We can obtain bouncing solutions

vi) Non-minimal coupled scalar-torsion theory|T +£T¢?|: Quintessence,
phantom or crossing behavior.

vii) Exact black hole solutions. Curvature vs torsion analysis.
viii) Solar system constraints: f(T) divergence from T less than |10 *°

iX) Many open issues. Need to search for other torsion-based
modifications too.
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B L IOutlook

Many subjects are open. Amongst them:

i) Examine thermodynamics thoroughly.
ii) Extend f(T) gravity in the braneworld.

iii) Understand the extra degrees of freedom and the extension to
non-diagonal vierbeins.

iv) Try to modify TEGR using higher-order torsion invariants.
v) Try to modify Poincaré gauge theory (extremely hard!)

vi) What to quantize? Metric, vierbeins, or connection?

vii) Convince people to work on the subject!
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