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Superfluid: 

• State of matter with zero viscosity at very low temperatures. 

• Gauge theory with spontaneous breaking of global symmetry. 
 

Conventional superfluids: 

• Helium-4: Bose-Einstein condensation of atoms. 

• New hydrodynamic mode: Superfluid velocity 
 
“p-wave” SFs, like Helium-3: 
• Cooper pairs of ions form bosonic states (like in BCS). 
• Rotational symmetry is broken: more modes. 
• Superconductivity with new pairing states. 
• Much lower temperature than conventional. 
• Several different phases. 
 

 
Liquid crystals: 
• Flow like liquids, but molecules are oriented. 
• Related to high temperature SCs (d-wave). [Lee, Osheroff, C. Richardson, 

Leggett] 



• Bosons form a highly collective state. 

• Wavefunction  is expectation value. Phase , coherent superposition in condensate. 

• In our case: 

 

 

 
• 3 Goldstone modes! We can expect different hydrodynamics. 

Spontaneous Symmetry Breaking of continuous symmetry 

 Nambu-Goldstone boson in the spectrum 

New hydrodynamic mode 

Condensed-matter analog of the Higgs phenomena 

(superfluid velocity) 
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Field-Operator dictionary: 

If the action for bulk field is 

where 

Stability requires real , otherwise exponential growth. 
 Mass term not “too negative” (BF bound) 
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Retarded Green’s function = Correlator: 

[Son, Starinets] 
The correspondence allows for a simple calculation! 

Time-dependent perturbation in the action includes a source for B: 

Expectation value for observable A in its presence is 

where 

The increase due to a       is            . The perturbation comes from the source: 

Linear response around equilibrium: 
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SU(2) Einstein-Yang-Mills theory 

Ansatz for gauge field: 
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SU(2) Einstein-Yang-Mills theory 

Ansatz for gauge field: 

Chemical potential 
      explicit breaking 

Spontaneous value 
acquired in broken phase: 

[Ammon, Erdmenger, 
Grass, Kerner, O’Bannon] 
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Ansatz for the metric: 

Solution 1 
• Reissner–Nordström BH 

(asymptotically AdS) 
 

•   
 

• Ground State for 

Solution 2 
• Charged BH with vector hair 

(asymptotically AdS) 
 

•   
 

• Ground State for 

R-N BH, stable 

R-N BH, not stable 

Phase 
diagram: 

[Erdmenger, Grass, 
Kerner, Hai Ngo] 
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[Gubser, Pufu] 

In solution 2, 
a condensate layer floats above the horizon. 

• In asympt. flat spacetime, 
Electrostatic repulsion sends it to infty. 

 

• In asympt. AdS spacetime, 
Massive particles do not reach bdry. 

Action for      : 

• Since                     ,       is tachyonic near the horizon…  
 

• It condenses in a normalizable profile (            at bdry.) 
 

• This translates into                 in the dual field theory. 
 

• The action can be embedded into M-theory. 
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Solution to the EOM 
in gravity theory 

Thermal equilibrium state 
in field theory 

2nd order phase transition 
1st order 
phase trans. 

Metastable phase 

Central quantity: 
Free Energy 

Besides thermodynamic calculations, 
ask if solution stable under perturbations… 
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• Gauge fixing: • Longitudinal momentum: 

so that perturbations preserve SO(2). 
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Helicity 2, helicity 1, helicity 0: 

Parity: 

If k=0, also classifiable by change under      : 

•                        flip sign index 2 

•                                                      flip indices 1,x 

even  odd 
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Helicity zero, k=0: 

• There are 10 perturbation modes. 

• Einstein’s and Yang-Mills’s eqs. give 10 DEs and 6 constraints  14 d.o.f. at bdry. 

• Ingoing condition (for retarded GF) at the horizon takes away 10 d.o.f. 

• Remaining: 4 physical fields, invariant under residual gauge freedom. 

The action cannot be written in terms of physical fields only. 

It is convenient to change into: 

Replace those perturbations by physical fields, so that 
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• Generation of electric current due to thermal gradient. 
• Generation of thermal transport due to an external electric field. 

Simultaneous transport of electric charge and heat: 

Heat flux Thermal gradient 
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[Erdmenger, Kerner, Zeller] 



• Generation of electric current due to thermal gradient. 
• Generation of thermal transport due to an external electric field. 

Simultaneous transport of electric charge and heat: 

Heat flux Thermal gradient 

slope  2 • Curves almost overlap 
for T > Tc 

• Overlap of all curves 
asymptotically: 

 

• Consequence of 
conformal symmetry. 

Superconductor 
feature 

Electric field 
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[Erdmenger, Kerner, Zeller] 



Imaginary part: 

• Pole at the origin  Real part has delta peak (K-K relation) 

• Delta peak due to sum rule, observed here. 

• Anticipated behavior: 

times  

Drude peak T 
Appears in superfluid phase 
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[Erdmenger, Kerner, Zeller] 



Additional 
couplings: Interpretation: 

           rotate charge 
density in directions 
1, 2 without changing 
its magnitude. 
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[Erdmenger, DF, Zeller] 



Additional 
couplings: Interpretation: 

           rotate charge 
density into directions 
1, 2 without changing 
its total amount. 

Differences: 

• Decrease starts at larger . 

•  does not vanish for any 
frequency. 

• In fact, it increases again. 

Quasinormal 
mode 
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[Erdmenger, DF, Zeller] 



• Generation of electric current due to elongation/squeezing. 
• Generation of mechanical strain due to an external electric field. 

Intuitive 
picture: 
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• Generation of electric current due to elongation/squeezing. 
• Generation of mechanical strain due to an external electric field. 

Intuitive 
picture: 

Background 
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[Erdmenger, DF, Zeller] 



• Generation of electric current due to shear stress. 
• Generation of shear deformation due to an external electric field. 

Intuitive 
picture: 
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• Generation of electric current due to shear stress. 
• Generation of shear deformation due to an external electric field. 

Intuitive 
picture: 

The system tries 
to cancel the new 

contribution. 
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[Erdmenger, Kerner, Zeller] 



Condensate selects preferred direction        becomes Goldstone mode. 

Other GS modes: 

The poles at =0 reflect the formation of this massless mode. 

The quasinormal mode of the 
thermoelectric effect goes up 
the imaginary axis (=0) 

Quasinormal modes behavior: 
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[Landau, Lifshitz] 
• Internal motion of a system causes dissipation of energy. 
 

• Postulate dissipation function. Its velocity derivatives are frictional forces, linear in      . 
 

• Translation/rotation  No dissipation, so actually linear in                                                     . 
 
 
 
 
 

• For a transversely isotropic fluid, 
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• Postulate dissipation function. Its velocity derivatives are frictional forces, linear in      . 
 

• Translation/rotation  No dissipation, so actually linear in                                                     . 
 
 
 
 
 

• For a transversely isotropic conformal fluid, 

[Landau, Lifshitz] 

Shear 
viscosities 
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• In the normal phase, they coincide with the universal value of an isotropic fluid. 
• In the superfluid phase, they deviate but the viscosity bound is satisfied. 

[Erdmenger, Kerner, Zeller] 
[Kovtun, Son, Starinets, Buchel, Liu, Iqbal] 
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• In the normal phase, they coincide with the universal value of an isotropic fluid. 
• In the superfluid phase, they deviate but the viscosity bound is satisfied. 

• In the 1st order phase transition, it is multivalued. 
 

• The presence of anisotropy makes it deviate. 
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[Erdmenger, Kerner, Zeller] 
[Kovtun, Son, Starinets, Buchel, Liu, Iqbal] 



If we assume a conformal fluid, 

So that the dissipative part of the normal stress difference is: 

Among the physical fields there is 

so its Green’s function is identified with 

Kubo formula: 
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[Erdmenger, DF, Zeller] 

Similar to the 1/4 
derivation: 
behaves as a minimally 
coupled scalar in gravity. 

22/23 



[Erdmenger, DF, Zeller] 

Similar to the 1/4 
derivation: 
behaves as a minimally 
coupled scalar in gravity. 

• Coventionally, normal stresses pull apart compressing surfaces. 

• Spinning rod in material  Fluid is expelled outwards:  > 0. 

• Effect more pronounced for lower T. 
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 Check of the universal bound for the ratio /s. 

 Found thermoelectric effect favored by the condensate: 

 Enhancement of conductivity for low T (high ), suppression above Tc . 

 Sudden increase due to a pole near =0, due to quasinormal mode. 

 New phenomena: Flexoelectric and Piezoelectric effects. 

 Bumps in correlators, related to possible bound states. 

 In the =0 limit, found new component of viscosity tensor. 

 

 Results valid as effective macroscopic description of transport properties near Tc . 

 

• Covariant hydrodynamic description of anisotropic superfluids. 

• Analysis at finite k: Dispersion relations and new instabilities. 
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Thank you! 


