A Holographic model of the Kondo effect

Carlos Hoyos

Tel Aviv University

Crete Center for Theoretical Physics, March 21, 2013

Johanna Erdmenger, C.H., Andy O'Bannon, Jackson Wu

Outline

- Introduction
- Stringy model
- Bottom-up model
- Future directions

Metals: Fermi liquid+phonons+impurities: $\rho \sim \rho_0 + T^2$ But in some metals at low temperatures $\rho \sim -\log(T)$

Scattering with magnetic impurities

• = • •

- Single impurity problem solved Wilson's RG, Nozières' Fermi liquid description, the Bethe Ansatz, large-N limits, conformal field theory...
- Multiple impurities: Heavy fermion compounds with strange metal behaviour

$\rho \sim T$

may be described by a Kondo lattice

• Holography: non-perturbative, large-N

Goal today: construct a holographic model for a single impurity

Kondo model [Kondo' 66; Affleck & Ludwig '90s]:

$$H = \frac{v_F}{2\pi} \psi_L^{\dagger} i \partial_x \psi_L + v_F \lambda_K \delta(x) \vec{S} \cdot \psi_L^{\dagger} \frac{1}{2} \vec{\tau} \psi_L,$$

- s-wave reduction: 1+1 dimensions
- Kondo coupling marginal classically (CFT)
- Asymptotic freedom: UV fixed point

UV CFT

- Symmetries: Spin SU(N), k channels SU(k), Charge U(1)
- Kac-Moody algebra: $SU(N)_k \times SU(k)_N \times U(1)$

$$[J_n^a, J_m^b] = if^{abc}J_{n+m}^c + k\frac{n}{2}\delta^{ab}\delta_{n,-m}$$

- Finite number of highest weight states. $SU(2)_k$: spin $\leq k/2$
- Sugawara construction:

$$H = \frac{1}{2\pi(N+k)}J^{a}J^{a} + \frac{1}{2\pi(k+N)}J^{A}J^{A} + \frac{1}{4\pi Nk}J^{2} + \frac{\lambda_{K}}{\delta(x)}\vec{S}\cdot\vec{J}$$

IR CFT

• Redefinition of spin current:

$$\mathcal{J}^{a} \equiv J^{a} + \pi (N+k) \lambda_{K} \delta(x) S^{a}$$

• Critical coupling

$$\lambda_{\mathcal{K}} = \frac{2}{N+k}$$

• Hamiltonian:

$$H = \frac{1}{2\pi(N+k)}\mathcal{J}^{a}\mathcal{J}^{a} + \frac{1}{2\pi(k+N)}J^{A}J^{A} + \frac{1}{4\pi Nk}J^{2}$$

No impurity!

[Affleck & Ludwig '95]

- IR CFT = UV CFT with shifted spectrum
- IR spin representations = UV spin representations + impurity spin

Example: one channel, spin N = 2, SU(2)_1 \times U(1), s_{\rm imp} = 1/2

- UV: Neveu-Schwarz boundary conditions (spin, charge)= (0,0), (±1/2,1)
- IR: Ramond boundary condition (spin, charge)= (±1/2, 2), (0, 1)
- Phase of electron wavefunction on a circle changes by $\pi/2$

Possible phases in $SU(2)_k$:

- Underscreening: $2s_{imp} > k$ Fermi liquid + impurity of spin $|s_{imp} - k/2|$
- Critical screening: $2s_{imp} = k$ IR fixed point: k free left-movers
- Overscreening: $2s_{imp} < k$ Non-trivial IR fixed point: non-Fermi liquid behavior

Qualitatively similar for higher spin

Large-N

- $N \to \infty$, $\lambda_K \to 0$, $\lambda_K N$ fixed
- Spin of impurity: Young tableaux with Q boxes
- Totally antisymmetric representation:

$$S^a = \chi^\dagger T^a \chi$$

Slave fermions, dimension $[\chi] = 0$

$$\chi^{\dagger}\chi=Q$$

Additional $U(N_f)$ symmetry

• Critical (k = 1) or overscreening $(k \ge 2)$

Large-N

Kondo coupling as double-trace deformation:

$$\begin{split} \lambda_{K} \,\delta(x) \, J^{a} S^{a} &= \lambda_{K} \,\delta(x) \, \left(\psi_{L}^{\dagger} T^{a} \psi_{L} \right) \, \left(\chi^{\dagger} T^{a} \chi \right) \\ &= \frac{1}{2} \lambda_{K} \,\delta(x) \left(\psi_{L}^{\dagger} \chi \right) \left(\chi^{\dagger} \psi_{L} \right) \\ &= \frac{1}{2} \lambda_{K} \,\delta(x) \, \mathcal{OO}^{\dagger} \end{split}$$

• \mathcal{O} SU(N) singlet, charged under $U(N_f) \times SU(k) \times U(1)$

• Dimensions:
$$[\psi_L] = [\mathcal{O}] = 1/2$$

• Mean field transition:

 $T > T_K$, $\langle \mathcal{O} \rangle = 0$, $SU(k) \times U(N_f) \times U(1)$

 $T < T_K, \ \langle \mathcal{O} \rangle \neq 0, \ SU(k) \times U(N_f) \times U(1) \rightarrow U(1)_D$

[Senthil, Sachdev, Vojta]

Large-N

Summary of Kondo effect at large N

- s-wave reduction: 1+1 chiral CFT + impurity
- double-trace coupling
- 0+1 superconductor

These will be the main ingredients to construct a holographic model

Impurities in stringy models

Supersymmetric defects with localized fermions

- D5/D3 AdS₂ ⊂ AdS₅ [Kachru, Karch, Yaida] [Harrison, Kachru, Torroba]
- M2/D2 in ABJM AdS₂ ⊂ AdS₄ [Jensen, Kachru, Karch, Polchinski, Silverstein]
- D6 in ABJM AdS₂ ⊂ AdS₄, [Benincasa, Ramallo] with backreaction [Itsios, Sfetsos, Zoakos]
- D(8 − p) in Dp background S^{7−p} ⊂ S^{8−p} [Benincasa, Ramallo] other sphere wrappings [Karaiskos, Sfetsos, Tsatis]
- Spectrum of Wilson loops [Mueck] [Faraggi, Pando Zayas] [Faraggi, Mueck, Pando Zayas]

	<i>x</i> ⁰	x^1	<i>x</i> ²	<i>x</i> ³	<i>x</i> ⁴	x ⁵	x ⁶	x ⁷	x ⁸	x ⁹
<i>N_c</i> D3	•	•	٠	٠	_	_	_	_	_	_
N ₇ D7	•	٠	-	—	٠	٠	٠	٠	٠	٠
<i>N</i> ₅ D5	•	-	-	_	•	•	•	•	•	_

- 3-7 strings = chiral fermions (current algebra)
- 3-5 strings = slave fermions
- 5-7 strings = bifundamental scalar (tachyon)

D5 branes become magnetic flux on D7 branes

$$S_{D7} \subset \int_{D7} P[C_6] \wedge F$$

• $N_c
ightarrow \infty$: $AdS_5 imes S^5$ background

$$\int_{S^5} F_5 = g_s (2\pi)^2 (2\pi\alpha')^2 N_c$$

• 7-7 strings: gauge field A_{μ} dual to J_{μ}

$$S_{D7} \supset -\frac{N_c}{4\pi} \int_{AdS_3} \operatorname{tr}\left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A\right)$$

Global symmetry:

 $U(N_7)_{N_c}$

• 5-5 strings: gauge field a_m dual to Q

$$S_{D5} \supset N_5 T_{D5} \int P[C_4] \wedge f$$

- Dual to completely antisymmetric Wilson loop [Yamaguchi '06; Gomis, Passerini '06]
- Charge Q = number of fundamental strings
- Size of D5 on S⁵ [Camino,Paredes, Ramallo '01]

$$ds_{S^5}^2 = d\theta^2 + \sin^2\theta \, ds_{S^4}^2, \quad \theta_Q = \frac{Q}{N_c}\pi$$

Maximal charge $Q = N_c - 1$

- \bullet 5-7 strings: bifundamental scalar Φ dual to ${\cal O}$
- \bullet Double-trace coupling for ${\mathcal O}$ analogous to Kondo coupling
- Double-trace coupling can lead to condensation [Pomoni, Rastelli '08,'10]
- Holographic dual: boundary condition for Φ [Witten '01]

Bottom-up model

• s-wave reduction: $1+1 \text{ CFT} \longrightarrow AdS_3$

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = \frac{1}{z^{2}}\left(\frac{dz^{2}}{h(z)} - h(z) dt^{2} + dx^{2}\right), \ h(z) = 1 - \frac{z^{2}}{z^{2}},$$

Temperature: $T = 1/(2\pi z_H)$

• SU(N)-spin, k = 1 channel of chiral fermions, U(1) charge

$$S_{CS} = -\frac{N}{4\pi}\int A \wedge dA$$

• Impurity AdS_2 : U(1) symmetry, operator O

$$S_{AdS_{2}} = -\int d^{3}x \,\delta(x)\sqrt{-g} \left[\frac{1}{4}f^{mn}f_{mn} + g^{mn}(D_{m}\Phi)^{\dagger} D_{n}\Phi + M^{2}\Phi^{\dagger}\Phi\right]$$
$$D_{m}\Phi = \partial_{m}\Phi + iA_{m}\Phi - ia_{m}\Phi$$

Asymptotics

• Gauge field: charge Q determines the spin representation of impurity

$$a_t(z) = rac{Q}{z} + \mu$$

Charge is an irrelevant operator: UV behavior is modified Scalar field effective mass fixed at the BF bound

$$M_{\rm eff}^2 = M^2 - Q^2 = -rac{1}{4}$$

• Scalar field at the BF bound:

$$\Phi = z^{1/2} (\alpha \log(z) + \beta)$$

UV conformal dimensions $\Delta = \frac{1}{2}$ We set $M^2 = 0$, Q = -1/2

Kondo coupling

• Double-trace deformation = boundary condition [Witten '01]

 $\alpha = \kappa \beta$

• Renormalization:

$$\Phi = z^{1/2}\beta_0(\kappa_0 \log(\Lambda z) + 1) = z^{1/2}\beta(\kappa \log(\mu z) + 1)$$

Running coupling

$$\kappa = \frac{\kappa_0}{1 + \kappa_0 \ln\left(\frac{\Lambda}{\mu}\right)}$$

10.

Dynamical scale: $\Lambda_K = \Lambda e^{1/\kappa_0}$

• $\kappa < 0$ "antiferromagnetic": UV asymptotic freedom

Phases

Normal phase $(\Phi = 0)$:

• Background charge Q = -1/2:

$$a_t(z) = rac{Q}{z} + \mu, \ \ \mu = -rac{Q}{z_H}$$

Broken phase ($\Phi \neq 0$):

• Background charge Q = -1/2:

$$a_t(z) \simeq rac{Q}{z} + \mu_T + O((\log z)^3)$$

• Background scalar field:

$$\Phi \simeq (z/z_H)^{1/2} \beta_T (\kappa_T \log(z/z_H) + 1)$$

• Values of μ_T , κ_T and β_T determined numerically

Kondo coupling

• Finite temperature solution:

$$\Phi = (z/z_H)^{1/2} \beta_T(\kappa_T \log(z/z_H) + 1) = \beta_0(\kappa_0 \log(\Lambda z) + 1)$$

• Temperature-dependent coupling

$$\kappa_T = \frac{\kappa_0}{1 + \kappa_0 \ln\left(\frac{\Lambda}{2\pi T}\right)}$$

• High-temperatures $T \gg \Lambda_K$:

$$\kappa_T \simeq rac{1}{\ln\left(rac{\Lambda}{2\pi T}
ight)} < 0$$

• Low temperatures $T \ll \Lambda_K$

$$\kappa_T \simeq rac{1}{\ln\left(rac{\Lambda}{2\pi T}
ight)} > 0$$

Instabilities in the normal phase

Scalar field **Q** BF bound $\Phi = e^{-i\omega t}\phi$:

$$h\partial_z(h\partial_z\phi)+\omega^2\phi+rac{1}{4z^2}\phi=0$$

Tachyonic modes $\omega = -i\Omega$ exist when

$$\kappa = \frac{\alpha}{\beta} = \frac{1}{H_{\frac{1}{2}\left(\sqrt{4\Omega^2 - 1} - 1\right)} - \log 4}$$

This is possible $\forall \kappa \text{ except } \kappa_c < \kappa \leq 0$,

$$\kappa_c = rac{1}{H_{-rac{1}{2}} - \log 4} \simeq -0.360674$$

Stable at high temperatures, unstable at low temperatures

Free energy

- Free energy = Euclidean action = Action
- Counterterms scalar field:

$$S_{\Phi} = -\int dt \sqrt{-\gamma} \left(rac{1}{2} + rac{1}{\log arepsilon}
ight) \Phi^{\dagger} \Phi + \kappa \int dt \, eta^2$$

• Counterterms gauge field:

$$S_{a_t} = +rac{1}{2}\int dt\,\sqrt{-\gamma}\,\gamma^{tt}\,a_t^2$$

$$F - F_0 = -\alpha\beta - \frac{1}{2}Q(\mu + Q) - 2Q^2\alpha^2 + 2Q^2\alpha\beta - Q^2\beta^2 - \kappa\beta^2$$

+ finite bulk integral

Thermodynamics of the broken phase

Chern-Simons field

$$S = \int dz \int \frac{d\omega d\omega' dq dq'}{(2\pi)^2} \left[A_{\mu}(\omega',q') D^{\mu\nu}(\omega,q) \delta(\omega-\omega') \delta(q-q') A_{\nu}(\omega',q') \right. \\ \left. + A_{\mu}(\omega',q') B^{\mu\nu}(\omega) \delta(\omega-\omega') A_{\nu}(\omega',q') + j^{m}(\omega) \delta(\omega-\omega') \delta(q-q') A_{m}(\omega,q') \right].$$

$$D^{\mu\nu}(\omega,q) = \frac{k}{2\pi} \left[\epsilon^{\mu z \nu} \partial_z - i \omega \epsilon^{\mu t \nu} + i q \epsilon^{\mu x \nu} \right],$$

$$B^{\mu\nu}(\omega) = \frac{1}{2\pi} \sqrt{-g} g^{mn} \delta^{\mu}_{m} \delta^{\nu}_{n} \Phi^{\dagger} \Phi = \frac{1}{2\pi} \phi^{2} \sqrt{-g} g^{mn} \delta^{\mu}_{m} \delta^{\nu}_{n}.$$

$$j^{m}(\omega) = \sqrt{g}g^{mn}a_{n}\Phi^{\dagger}\Phi = -\frac{a_{t}\phi^{2}}{h(z)}\delta_{t}^{m}$$

Background fields

• Solutions:

$$F_{tx} = -\frac{2\pi}{k}j^{z}(\omega) + \delta F_{tx}, \quad F_{zx} = \frac{2\pi}{k}j^{t}(\omega) + \delta F_{zx}$$

• Normal phase:

$$F_{tx}=F_{zx}=0$$

• Broken phase:

$$F_{tx} = 0, \quad F_{zx} = \frac{2\pi}{k} \frac{a_t \phi^2}{h(z)} \delta(x)$$

 F_{zx} conjugate to A_t : charge localized at the defect

Fluctuations

$$0 = \frac{k}{2\pi} \delta F_{tx}(\omega, q) + \phi^2 h(z) \int \frac{dq'}{2\pi} \delta A_z(\omega, q'),$$

$$0 = \frac{k}{2\pi} \delta F_{zx}(\omega, q) + \frac{\phi^2}{h(z)} \int \frac{dq'}{2\pi} \delta A_t(\omega, q'),$$

$$0 = \frac{k}{2\pi} \delta F_{zt}(\omega, q).$$

Zero-momentum fluctuations in the broken phase:

$$\delta A_m = \partial_m \lambda, \quad \partial_x \lambda = 0, \quad \lambda(\omega, q) = 2\pi \delta(q) \tilde{\lambda}(\omega)$$

Fluctuations transverse to AdS_2 defect δA_x decouple from δA_m $\Delta = 1$ scalar operator localized at the impurity

Fluctuations

• Equation of zero-momentum fluctuations

$$\partial_z(h(z)\phi^2\partial_z\tilde{\lambda}(\omega))+rac{\omega^2\phi^2}{h(z)}\tilde{\lambda}(\omega)=0$$

• Boundary:

$$ilde{\lambda}(\omega) \sim rac{\sqrt{z}}{\phi h(z)} \left(A Y_0(\omega z) + B J_0(\omega z)
ight)$$

Horizon:

$$ilde{\lambda}(\omega) \sim rac{\sqrt{z}}{\phi h(z)} \left(extsf{C}_{ extsf{out}} (1-z)^{1+i\omega/2} + extsf{C}_{ extsf{in}} (1-z)^{1-i\omega/2}
ight)$$

• Quasinormal modes: A = 0, $C_{out} = 0$

Correlators

• Action of Chern-Simons field fluctuations

$$S = -\lim_{z\to 0} \int \frac{d\omega}{2\pi} \left[\frac{ik\omega}{\pi} \tilde{\lambda}(\omega) \delta A_x(-\omega) + \omega^2 \phi^2 \tilde{\lambda}(\omega) \partial_z \tilde{\lambda}(-\omega) \right].$$

Counterterms

$$S_{ct} = -\lim_{z o 0} rac{1}{2} \int dt dx \delta(x) \sqrt{-\gamma} \gamma^{tt} A_t^2 = -\lim_{z o 0} rac{1}{2} \int rac{d\omega}{2\pi} rac{\omega^2}{z} ilde{\lambda}(\omega) ilde{\lambda}(-\omega).$$

• Correlation function

$$\langle J^{ imes}J^{ imes}
angle(\omega,q,q')\simeqrac{\delta^2}{\delta \mathcal{A}^2}(S+S_{ct})$$

Correlators

• Two-point function:

$$\langle J^{\mathsf{x}}J^{\mathsf{x}}\rangle(\omega,q,q')\simeq \left[rac{8}{\pi^{2}\kappa(\omega)}-rac{4}{\pi}G(\omega)
ight]\delta(q)\delta(q'),$$

• Frequency-dependent coupling:

$$\kappa(\omega) = rac{\kappa_T}{1 - \kappa_T \log\left(rac{\omega e^{\gamma_E}}{2}
ight)}$$

• Conductivity:

$$\sigma(\omega) \propto rac{1}{\omega} {
m Im} {\cal G}(\omega).$$

Conductivity & resistivity

Lowest quasinormal mode \sim Kondo resonance $\frac{\omega_0}{2\pi T} \simeq -1.4i$

Resistivity grows at low temperatures!

Summary

Holographic toy model implements the large-N and CFT approach:

- Current algebra in 1+1 from s-wave reduction
- Wilson line as slave fermions on defect
- Kondo coupling = double-trace coupling

and captures main physical properties:

- Dynamical scale generation and asymptotic freedom
- Raise in the resistivity at low temperatures

Future directions

- Compute other properties: entropy, heat capacity, magnetic susceptibility, Wilson's ratio, spectrum of operators
- Multi-channel Kondo model
- Impurities in different representations of spin
- Several impurities with interactions
- Models with small spin?