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Holography in AdS

[Maldacena’97]: Type IIB SUGRA on
AdS5 × S5 and N = 4 sYM.

N → +∞ with λ = g2
YMN fixed

⇒ Gravity is classical

λ� 1 ⇒ String Theory reduces to
Einstein gravity + O(1) matter
fields

Fields in AdS Ψ(ρ, zµ) ←→ Local operators in CFT O(zµ)

ZCFT [Φ0] = 〈e−
∫

g [Φ0]OΦ〉 ∼ e
−SΛ

[
Φ(ρ,zµ) ∼

ρ→0
Φ0(zµ)ρ∆

]∣∣∣∣∣∣
on−shell

Φ(ρ, zµ) ∼
ρ→0

Φ0(zµ) ρ∆ + Φ1(zµ) ρd−∆ + . . . , m2L2 = ∆(d −∆)

Φ0 is the source (non-normalisable), Φ1 vev of OΦ (normalisable)
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Holography for non-AdS spacetimes

The arguments for holography are not directly dependent upon
asymptotics: scaling of the black hole entropy with the area of the
event horizon, geometrisation of the RG flow.

The best-grounded case of the duality is also the simplest
symmetry-wise: scale invariant, no running of the beta function.
Conformal symmetry (no running of the coupling) basically fixes
(the asymptopia of) the gravity dual: (Poincaré) AdS. Other scaling
symmetries? Different asymptotics?

Other cases: nonconformal branes, [Kanitscheider&al’08,
Wiseman&Withers’08], related to AdS by generalised dimensional
reduction [Kanitscheider&Skenderis’09]. Turn on KK vectors in the
reduction [Gouteraux&al’11]

Non-relativistic holography: Schrödinger [Guica&al’10,
Chemissany&al’12], Horava gravity [Janiszewski&Karch’12,
Horava&al’12]
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Flat space holography

Holographic counterterms for asymptotically flat spacetimes,
[Kraus&al’99,Mann&Marolf’05]

Defining feature of AdS holography: the Fefferman-Graham
expansion (in d + 1 dimensions)

ds2
`2

=
dρ2

4ρ2 +
1
ρ
gµν(ρ, zλ)dzµdzν ,

g(ρ, z) = g(0)(z) +ρg(2)(z) + . . .+ρ
d
2
(
g(d)(z) + h(d)(z) log ρ

)
+ . . . ,

Algebraic equations for the coefficients organised in terms of powers
of the radial coordinates
Flat spacetimes: differential equations ⇒ nonlocal.
BMS group, [Barnich&al]; 3D gravity, [Barnich&al, Bagchi&al].
Define the field theory on the lightcone boundary: time as an extra
holographic coordinate, [de Boer&Solodukhin’03, Caldeira Costa’12]

Microscopic theory?
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Aim of this talk

Prove the following gravitational statement:

Asymptotically locally AdS spacetimes with a transverse
planar subspace can be mapped to Ricci-flat spacetimes
with a transverse sphere.

Take advantage of this to take a (small) step towards
holography in Ricci-flat spacetimes.

In the hydrodynamic limit, derive the hydro stress-tensor for
flat p-branes and the dispersion relation of the
Gregory-Laflamme instability from AdS quantities.

What I will not do: set up a holographic dictionary for
asymptotically flat spacetimes.
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Some intuition from nonconformal branes

S =

∫
dp+2x

√
−g
[
R− 1

2∂φ
2 + V0e−δφ

]
The above action has the following planar black holes:

ds2 = r
2θ
p

[
L2dr2
r2f (r)

+
−f (r)dt2 + dR2

(p)

r2

]
, f (r) = 1− rp+1−θ

rp+1−θ
0

eφ = r
2θ
pδ , θ =

p2δ2

pδ2 − 2 , V0 =
(p − θ)(p + 1− θ)

L2 ,

Violate hyperscaling S ∼ T p−θ, near-extremal limit of hairy AdS
black holes [Gouteraux&Kiritsis’11] (irrelevant gauge field).
θ < 0 (δ2 < 2/p): thermodynamics similar to the AdS planar black
hole.
θ > 0 (δ2 > 2/p): thermodynamics similar to the Schwarzschild
black hole.
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From AdS to nonconformal branes

S =

∫
dd+1x

√
−g [R− 2Λ]
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From AdS to nonconformal branes

S =

∫
dd+1x

√
−g [R− 2Λ]

+

ds2(d+1) = e−δφds2(p+2) + e
2φ
pδ (1− p

2 δ
2)dX 2

(d−p−1) , R[X ]ij =
R[X ]hij
d−p−1
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From AdS to nonconformal branes

S =

∫
dd+1x

√
−g [R− 2Λ]

+

ds2(d+1) = e−δφds2(p+2) + e
2φ
pδ (1− p

2 δ
2)dX 2

(d−p−1) , R[X ]ij =
R[X ]hij
d−p−1

⇓

S =

∫
dp+2x

√
−g
[
R− 1

2∂φ
2 − 2Λe−δφ +R[X ]e−

2φ
pδ

]
X is constrained to be an Einstein space by the eoms. The low-d equations
read

Gαβ =
1
2∂αφ∂βφ+

gαβ
2

[
−2Λe−δφ +R[X ]e−

2φ
pδ

]
�φ = −2δΛe−δφ +

2
pδR[X ]e−

2φ
pδ
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From AdS to nonconformal branes

S =

∫
dd+1x

√
−g [R− 2Λ]

+

ds2(d+1) = e−δφds2(p+2) + e
2φ
pδ (1− p

2 δ
2)dX 2

(d−p−1) , R[X ]ij =
R[X ]hij
d−p−1

⇓

S =

∫
dp+2x

√
−g
[
R− 1

2∂φ
2 − 2Λe−δφ +R[X ]e−

2φ
pδ

]
X is constrained to be an Einstein space by the eoms. The low-d equations
read

Gαβ =
1
2∂αφ∂βφ+

gαβ
2

[
−2Λe−δφ +R[X ]e−

2φ
pδ

]
�φ = −2δΛe−δφ +

2
pδR[X ]e−

2φ
pδ

The low-d action and field equations are invariant under

−2Λ←→R[X ] , δ ←→ 2
pδ [Goutéraux&al’11]

Pointed out by [Charmousis&Gregory’03] for Weyl metrics.
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From AdS to Ricci-flat spacetimes

Let us take advantage of this invariance and derive our previous
statement.
Classical solutions of the action

S =

∫
dd+1x

√
−g [R− 2Λ]

which respect the following symmetries

ds2(d+1) = e−δφds2(p+2) + e
2φ
pδ (1− p

2 δ
2)dR2

(d−p−1) , R[R] = 0
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From AdS to Ricci-flat spacetimes

Let us take advantage of this invariance and derive our previous
statement.
Classical solutions of the action

S =

∫
dd+1x

√
−g [R− 2Λ]

which respect the following symmetries

ds2(d+1) = e−δφds2(p+2) + e
2φ
pδ (1− p

2 δ
2)dR2

(d−p−1) , R[R] = 0

can be mapped to classical solutions of the action

S =

∫
dp+n+3x

√
−g R

which respect the symmetries

ds2(p+n+3) = e−
2φ
pδ ds2(p+2) + eδφ

(
1− 2

pδ2

)
dX 2

(n+1) , R[X ]ij =
R[X ]hij
n + 1
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Mapping the AdS planar black hole to a Ricci flat p-brane

Start from the nonconformal black brane

ds2 = r
2θ
p

[
L2dr 2

r 2f (r)
+
−f (r)dt2 + dR2

(p)

r 2

]
, f (r) = 1− r p+1−θ

r p+1−θ
0

eφ = r
2θ
pδ = r

2pδ
pδ2−2 , V0 =

(p − θ)(p + 1− θ)

L2 ,
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Mapping the AdS planar black hole to a Ricci flat p-brane

Start from the nonconformal black brane

ds2 = r
2θ
p

[
L2dr 2

r 2f (r)
+
−f (r)dt2 + dR2

(p)

r 2

]
, f (r) = 1− r p+1−θ

r p+1−θ
0

eφ = r
2θ
pδ = r

2pδ
pδ2−2 , V0 =

(p − θ)(p + 1− θ)

L2 ,

If δ2 ≤ 2
p , lift using

pδ2

2 =
d − p − 1

d − 1 , V0 = −2Λ

and find

ds2 =
L2dr 2

r 2f (r)
+
−f (r)dt2 + dR2

(d+p−1)

r 2

f (r) = 1− r d

r d
0

The AdS planar black hole
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Mapping the AdS planar black hole to a Ricci flat p-brane

Start from the nonconformal black brane

ds2 = r
2θ
p

[
L2dr 2

r 2f (r)
+
−f (r)dt2 + dR2

(p)

r 2

]
, f (r) = 1− r p+1−θ

r p+1−θ
0

eφ = r
2θ
pδ = r

2pδ
pδ2−2 , V0 =

(p − θ)(p + 1− θ)

L2 ,

If δ2 ≤ 2
p , lift using

pδ2

2 =
d − p − 1

d − 1 , V0 = −2Λ

and find

ds2 =
L2dr 2

r 2f (r)
+
−f (r)dt2 + dR2

(d+p−1)

r 2

f (r) = 1− r d

r d
0

The AdS planar black hole

If δ2 ≥ 2
p , lift using

pδ2

2 =
n + p + 1

n + 1 , V0 = R[X ]

and find

ds2 = −f (r)dt2+dR2
(p)+

dr 2

f (r)
+r 2dX(n+1)

f (r) = 1− r n
0

r n

The Ricci-flat black p-brane
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Analytic continuation
Going from one side ( AdS ) to the other ( Ricci-flat ) seems to
imply (

pδ2

2 = d−p−1
d−1

pδ2

2 = n+p+1
n+1

)

d = −n !

This is useful to derive Ricci-flat solutions from AdS ones without
going through the nonconformal branes. It does not mean Ricci
flat theories are AdS theories in negative dimensions. . .

The analytic continuation always occur at the level of the low-d
theory, where d and n are nolonger spacetime dimensions:
generalised dimensional reduction [Kanitscheider&Skenderis’09].

Families of AdS solutions are mapped to families of Ricci-flat
solutions (d and n must not be fixed)
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Holographic dictionary for nonconformal branes,
[Kanitscheider&al’08,Withers&Wiseman’08,Kanitscheider&Skenderis’09]

Can be obtained in the dual frame from the AdS dictionary using the
dimensional reduction

1 FG-expansion (specialising to planar boundaries)

ds2(p+2)

`2
=

dρ2

4ρ2 +
1
ρ
gαβ(ρ, zγ)dzαdzβ ,

gαβ = δµαδ
ν
βgµν ⇒ g(ρ, z) = g(0)(z) + ρ

d
2 g(d)(z) + . . . ,

2 The lower-dimensional scalar operator derives from the breathing
mode

gab = δµa δ
ν
b gµν = ρe

2φ
n+1 δab = eψδab

ψ(ρ, z) = ψ(0) + ρ
d
2 ψ(d)(z) + . . . .
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Holographic dictionary for nonconformal branes,
[Kanitscheider&al’08,Withers&Wiseman’08,Kanitscheider&Skenderis’09]

It is now straightforward to derive the 1-point functions of the
lower-dimensional dual operators:

Tαβ =
`d−1deψ(0)

16πGN
g(d)αβ , Oφ = −

`d−1deψ(0)ψ(d)

16πGN
.

The reduced Ward identity shows that the scalar operator
parametrises deviation from conformality:

T α
α = −(n + p + 1)Oφ .

The scalar operator acts as a source in the stress-tensor
conservation equation:

∂αTαβ − ∂αψ(0)Ôφ = 0 .
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Towards a holographic dictionary for Ricci-flat p-branes?

Lift up the nonconformal FG expansion

ds2 =

(
1− `n+1

n rn Oφ −
`n+1�zOφ

2n(n − 2)rn−2

)(
dr2 + ηαβdzαdzβ + r2dΩ2

n+1
)

−
(
`n+1

n rn Tαβ +
`n+1�zTαβ

2n(n − 2)rn−2

)
dzαdzβ + O

(
T 2

r2n

)
+ O

(
∂4T
rn−4

)
.

Regulate potential terms spoiling the asymptotics? Derivative expansion?
Can these terms be resummed?

14



Motivations From AdS to Ricci-flat Hydrodynamics GL instability

Towards a holographic dictionary for Ricci-flat p-branes?
(2)

What is the meaning of Tαβ? Look at the linear perturbation at large r

ds2 = (ηAB + hAB + . . . ) dxAdxB

⇓

�r ,z

(
hAB −

hC
C
2 ηAB

)
= δαAδ

β
BTαβδ(r)

(Minus) The holographic stress-tensor acts as a source for the faraway
gravitational field

Still true at linear order and higher derivatives

Note: Other methods [Mann&Marolf’05, Kraus&al’99, Brown&York’92] do
not yield a finite stress-tensor.
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Fluid metrics in AdS

Generically, field theories are expected to equilibrate locally at high
enough density. Thus, they should be amenable to a hydrodynamic
description in a suitable long wavelength limit.
AdS/CFT: hydrodynamic limit on both sides. In this limit, Einstein
equations equivalent to Navier-Stokes equations.

[Hubeny&al’11]

Patch-wise construction: build a
perturbative black hole with
slowly-varying temperature and
fluid velocity.
[Batthacharyya&al’07,’08]

Correct the solution order by
order in a derivative expansion
to account for viscous
corrections.16
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Fluid metric and stress-tensor in AdS
Original construction, [Batthacharyya&al’07,’08]: in EF coordinates.

To derive the holographic stress-tensor, go to FG coordinates and
select the d/2 mode in the FG expansion, [Caldarelli&al’12].

∇µTµν = 0

Tµν = P (gµν + duµuν)− 2ησµν − 2ητω
[
uλDλσµν + ωµ

λσλν + ων
λσµλ

]
+ 2ηb

[
uλDλσµν + σµ

λσλν −
σαβσ

αβ

d − 1 Pµν
]

b ≡ d
4πT P =

1
bd η =

s
4π =

1
bd−1 τω = b

∫ ∞
1

ξd−2 − 1
ξ(ξd − 1)

dξ .

Conformal symmetry organises the allowed conformal structure
[Baier&al’07].

Sound modes (δb, δuµ) are stable [Bhattacharyya&al’07,Baier&al’07]
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Blackfolds in Ricci flat spacetimes

Idea: describe the dynamics of long wavelength deformations of
black branes by an effective worldvolume theory, [Emparan&al’09].

Possible whenever there is a separation of scales: Horizon length
scale much smaller than the background curvature radius: r0 << L.

The dynamics of black branes is captured by two sets of equations,
[Camps&Emparan’12]:

extrinsic (bending the brane) intrinsic (internal fluctuations of
the brane)

Our map recovers the (1st order) blackfold metric from the (1st
order) fluid/gravity metric [Caldarelli&al’13].

18



Motivations From AdS to Ricci-flat Hydrodynamics GL instability

Blackfold hydrodynamic stress tensor from AdS
Get the Ricci-flat second order stress tensor: ∇αTαβ = 0

Tαβ = P (ηαβ − nuαuβ)− 2ησαβ − ζθPαβ

+ 2ητω
[
PαγPβδσ̇γδ −

θσαβ
n + 1 + 2ω(α

γσβ)γ

]
+ ζτω

[
Pαβ θ̇ −

1
n + 1θ

2 Pαβ
]

− 2ηr0
[

PαγPβδσ̇γδ +

(
2
p +

1
n + 1

)
θσαβ + σα

γσγβ +
σ2

n + 1Pαβ
]

− ζr0
[

Pαβ θ̇ +

(
1
p +

1
n + 1

)
θ2Pαβ

]
P = −Ω(n+1)r n

0 , ε = −(n + 1)P , c2
s = − 1

n + 1 ,

η =
s
4π = Ω(n+1)r n+1

0 , ζ = 2η
(
1
p − c2

s

)
, τω =

r0
n Harmonic

(
−2

n − 1
)
.

“Hidden” conformal symmetry still organises its coefficients and tensor
structure
Coincides at 1st order with previous results, [Camps&al’10]

Divergent for n = 1 and n = 2.
19
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Black strings n = 1

Trouble: subleading terms in the Fefferman-Graham expansion now
become of the same order as the boundary metric and the
stress-tensor . More explicitly

g = η +ρd/2 g(d/2) +ρ1+d/2g(1+d/2)+ρ
d+1g(d+1)+ρ

3d/2g(3d/2)+ρ
1+3d/2g(1+3d/2)+. . .

For n = 1 ↔ d = −1, terms are mixing and logarithms appear:
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Black strings n = 1

Trouble: subleading terms in the Fefferman-Graham expansion now
become of the same order as the boundary metric and the
stress-tensor . More explicitly

g = η +ρd/2 g(d/2) +ρ1+d/2g(1+d/2)+ρ
d+1 g(d+1) +ρ3d/2g(3d/2)+ρ

1+3d/2 g(1+3d/2) +. . .

For n = 1 ↔ d = −1, terms are mixing and logarithms appear:

d + 1 = 0 : changes the boundary metric
1 + 3d/2 = −1/2 : contributes to the stress-tensor
This can be cured by a second-order change of boundary
coordinates.

(Need also to change boundary conditions to avoid spurious
divergences in metric functions)
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Black strings n = 1: “conformal anomalies”

The equation for the stress-tensor is modified by non-linear pieces
acting like conformal anomalies

∂µTµν +
1
4

TµρTµ σ∂ρ �Tνσ +
1
2

TµρTσκ∂µρσTνκ −
37
48

TµρTσκ∂νµρTσκ +
1
3

TµρTσκ∂νµσTρκ

−
1
2

Tµρ∂µTν σ �Tρσ +
1
4

Tµρ∂µTρ σ �Tνσ +
11
24

Tµρ∂µTσκ ∂νρTσκ −
4
3

Tµρ∂µTσκ ∂νσTρκ

+ Tµρ∂µTσκ ∂σκTνρ +
1
4

Tµρ∂νTµ σ �Tρσ −
13
48

Tµρ∂νTσκ ∂µρTσκ +
7
6

Tµρ∂νTσκ ∂µσTρκ

−
37
48

Tµρ∂νTσκ ∂σκTµρ +
7
6

Tµρ∂σTµ κ ∂νκTρσ −
1
3

Tµρ∂σTµ κ ∂νρTσκ − Tµρ∂σTµ κ ∂ρκTνσ

+
1
32

Tµρ∂σTµρ �Tνσ −
1
2

Tµρ∂σTν κ ∂µκTρσ −
1
2

Tµρ∂σTν κ ∂µρTσκ +
1
2

Tµρ∂σTν κ ∂µσTρκ

−
3
8

Tµρ∂σTν κ ∂σκTµρ +
1
2

Tν µ∂µTρσ �Tρσ −
1
2

Tν µ∂ρTµ σ �Tρσ −
1
4

Tν µ∂ρTσκ ∂µρTσκ

+
1
8
∂
µTν ρ ∂µTσκ ∂ρTσκ −

1
2
∂
µTν ρ ∂µTσκ ∂σTρκ −

1
2
∂
µTν ρ ∂ρTσκ ∂σTµκ + ∂

µTν ρ ∂σTµ κ ∂κTρσ

−
1
48
∂
µTρσ ∂κTρσ ∂νTµκ +

1
6
∂
µTρσ ∂νTµ κ ∂ρTκσ −

5
12
∂νTµρ ∂σTµ κ ∂κTρσ = 0 ,

(Cadabra!)
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Black strings n = 1: Renormalised stress-tensor

Eventually, one finds a divergence-free, Landau frame stress-tensor:

Tαβ = P (ηαβ − uαuβ)− 2ησαβ − ζθPαβ

+bη
[13
8 σγ(αωβ)

γ +
15
16σαγσβ

γ +
9
16ωαγω

γ
β +

7
4uγ∂γσαβ +

9
16θσαβ

+
9
16aαaβ −

7
2aγu(ασβ)γ + Pαβ

(
− 5
32ω

2 − 69
32σ

2 +
15
16θ

2 − 15
8 θ̇ −

3
32a2

)]
+bζ

[
15
16θσαβ + Pαβ

(
7
8 θ̇ −

15
8 θ

2 +
15(p + 2)

64p θ2
)]

P = b , η = b2 , ζ = η
p + 2

p
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GL instability

Sufficiently long black strings are unstable
to long wavelength, linear, spherically
symmetric perturbations
[Gregory&Laflamme’94]

23
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GL instability

Sufficiently long black strings are unstable
to long wavelength, linear, spherically
symmetric perturbations
[Gregory&Laflamme’94]

Threshold mode at finite kc
The hydro approximation should capture
the small k behaviour

23
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Dispersion relation n = 7 (numerics P. Figueras)

Ω =
1√

n + 1
k − 2 + n

n(1 + n)
k2 +

(2 + n)[2 + n(2τω − 1)]

2n2(1 + n)3/2
k3 + O(k4)

0.0 0.5 1.0 1.5 2.0 2.5
k r0

0.05

0.10

0.15

0.20

W r0

Correct shape captured already at quadratic order [Camps&al’10].
The low n fit is improved at cubic order , but is not so good for
finite k: expected
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Dispersion relation n = 100 (numerics P. Figueras)

Ω =
1√

n + 1
k − 2+n

n(1+n)
k2 + (2+n)[2+n(2τω−1)]

2n2(1+n)3/2
k3 + O(k4)

0 2 4 6 8 10
k r0

0.05

0.10

0.15

0.20

0.25
W r0

Impressive agreement!
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Dispersion relation n = 100 (numerics P. Figueras)

Ω =
1√

n + 1
k − 2+n

n(1+n)
k2 + (2+n)[2+n(2τω−1)]

2n2(1+n)3/2
k3 + O(k4)

Does the large n limit capture the threshold mode exactly? [Emparan&al’13]

k =
4πT√

n

(
1 − 1

2n + O
( 1
2n2

))
agrees with [Kol&al’07, Emparan&al’13]
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Dispersion relation for n = 1 (numerics P. Figueras)

Ω =
1√
3

k − 2
3k2 + 5

6
√
3k3 + O(k4) .

0.0 0.2 0.4 0.6 0.8
k r0

0.02

0.04

0.06

0.08

W r0

The k3 term spoils the capture of the threshold mode: but then we had not
right to expect it in low n. Asymptotic expansion?
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Summary

Asymptotically locally AdS solutions with a planar subspace
can be mapped to Ricci-flat solutions with a transverse sphere
using generalised dimensional reduction.
Hydrodynamic metrics in AdS and in Ricci-flat are equivalent.
The holographic stress-tensor becomes the source of the
p-brane effective stress tensor. “Hidden” conformal symmetry
organises its tensor structure.
We used this to obtain the cubic dispersion relation of the GL
instability. At large n, the curve lies on top of the numerics.
For low n, the cubic term improves over the quadratic one,
but the finite k results are expectedly less impressive.
Asymptotic expansion for n = 1, 2 ?
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Outlook

Deformations of the sphere? (extrinsic blackfold
perturbations, [Camps&Emparan’12])

Curved boundary metrics (Schwarzschild black hole)?

The limit n = −1 (vanishing transverse sphere) recovers
known results about the Rindler fluid, [Strominger&al’11,

Skenderis&al’11, Skenderis&al’12 ,Oz&al’12]. Holography?

Connection with literature on “hidden” conformal symmetry in
general asymptotically flat black holes?
[Castro&al’10,Cvetic&Larsen’11]
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