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The latest cosmological data from Planck

The CMB sky as seen from Planck mission

agree impressively well with a Universe which at large scales is :



. . . . . .

homogeneous,

isotropic

spatially flat,

(well described by a FRW spatially flat geometry).
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The Planck CMB pattern as compared to the corresponding

pattern of COBE and WMAP
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A theoretical puzzle:

A flat FRW Universe is extremely fine tuned solution in GR.

Many attempts have been put forward to solve this puzzle.

However, the most developed and yet simple idea still remains

Inflation. Inflation solves homogeneity, isotropy and flatness

problems in one go just by postulating a rapid expansion of the

early time Universe post Big Bang.

A phenomenological implementation of Inflation: “slow rolling”

scalar field
the Inflaton
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Homogeneous and isotropic Universe is described by the FRW

metric

ds2 = −dt2 + a(t)2dx⃗2 (1)

whereas the gravitational dynamics is governed by Einstein

equation

Rµν −
1

2
gµνR = 8πGTµν (2)



. . . . . .

Einstein equations are written for the FRW cosmology

ä

a
= −4πG

3
(ρ+ 3p)

H2 =

(
ȧ

ȧ

)2

=
8πG

3
ρ (3)

from where the conservation equation

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (4)

follows.
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Inflation is driven by a scalar field ϕ with a generic potential of the

form
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Dymanics is described by the Lagrangian

L =
1

16πG
R − 1

2
∂ϕ2 − V (ϕ) (5)

with corresponding energy density and pressure

ρ =
1

2
ϕ̇+ V (ϕ) (6)

p =
1

2
ϕ̇− V (ϕ) (7)

When potential energy dominates kinetic energy

1

2
ϕ̇ << V (ϕ) (8)

we get an equation of state

p ≈ −ρ , a ≈ eHt , H = const. (9)
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This is an almost de Sitter background, specified by the slow-roll

parameters

ϵ =
M2

P

2

(
V ′

V

)2

, η = M2
P

(
V ′′

V

)
(10)

In the quasi-de Sitter phase

ϵ << 1, η << 1 (11)

An important quantity is the number of e-folds

N = log
af
ai

=

∫ tf

ti

Hdt (12)

which, in terms of the scalar is written as

N =

∫ ϕf

ϕi

8πG

3

V

V ′ dϕ (13)
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The four-dimensional

de Sitter spacetime

of radius H−1 is described

by the hyperboloid defined by

ηABX
AXB = −X 2

0 + X 2
i + X 2

5 =
1

H2
(i = 1, 2, 3), (14)

embedded in 5D Minkowski spacetime M1,4 with coordinates XA

and flat metric ηAB = diag(−1, 1, 1, 1, 1). A particular

parametrization of the de Sitter hyperboloid is provided by
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X 0 =
1

2H

(
Hη − 1

Hη

)
− 1

2

x2

η
,

X i =
x i

Hη
,

X 5 = − 1

2H

(
Hη +

1

Hη

)
+

1

2

x2

η
, (15)

which may easily be checked that satisfies Eq. (14). The de Sitter

metric is the induced metric on the hyperboloid from the

five-dimensional ambient Minkowski spacetime

ds25 = ηABdX
AdXB . (16)
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For the particular parametrization (15), for example, we find

ds2 =
1

H2η2
(
−dη2 + dx⃗2

)
. (17)

The group SO(1, 4) acts linearly on M1,4. Its generators are

JAB = XA
∂

∂XB
− XB

∂

∂XA
A,B = (0, 1, 2, 3, 5) (18)

and satisfy the SO(1, 4) algebra

[JAB , JCD ] = ηADJBC − ηACJBD + ηBCJAD − ηBDJAC . (19)
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We may split these generators as

Jij , P0 = J05 , Π+
i = Ji5 + J0i , Π−

i = Ji5 − J0i , (20)

which act on the de Sitter hyperboloid as

Jij = xi
∂

∂xj
− xj

∂

∂xi
,

P0 = η
∂

∂η
+ x i

∂

∂x i
,

Π−
i = −2Hηx i

∂

∂η
+ H

(
x2δij − 2xixj

) ∂

∂xj
− Hη2

∂

∂xi
,

Π+
i =

1

H

∂

∂xi
(21)
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They satisfy the commutator relations

[Jij , Jkl ] = δilJjk − δikJjl + δjkJil − δjlJik ,

[Jij ,Π
±
k ] = δikΠ

±
j − δjkΠ

±
i ,

[Π±
k ,P0] = ∓Π±

k ,

[Π−
i ,Π

+
j ] = 2Jij + 2δijP0. (22)

This is the SO(1, 4) algebra written in a strange base.
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More standard generators are

Lij = iJij , D = −iP0 , Pi = −iΠ+
i , Ki = iΠ−

i , (23)

we get

Pi = − i

H
∂i ,

D = −i

(
η
∂

∂η
+ x i∂i

)
,

Ki = −2iHxi

(
η
∂

∂η
+ x i∂i

)
− iH(−η2 + x2)∂i ,

Lij = i

(
xi

∂

∂xj
− xj

∂

∂xi

)
. (24)

These are also the Killing vectors of de Sitter spacetime.
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They generate space translations (Pi ), dilitations (D), special

conformal transformations (Ki ) and space rotations (Lij). They

satisfy the conformal algebra in its standard form

[D,Pi ] = iPi , (25)

[D,Ki ] = −iKi , (26)

[Ki ,Pj ] = 2i
(
δijD − Lij

)
(27)

[Lij ,Pk ] = i
(
δjkPi − δikPj

)
, (28)

[Lij ,Kk ] = i
(
δjkKi − δikKj

)
, (29)

[Lij ,D] = 0, (30)

[Lij , Lkl ] = i
(
δilLjk − δikLjl + δjkLil − δjlLik

)
. (31)
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The de Sitter algebra SO(1, 4) has two Casimir invariants

C1 = −1

2
JABJ

AB , (32)

C2 = WAW
A , W A = ϵABCDEJBCJDE . (33)

Using Eqs. (20) and (23), we find that

C1 = D2 +
1

2
{Pi ,Ki}+

1

2
LijL

ij , (34)

which turns out to be, in the explicit representation Eq. (24),

H−2C1 = − ∂2

∂η2
− 2

η

∂

∂η
+∇2. (35)



. . . . . .

As a result, C1 is the Laplace operator on the de Sitter hyperboloid

and for a scalar field ϕ(x) we have

C1ϕ(x) =
m2

H2
ϕ(x). (36)

Super horizon scales: Let us now consider the case Hη ≪ 1. The

parametrization (15) turns out then to be

X 0 = − 1

2H2η
− 1

2

x2

η
,

X i =
x i

Hη
,

X 5 = − 1

2H2η
+

1

2

x2

η
(37)
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We may easily check that the hyperboloid has been degenerated to

the hypercone

−X 2
0 + X 2

i + X 2
5 = 0. (38)

We identify points XA ≡ λXA (which turns the cone (38) into a

projective space). As a result, η in the denominator of the XA can

be ignored due to projectivity condition. Then, on the cone, the

conformal group acts linearly, whereas induces the (non-linear)

conformal transformations
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xi → x ′i with

x ′i = ai +M j
i xj , x ′i = λxi , (39)

x ′i =
xi + bix

2

1 + 2bixi + b2x2
. (40)

on Euclidean R3 with coordinates x i . They correspond to

translations and rotations (Pi , Lij), dilations (D) and special

conformal transformations (Ki ), respectively, acting now on the

constant time hypersurfaces of de Sitter spacetime. Special

conformal transformations can be written in terms of inversion

xi → x ′i =
xi
x2

(41)

as inversion×translation×inversion.
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The representations of the SO(1, 4) algebra are constructed by

employing the method of induced representations. Let us consider

the stability subgroup at x i = 0 which is the group G generated by

(Lij ,D,Ki ). It is easy to see from the conformal algebra, that Pi

and Ki are actually raising and lowering operators for the dilation

operator D. Therefore there should be states which will be

annihilated by Ki . Every irreducible representation will then be

specified by an irreducible representation of the rotational group

SO(3) (i.e. its spin) and a definite conformal dimension

annihilated by Ki .
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Representations ϕs (⃗0) of the stability group at x⃗ = 0⃗ with spin s

and dimension ∆ are specified by

[Lij , ϕs (⃗0)] = Σ
(s)
ij ϕs (⃗0),

[D, ϕs (⃗0)] = −i∆ϕs (⃗0),

[Ki , ϕs (⃗0)] = 0, (42)

where Σ
(s)
ij is a spin-s representation of SO(3). Those

representations ϕs (⃗0) that satisfy the relations (42) are primary

fields. Once the primary fields are known, all other fields, the

descendants, are constructed by taking derivatives of the primaries

∂i · · · ∂jϕs (⃗0).
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In particular, we have for scalars

[C1, ϕ(⃗0)] = −∆(∆− 3)ϕ(⃗0), (43)

which implies that their masses are

m2 = −∆(∆− 3)H2. (44)

It can be shown that the scalar representations of the de Sitter

group SO(1, 4) actually splits into three distinct series:

1) the principal series with masses m2 ≥ 9H2/4,

2) the complementary series, 0 < m2 < 9H2/4 and

3)the discrete series. Only the principal representations survive the

Winger-Inonü contraction (H → 0) to the Poincáre group.
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What we have learned up to now:

1) The Universe undergone an inflationary phase driven by the

inflaton

2) During this phase, space time is almost de Sitter

3) At superhorizon scales (Hη << 1) the theory should exhibit 3D

conformal symmetry at equal time hypersurfaces (dS/CFT

Correspondence)
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The CMB sky is not exactly

isotropic. Density anisotropies

at the time of recombination

are imprinted as temperature

anisotropies in the CMB today.

The anisotropies are divided into two types:

1) primary anisotropy, due to effects which occur at the last

scattering surface and before and

2) secondary anisotropy, due to effects such as interactions of the

background radiation with hot gas or gravitational potentials,

which occur between the last scattering surface and the observer.
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The structure

of the cosmic microwave

background anisotropies is

principally determined by two

effects: acoustic oscillations

and diffusion (Silk) damping.

The acoustic oscillations arise because of a conflict in the

photonbaryon plasma in the early universe which gives the

microwave background its characteristic peak structure. The peaks

correspond, roughly, to resonances in which the photons decouple

when a particular mode is at its peak amplitude.
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The peaks contain interesting physical signatures. The angular

scale of the first peak determines the curvature of the universe

(but not the topology of the universe). The next peak - ratio of

the odd peaks to the even peaks - determines the reduced baryon

density. The third peak can be used to get information about the

dark matter density. The locations of the peaks also give

important information about the nature of the primordial density

perturbations.
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There are two fundamental types of density perturbations:

adiabatic and isocurvature. A general density perturbation is a

mixture of both, and different theories that try to explain the

primordial density perturbation spectrum predict different mixtures.
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Types of density perturbations:

1) Adiabatic density perturbations:

The fractional additional density of each type of particle (baryons,

photons ...) is the same.

Cosmic inflation predicts that the primordial perturbations are

adiabatic.

2) Isocurvature density perturbations:

In each place the sum (over different types of particle) of the

fractional additional densities is zero.

Cosmic strings would produce mostly isocurvature primordial

perturbations.
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The CMB spectrum can distinguish between these two because

these two types of perturbations produce different peak locations.

Isocurvature density perturbations produce a series of peaks whose

angular scales (ℓ-values of the peaks) are roughly in the ratio

1:3:5:..., while adiabatic density perturbations produce peaks whose

locations are in the ratio 1:2:3:... Observations are consistent with

the primordial density perturbations being entirely adiabatic,

providing key support for inflation, and ruling out many models of

structure formation involving, for example, cosmic strings.
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Detection of non-adiabatic fluctuations immediately rule out

single-field inflation models.

What is measured today is that

| δρcρc
− 3δργ

4ργ
|

1
2 |

δρc
ρc

− 3δργ
ργ

|
< 0.09 (95%CL) (45)

Are there other quantities which allow us discriminate between

various inflationary models, consistent though with Planck data?
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It is customary in cosmology to express the observables such as

temperature or polarization anisotropies or large scale distribution

of galaxies in terms of curvature perturbations in the uniform

density gauge denoted by ζ. There is a formalism (called

δN-formalism), which relates ζ with the perturbations δN in the

number of e-folds N,arising from the perturbation of the initial

scalar field ϕin in flat gauge

ζ(x , t) = δN(x , t) (46)
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But what is the origin of the cosmological perturbations?

Is it the scalar field that drives inflation (inflaton), or

Is it another (scalar) field (curvaton)?
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1st possibility:

Density perturbation are generated by the inflaton. In this case we

get

ζ = δN =
δN

δϕ
δϕ =

H

ϕ̇
δϕ
∣∣
k=aH

(47)

with power spectrum

Pζ =
1

2

(
H

2πMPϵ1/2

)2( k

aH

)ns−1

(48)

and spectral index

ns = 1 + 2η − 6ϵ (49)
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2nd possibility:

perturbations are generated by fields other that the inflaton

σ ̸= ϕ (50)

These are the curvaton models.

Both types of models of the 1st and 2nd possibility predict:

negligible tensor modes (i.e., r = 16ϵ for the inflaton)

almost scale invariant spectrum (spectral index close to unity)
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Quest: How to discriminate inflationary models?

Scalar spectral index of curvature perturbations and the

tensor-to-scalar amplitude ratio is not enough to distinguish

between inflationary models that are degenerate on the basis of

their power spectra alone.
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Basic assumption in deriving the spectrum of perturbations is that

they are Gaussian.

(Gaussian ⇐⇒ free non-interacting fields, collection of harmonic

oscillators. No mode-mode coupling )

We should go beyond the linear theory.
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Non-Gaussianity goes beyond the linear theory. Primordial NG is

one of the most informative finger prints of the origin of structure

in the Universe, probing physics at extremely high energy scales

inaccessible to laboratory experiments. Possible departures from a

purely Gaussian distribution of the CMB anisotropies provide

powerful observational access to this extreme physics
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Primordial NG in single-field slow-roll models of inflation is

suppressed by the slow-roll parameter

fNL ∼ O(ϵ, η) ∼ 10−2 (51)

Similarly, in the squeezed limit

fNL ∼ ns − 1 , k1 << k2, k3 (52)

Therefore if NG is observed in this configuration, all single field

models are ruled out.
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In multifield models, the NG of the curvature perturbation is

sourced by light fields other than the inflaton. By the δN

formalism, the comoving curvature perturbation ζ on a uniform

energy density hypersurface at time tf is, on sufficiently large

scales,

ζ(tf , x⃗) = NIσ
I +

1

2
NIJσ

IσJ + · · · , (53)

where NI and NIJ are the first and second derivative, respectively,

of the number of e-folds

N(tf , t∗, x⃗) =

∫ tf

t∗

dt H(t, x⃗). (54)

with respect to the field σI .



. . . . . .

From the expansion (53) one can read off the n-point correlators.

For instance, the three- and four-point correlators of the comoving

curvature perturbation, the so-called bispectrum and trispectrum

respectively,

Bζ(k⃗1, k⃗2, k⃗3) = ⟨ζk1ζk2ζk3⟩ (55)

Tζ(k⃗1, k⃗2, k⃗3, k⃗4) = ⟨ζk1ζk2ζk3ζk4⟩ (56)

is given by

Bζ(k⃗1, k⃗2, k⃗3) = NINJNKB
IJK
k⃗1k⃗2k⃗3

+NINJKNL

(
P IK
k⃗1
PJL
k⃗2
+ 2 perm.

)
(57)
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Tζ(k⃗1, k⃗2, k⃗3, k⃗4) = NINJNKNLT
IJKL
k⃗1k⃗2k⃗3k⃗4

+ NIJNKNLNM

(
P IK
k⃗1
BJLM
k⃗12k⃗3k⃗4

+11 perm.
)

+ NIJNKLNMNN

(
PJL
k⃗12

P IM
k⃗1

PKN
k⃗3

+11 perm.
)

+ NIJKNLNMNN

(
P IL
k⃗1
PJM
k⃗2

PKN
k⃗3

+3 perm.
)
,

where

⟨σI
k⃗1
σJ
k⃗2
⟩ = (2π)3δ(k⃗1 + k⃗2)P

IJ
k⃗1
,

⟨σI
k⃗1
σJ
k⃗2
σK
k⃗3
⟩ = (2π)3δ(k⃗1 + k⃗2 + k⃗3)B

IJK
k⃗1k⃗2k⃗3

,

⟨σI
k⃗1
σJ
k⃗2
σJ
k⃗3
σL
k⃗4
⟩ = (2π)3δ(k⃗1 + k⃗2 + k⃗3k⃗4)T

IJKL
k⃗1k⃗2k⃗3k⃗4

, (58)
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We see that the three-point correlator of ζ is the sum of two

pieces. One, proportional to the three-point correlator of the σI

fields, is model-dependent and present when the fields σI are

intrinsically NG. The second one is universal and is generated when

the modes of the fluctuations are superhorizon and is present even

if the σI fields are gaussian. Even though the intrinsically NG

contributions to the n-point correlators are model-dependent, their

forms are dictated by the conformal symmetry of the de Sitter

stage (although their amplitudes remain model-dependent).
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Let us consider now the constraints imposed by scale and

conformal invariance to the n-point correlators. Rotation and

translation invariance require correlators of the operators at points

x⃗1 and x⃗2 to depend on |⃗x1 − x⃗2|. As is well known, the correlator

of two operators is completely determined by their scale dimensions

whereas the functional form of 3-pt correlator is also determined by

their dimensions.

⟨σI (x⃗1)σ
J(x⃗2)⟩ =

cIJ
|⃗x1 − x⃗2|∆I+∆J

, (59)

⟨σI (x⃗1)σ
J(x⃗2)σ

K (x⃗3)⟩ =
cIJK

|⃗x1 − x⃗2|wK |⃗x2 − x⃗3|wI |⃗x3 − x⃗1|wJ
,

where (wI + wJ + wK ) = ∆I +∆J +∆K = 3∆.



. . . . . .

In momentum space

⟨σI
k⃗1
σJ
k⃗2
⟩′ = cIJ k

∆I+∆J−3
1 , (60)

⟨σI
k⃗1
σJ
k⃗2
σK
k⃗3
⟩′ = cIJK2

7−3∆π
5
2
Γ(3− 3∆

2 )Γ(3−∆K
2 )

Γ(∆I
2 )Γ(∆J

2 )

× k3∆−6
1

∫ 1

0
du

(1− u)
1
2
−∆I

2 u
1
2
−∆J

2

[(1−u)X+uY ]3−
3∆
2

× 2F1

(
3− 3∆

2
,
∆K

2
,
3

2
,Z
)
+ cyclic, (61)

where

X =
k22
k21

, Y =
k23
k21

, Z = 1− u(1−u)

(1−u)X+uY
. (62)
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This form of the 3-pt fuction is very general and one should

consider various limits of it. The so-called squeezed limit

k1 ≪ k2 ∼ k3 of the 3-pt function is particularly interesting from

the observationally point of view because it is associated to the

simplest model of NG, the so-called local one in which the total

initial adiabatic curvature is a local function of its gaussian

counterpart ζg, e.g.

ζ = ζg +
3f localNL

5
(ζ2g − ⟨ζ2g ⟩) + · · ·

The local model leads to pronounced effects of NG on the

clustering of DM halos and to strongly scale-dependent bias.
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Figure: (a) Squeezed three-point configuration with two points (b) Local

shape in k-space with k1 ≪ k2 ∼ k3.

Applying the squeezed limit to the general expression we find

⟨σI
k⃗1
σJ
k⃗2
σK
k⃗3
⟩′ ∼ γs

cIJK

k3−2w
1 k3−w

2

+ cyclic (k1 ≪ k2 ∼ k3). (63)
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The OPE is a very powerful tool to analyze the squeezed limit of

the three-point correlator and the collapsed and squeezed limit of

the four-point correlator. Let us consider two generic operators

σI (x⃗) and σJ(y⃗) at the points x⃗ and y⃗ on a τ = constant

hypersurface of de Sitter spacetime. Then, we expect that the

product of local operators at distances small compared to the

characteristic length of the system should look like a local operator

short-distance expansion of the form

σI (x⃗)σJ(y⃗)
x⃗→y⃗∼

∑
n

Cn(x⃗ − y⃗ ; g)On(y⃗), (64)

where Cn(x⃗ − y⃗) are c-number functions (in fact distributions), On

local operators and g is the coupling.
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Let us consider the OPE

σI (x⃗)σJ(y⃗)
x⃗→y⃗∼

∑
K

C IJ
K (x⃗ − y⃗ ; g)σK (y⃗) + · · · (65)

The n- and (n + 1)-point functions are given by

g
I1···In+1

n+1 (x1, . . . , xn+1;µ, g) = ⟨σI1(x1) · · ·σIn+1(xn+1)⟩′,(66)

g I1···In
n (x1, . . . , xn;µ, g) = ⟨σI1(x1) · · ·σIn(xn)⟩′, (67)

where µ a mass scale.
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These correlators satisfy the Callan-Symanzik equation(
µ

∂

∂µ
+ β

∂

∂g
+
∑
I

γI

)
g I
i = 0, (i = n, n + 1), (68)

where β is the usual β-function and γI the anomalous dimension of

σI . Using the OPE expansion one finds immediately that

g
I1...In+1

n+1 =
∑
K

C
InIn+1

K g
I1...In−1K
n . (69)

Then, the coefficients of the OPE expansion are also satisfy the

Callan-Symanzik equation(
µ

∂

∂µ
+ β

∂

∂g
+ γI + γJ − γK

)
C IJ
K (x , y ;µ, g) = 0. (70)
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In particular, for a a conformal field theory for which β = 0,

dimensional arguments and the fact that renormalized operators

can be chosen such that they do not depend µ lead to

C IJ
K (x , y ; g) =

C IJ(g)

x2wI+2wJ−2wK
, (71)

where wI ,J,K are the dimensions of the fields σI , σJ and σK ,

respectively. Therefore we can write the OPE

σI (x⃗)σJ(y⃗)
x⃗→y⃗∼

∑
K

C IJ(g)

|⃗x − y⃗ |2wI+2wJ−2wK
σK (y⃗) + · · · (72)
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If we wish to consider the three-point correlator in the squeezed

limit, the configuration in real space is such that two points, say x⃗1

and x⃗2 are very close and the third one very far. Let us therefore

consider the OPE expansion for the two fields σI and σJ in the

(12) channel at the coincident point

σI (x⃗1)σ
J(x⃗2)=

(
C IJ
0

x2w12
+

C IJ
M

xw12
σM(x⃗2) + · · ·

)
. (73)
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Here w ≃ m2/3H2 ≪ 1, where m is the mass of the fields, is the

conformal weight of the fields involved (remember that the weight

of the fields σI and σI must be the same due to the special

conformal symmetry). The three-point correlator in the squeezed

limit can be evaluated by employing the OPE as

⟨σI (x⃗1)σ
J(x⃗2)σ

K (x⃗3)⟩ =
⟨(C IJ

0

x2w12
+

C IJ
A

xw12
σA(x⃗2) + · · ·

)
σK (x⃗3)

⟩
.(74)

Using again the orthogonality of the two-point functions we get

⟨σI (x⃗1)σ
J(x⃗2)σ

K (x⃗3)⟩ =
C IJ

A

xw12
⟨σA(x⃗2)σ

K (x⃗3)⟩ =
C IJK

xw12x
2w
23

(x12 ≃ 0).(75)
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For an almost scale invariant spectrum w ≈ 0, the Fourier

transform of Eq. (75) is

⟨σI
k⃗1
σJ
k⃗2
σK
k⃗3
⟩′ ∼ C IJKP

k⃗1
P
k⃗2

[
1 +O

(
k21
k22

)]
, (k1 ≪ k2 ∼ k3).(76)

The non-universal contribution to the three-point correlator in the

squeezed limit has therefore the same shape of the universal

contribution. Its amplitude is model-dependent.
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Figure: (a) Collapsed configuration projected on a plane in space where

x12 ≈ x34 ≈ 0 with x13 ≫ x12, x34. (b) Double squeezed configuration

where x34 ≈ x13 ≫ x24 ≫ x12 ≈ 0.
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(a)                                                                           (b)                                          

Figure: (a) Collapsed and (b) double squeezed shapes in momentum

space.
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If we wish to consider the four-point correlator in the collapsed

limit, the configuration in real space is such that two pairs of

points, say x⃗1, x⃗2 and x⃗3, x⃗4 are very far from each other. Let us

therefore consider the OPE expansion (73) as well as the one for

the other (34) channel at the coincident point

σK (x⃗3)σ
L(x⃗4)=

(
CKL
0 (w)

x2w34
+

CKL
M(w)

xw34
σM(x⃗4)+· · ·

)
. (77)

The four-point function in the collapsed limit

⟨σI (x⃗1)σ
J(x⃗2)σ

K (x⃗3)σ
L(x⃗4)⟩ (x12 ≃ 0 and x34 ≃ 0) (78)

can be expressed as
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⟨σI (x⃗1)σ
J(x⃗2)σ

K (x⃗3)σ
L(x⃗4)⟩ =

C IJ
0 CKL

0

x2w12 x2w34

+
C IJ

AC
KL

B

xw12x
w
34

⟨σA(x⃗2)σ
B(x⃗4)⟩+ · · ·

whose Fourier transforms keeping the connected contribution gives

⟨σI
k⃗1
σJ
k⃗2
σK
k⃗3
σL
k⃗4
⟩′ ∼ C IJ

AC
KLAP

k⃗12
P
k⃗2
P
k⃗4
+ perm., (k⃗12 ≃ 0⃗).

The non-universal contribution to the four-point correlator in the

collapsed limit has therefore the same shape of the universal

contribution. Its amplitude is model-dependent.
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The collapsed limit of the four-point correlator is particularly

important because, together with the squeezed limit of the

three-point correlator, it may lead to the so-called

Suyama-Yamaguchi (SY) inequality . Consider a class of

multi-field models which satisfy the following conditions:

a) scalar fields are responsible for generating curvature

perturbations and

b) the fluctuations in scalar fields at the horizon crossing are scale

invariant and gaussian.
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By defining the nonlinear parameters fNL and τNL as

fNL =
5

12

⟨ζ
k⃗1
ζ
k⃗2
ζ
k⃗3
⟩′

Pζ

k⃗1
Pζ

k⃗2

(k1 ≪ k2 ∼ k3),

τNL =
1

4

⟨ζ
k⃗1
ζ
k⃗2
ζ
k⃗3
ζ
k⃗4
⟩′

Pζ

k⃗1
Pζ

k⃗3
Pζ

k⃗12

(k⃗12 ≃ 0), (79)

and making use of the Cauchy-Schwarz inequality one can prove

the SY inequality (at the tree-level)

τNL ≥ (6fNL/5)
2

where the equality holds in the case of a single scalar field.
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But is the SY inequality valid for non-gaussian fluctuations as one

might expect a contamination of the inequality if the light scalar

fields are NG at horizon crossing.

By using OPEs of σI ’s and the Cauchy-Schwarz inequality, we got

τNL ≥
(
6

5
fNL

)2

(also for NG fields). (80)

Therefore, the SY inequality is valid in all multifield models where

the NG comes from light scalar fields other than the inflaton even

when such light scalar fields are NG at horizon crossing. Loop

corrections from the universal superhorizon NG part of the

comoving curvature perturbation were shown not to change SY.
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Conclusions

Observationally, inflation has proven to be quite a robust

paradigm, but we are still ignorant about many details: what

mechanism is responsible for the cosmological perturbations?

Even after Planck, there exists a huge class of possible

inflationary models and we should go beyond linear theory.



. . . . . .

Conclusions

Observationally, inflation has proven to be quite a robust

paradigm, but we are still ignorant about many details: what

mechanism is responsible for the cosmological perturbations?

Even after Planck, there exists a huge class of possible

inflationary models and we should go beyond linear theory.



. . . . . .

Figure: (a) Collapsed and (b) double squeezed shapes in momentum

space.
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Non-Gaussianity is a powerful probe to ask what mechanism is

responsible for the cosmological perturbations

The symmetries of de Sitter are a powerful probe to

characterize the shapes of non-Gaussianity and to tell us

which are the relevant fields during inflation
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THANK YOU
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