## Holographic Wilson Loops and Topological Insulators

#### Andy O'Bannon



Crete Center for Theoretical Physics February 21, 2012



Work in progress with:

## John Estes

Instituut voor Theoretische Fysica Katholieke Universiteit Leuven

## Efstratios Tsatis

University of Patras

Timm Wrase

**Cornell University** 

# Outline:

- Motivation: Topological Insulators
- Holographic Conformal Interfaces
- Holographic Wilson Loops
- Static Quark Potential
- Future Directions

#### **Topological Insulators**

## U(I) symmetry

## mass gap in charged sector

## topological quantum number distinct from vacuum

#### **Topological Insulators**

topological quantum number

A number invariant under continuous deformations that:

Preserve all symmetries
Preserve the mass gap

#### **Topological Insulators**

topological quantum number

# Cannot be classified (just) by local order parameter

## Example: Integer QHE





## Edge modes: chiral fermions



## n = # of edge modes

Observed via:



Example: Integer QHEEffective Description
$$S = \frac{k}{4\pi} \int d^3x \, \epsilon^{\mu\nu\rho} A_\mu \partial_\nu A_\rho$$

$$J^{i} = \frac{\delta S}{\delta A_{i}} = \frac{k}{2\pi} \epsilon^{ij} E^{j}$$

quantization of  $\sigma_{xy} = quantization of k$ 

(2+1)d

Bernevig, Hughes, Zhang 2006 König et al. 2007



(3+1)d

Fu and Kane 2007 Hsieh et al. 2008





## UV: some band structure



### IR: non-interacting electrons

$$S = \int d^4x \, \bar{\psi} \left( i \partial \!\!\!/ - \!\!\!/ A - M \right) \psi$$

## $T: M \to M^* \qquad M \in \mathbb{R}$



#### Extreme IR: axion electrodynamics



 $\mathbb{Z}_2$  topological quantum number



#### Edge modes: (2+1)d Dirac fermions

![](_page_15_Picture_0.jpeg)

#### Angle Resolved Photo-Emission Spectroscopy

![](_page_15_Figure_2.jpeg)

![](_page_16_Picture_0.jpeg)

## Edge modes: (2+1)d Dirac fermions

-0.5

![](_page_16_Figure_2.jpeg)

### Jumping $\theta$ -angle: image dyons

![](_page_17_Figure_1.jpeg)

## CLASSIFICATION

#### at level of free Dirac Hamiltonians

![](_page_18_Picture_2.jpeg)

Spatial dimension d
Number of species
Mass matrix

## Periodic Table of TI's

| $class \setminus d$ | 0              | 1              | 2              | 3              | 4              | 5              | 6              | 7              | Т | С | S |
|---------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---|---|---|
| А                   | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | 0 | 0 | 0 |
| AIII                | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0 | 0 | 1 |
| AI                  | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | + | 0 | 0 |
| BDI                 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | + | + | 1 |
| D                   | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | 0 | + | 0 |
| DIII                | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | _ | + | 1 |
| AII                 | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | _ | 0 | 0 |
| CII                 | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | _ | _ | 1 |
| С                   | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0 |   | 0 |
| CI                  | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | + |   | 1 |

Schnyder, Ryu, Furusaki, Ludwig 2008

Kitaev 2009

## Periodic Table of TI's

| $class \setminus d$ | 0              | 1              | 2              | 3              | 4              | 5              | 6              | 7              | Т | С | S |
|---------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---|---|---|
| А                   | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | 0 | 0 | 0 |
| AIII                | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0 | 0 | 1 |
| AI                  | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | + | 0 | 0 |
| BDI                 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | + | + | 1 |
| D                   | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | 0 | + | 0 |
| DIII                | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | _ | + | 1 |
| AII                 | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | _ | 0 | 0 |
| CII                 | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | _ |   | 1 |
| С                   | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0 |   | 0 |
| CI                  | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | + |   | 1 |

## Integer QHE

## Periodic Table of TI's

| $class \setminus d$ | 0              | 1              | 2              | 3              | 4              | 5              | 6              | 7              | Т | С | S |
|---------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---|---|---|
| А                   | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | 0 | 0 | 0 |
| AIII                | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0 | 0 | 1 |
| AI                  | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | + | 0 | 0 |
| BDI                 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | + | + | 1 |
| D                   | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | 0 | + | 0 |
| DIII                | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  |   | + | 1 |
| AII                 | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |                | 0              | 0              | 0              |   | 0 | 0 |
| CII                 | 0              | $2\mathbb{Z}$  | U              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              |   |   | 1 |
| С                   | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0 |   | 0 |
| CI                  | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | + |   | 1 |

## Time-reversal invariant

# What can happen with

# INTERACTING

electrons?

## Example: Fractional QHE

$$\sigma_{xy} = \frac{p}{q} \frac{e^2}{h}$$

# No description in terms of non-interacting electrons

![](_page_24_Picture_0.jpeg)

T-Invariant TI's

## Non-interacting electrons

## Fractional QHE

## Interacting electrons

![](_page_25_Picture_0.jpeg)

T-Invariant TI's

## Non-interacting electrons

![](_page_25_Picture_3.jpeg)

## Fractional T-Invariant TI's?

Interacting electrons

#### Fractionalization

![](_page_26_Picture_1.jpeg)

![](_page_26_Picture_2.jpeg)

Wen 1999

#### Maciejko, Qi, Karch, Zhang 2010, 2011 Swingle, Barkeshli, McGreevy, Senthil 2010

#### Fractionalization

"Statistical Gauge Fields"

$$U(1)_{EM} \to U(1)_{EM} \times G$$

Electron

Charge -1 under

Singlet under

 $U(1)_{EM}$ 

![](_page_28_Figure_0.jpeg)

$$\mathcal{N} = 4$$
 supersymmetric  $SU(N_c)$  Yang-Mills

## with jumping $\theta$ -angle

## (3+1)d Fractional T-invariant TI

Karch 2009

![](_page_30_Picture_0.jpeg)

Compute the potential between test charges in  $\mathcal{N}=4$  SYM with jumping  $\theta$ -angle  $(q_1, g_1)$  $(0, 0, \overline{d})$ 

 $(q_2, g_2) = (0, 0, -d)$ 

TI

# Outline:

- Motivation: Topological Insulators
- Holographic Conformal Interfaces
- Holographic Wilson Loops
- Static Quark Potential
- Future Directions

## (3+1)d $\mathcal{N} = 4$ SUSY $SU(N_c)$ YM

 $\mathcal{L} = -\frac{1}{4a^2} \mathrm{tr} F_{\mu\nu} F^{\mu\nu} + \frac{\theta}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} \mathrm{tr} F_{\mu\nu} F_{\rho\sigma}$ 

 $-\frac{1}{2a^2} \operatorname{tr}(D^{\mu} \Phi^{i} D_{\mu} \Phi^{i}) + \frac{1}{4a^2} \operatorname{tr}([\Phi^{i}, \Phi^{j}] [\Phi^{i}, \Phi^{j}])$ 

 $\lambda = g^2 N_c$  $SO(4,2) \times SO(6)$  $\beta_{\lambda} = 0$ 

## (3+1)d $\mathcal{N} = 4$ SUSY $SU(N_c)$ YM

 $\mathcal{L} = -\frac{1}{4q^2} \mathrm{tr} F_{\mu\nu} F^{\mu\nu} + \frac{\theta}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} \mathrm{tr} F_{\mu\nu} F_{\rho\sigma}$ 

 $-\frac{1}{2a^2} \operatorname{tr}(D^{\mu} \Phi^i D_{\mu} \Phi^i) + \frac{1}{4a^2} \operatorname{tr}([\Phi^i, \Phi^j] [\Phi^i, \Phi^j])$ 

 $N_c 
ightarrow \infty$  $\lambda = g^2 N_c ~{
m fixed}$ 

 $SO(4,2) \times SO(6)$ 

# global symmetry \_\_\_\_\_ isometry

![](_page_34_Picture_2.jpeg)

**IIB SUGRA**  $AdS_5 \times S^5$ 

 $ds^{2} = \frac{dr^{2}}{r^{2}} + r^{2} \left( -dt^{2} + dx^{2} + dy^{2} + dz^{2} \right)$ 

![](_page_35_Figure_1.jpeg)

"holographic"
Bak, Gutperle, Hirano 2003

#### Solution of type IIB SUGRA

$$ds^{2} = R^{2} \left( \gamma^{-1} h(x)^{2} dx^{2} + h(x) ds^{2}_{AdS_{4}} + ds^{2}_{S^{5}} \right)$$

$$h(x) = \gamma \left( 1 + \frac{4\gamma - 3}{\wp(x) + 1 - 2\gamma} \right)$$

$$\phi(x) = \phi_0 + \sqrt{6(1-\gamma)} \left( x + \frac{4\gamma - 3}{\wp'(\chi)} \left( \ln \frac{\sigma(x+\chi)}{\sigma(x-\chi)} - 2\zeta(\chi)x \right) \right)$$

One-parameter dilatonic deformation of  $AdS_5 imes S^5$ 

$$ds^{2} = R^{2} \left( \gamma^{-1} h(x)^{2} dx^{2} + h(x) ds^{2}_{AdS_{4}} + ds^{2}_{S^{5}} \right)$$

$$h(x) = \gamma \left( 1 + \frac{4\gamma - 3}{\wp(x) + 1 - 2\gamma} \right)$$

$$\phi(x) = \phi_0 + \sqrt{6(1-\gamma)} \left( x + \frac{4\gamma - 3}{\wp'(\chi)} \left( \ln \frac{\sigma(x+\chi)}{\sigma(x-\chi)} - 2\zeta(\chi)x \right) \right)$$

 $AdS_4$  slicing of  $AdS_5$ 

 $ds^{2} = R^{2} \left( h(x)^{2} dx^{2} + h(x) ds^{2}_{AdS_{4}} + ds^{2}_{S^{5}} \right)$ 

 $h(x) = \frac{1}{1 - x^2}$  $x \in (-1, 1)$ 

 $SO(3,2) \times SO(6)$  isometry manifest





One-parameter dilatonic deformation of  $AdS_5 imes S^5$ 

$$ds^{2} = R^{2} \left( \gamma^{-1} h(x)^{2} dx^{2} + h(x) ds^{2}_{AdS_{4}} + ds^{2}_{S^{5}} \right)$$

$$h(x) = \gamma \left( 1 + \frac{4\gamma - 3}{\wp(x) + 1 - 2\gamma} \right)$$

$$\phi(x) = \phi_0 + \sqrt{6(1-\gamma)} \left( x + \frac{4\gamma - 3}{\wp'(\chi)} \left( \ln \frac{\sigma(x+\chi)}{\sigma(x-\chi)} - 2\zeta(\chi)x \right) \right)$$

Isometry 
$$SO(3,2) \times SO(6)$$
  
 $ds^2 = R^2 \left( \gamma^{-1}h(x)^2 dx^2 + h(x) ds^2_{AdS_4} + ds^2_{S^5} \right)$   
 $h(x) = \gamma \left( 1 + \frac{4\gamma - 3}{\wp(x) + 1 - 2\gamma} \right)$   
 $\phi(x) = \phi_0 + \sqrt{6(1-\gamma)} \left( x + \frac{4\gamma - 3}{\wp'(\chi)} \left( \ln \frac{\sigma(x+\chi)}{\sigma(x-\chi)} - 2\zeta(\chi)x \right) \right)$ 



#### Breaks ALL SUSY

$$ds^{2} = R^{2} \left( \gamma^{-1} h(x)^{2} dx^{2} + h(x) ds^{2}_{AdS_{4}} + ds^{2}_{S^{5}} \right)$$

$$h(x) = \gamma \left( 1 + \frac{4\gamma - 3}{\wp(x) + 1 - 2\gamma} \right)$$

$$\phi(x) = \phi_0 + \sqrt{6(1-\gamma)} \left( x + \frac{4\gamma - 3}{\wp'(\chi)} \left( \ln \frac{\sigma(x+\chi)}{\sigma(x-\chi)} - 2\zeta(\chi)x \right) \right)$$



#### Free parameter: jump in dilaton



#### Roman god of beginnings, transitions, gates, and doorways





#### Root of "January" and "Janitor"



 $e^{2\phi} = g^2/2\pi$ 

$$\mathcal{L} = -\frac{1}{4g^2} \operatorname{tr} F_{\mu\nu} F^{\mu\nu} + \frac{\theta}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} \operatorname{tr} F_{\mu\nu} F_{\rho\sigma}$$
$$-\frac{1}{2g^2} \operatorname{tr} (D^{\mu} \Phi^i D_{\mu} \Phi^i) + \frac{1}{4g^2} \operatorname{tr} ([\Phi^i, \Phi^j] [\Phi^i, \Phi^j])$$



## Jumping coupling





#### Jumping coupling



 $-\frac{1}{2g^2} \operatorname{tr}(D^{\mu} \Phi^i D_{\mu} \Phi^i) + \frac{1}{4g^2} \operatorname{tr}([\Phi^i, \Phi^j] [\Phi^i, \Phi^j])$ 

#### Breaks all SUSY

Preserves SO(3,2) x SO(6)

"Conformal Interface"

#### Dielectric Interfaces



Image charges!

•  $q' = -\frac{q(\epsilon_2 - \epsilon_1)}{\epsilon_2 + \epsilon_1}$ 

 $SL(2,\mathbb{R})$ 

$$\tau = C_0 + ie^{-2\phi}$$

$$\tau \longrightarrow \frac{a\tau + b}{c\tau + d}$$

$$a, b, c, d \in \mathbb{R}$$
$$ab - cd = 1$$

Jumping dilaton

Jumping axion

Jumping coupling 
$$\longrightarrow$$
 Jumping  $\theta$ -angle

$$\tau \to \frac{a\tau + b}{c\tau + d} \qquad \begin{array}{c} a, b, c, d \in \mathbb{R} \\ ab - cd = 1 \end{array}$$

$$SL(2, \mathbb{R})$$
$$\tau = \frac{\theta}{2\pi} + i\frac{2\pi}{g^2}$$

# Outline:

- Motivation: Topological Insulators
- Holographic Conformal Interfaces
- Holographic Wilson Loops
- Static Quark Potential
- Future Directions

 $W_R[C] = \frac{1}{N_c} \operatorname{tr}_R P \exp\left[\oint_C ds \left(iA_\mu \dot{x}^\mu + \Phi_i \theta^i |\dot{x}|\right)\right]$ 

 $R = N_c$  of  $SU(N_c)$ 

C =

T

 $W_R[C] = \frac{1}{N_c} \operatorname{tr}_R P \exp\left[\oint_C ds \left(iA_\mu \dot{x}^\mu + \Phi_i \theta^i |\dot{x}|\right)\right]$ 





 $W_R[C] = \frac{1}{N_c} \operatorname{tr}_R P \exp\left[\oint_C ds \left(iA_\mu \dot{x}^\mu + \Phi_i \theta^i |\dot{x}|\right)\right]$ 

 $V(L) = -\lim_{T \to \infty} \frac{1}{T} \ln \langle W[C] \rangle$ 



 $\lambda \ll 1$ 

#### Perturbatively

$$\langle W[C] \rangle = 1 - \frac{N_c}{2} \oint_C ds \oint_C d\tilde{s} \left( \dot{x}^{\mu}(s) \dot{x}^{\nu}(\tilde{s}) \langle PA_{\mu}(x(s))A_{\nu}(x(s)) \rangle \right)$$

 $- |\dot{x}(s)| |\dot{x}(\tilde{s})| \theta^{i} \theta^{j} \langle P \Phi^{i}(x(s)) \Phi^{j}(x(\tilde{s})) \rangle ) + \dots$ 

# Sum "ladder" diagrams

# 

 $\lambda \gg 1$ 

Holographically



$$S_{NG} = -\frac{1}{2\pi\alpha'} \int d^2\sigma \sqrt{-\det g}$$

$$S_{NG}|_{\text{solution}} = A$$

$$\langle W[C] \rangle \propto e^{-A}$$

# $V(L) = -\lim_{T \to \infty} \frac{1}{T} \ln \langle W[C] \rangle = \lim_{T \to \infty} \frac{A}{T}$



#### Infinite self-energy

Drukker, Gross, Ooguri 1999

#### Legendre transform

$$A = S_{NG} - \int d\sigma P_r r \Big|_{\partial AdS}$$

| <br> | <br> |
|------|------|
| <br> | <br> |

#### "Straight string"

Legendre transform cancels the divergence!

# $A = 0 \implies \langle W[C] \rangle = 1$

#### due to SUSY

 $\mathcal{N}=4$  SYM jumping g

#### Wilson Loops from $AdS_5$







 $V(L) = -\frac{4\pi^2}{\Gamma(1/4)^4} \frac{\sqrt{2\lambda}}{L}$  $\lambda \gg 1$ 



Ladder Diagrams

 $V(L) = \begin{cases} -\frac{1}{4\pi} \frac{2\lambda}{L}, \\ \end{cases}$  $\lambda \ll 1$  $-\frac{1}{\pi}\frac{\sqrt{2\lambda}}{I}, \quad \lambda \gg 1.$ 

#### Conformal Interface





 $V(L,D) = \frac{f(\lambda, D/L)}{L}$ 

#### Conformal Interface

$$\langle PA_{\mu}(x(s))A_{\nu}(x(s))\rangle$$
 acquires image terms

$$\langle P\Phi^i(x(s))\Phi^j(x(\tilde{s})\rangle$$
 unchanged

Clark, Freedman, Karch, Schnabl 2004

#### Conformal Interface

#### Holographically



# Outline:

- Motivation: Topological Insulators
- Holographic Conformal Interfaces
- Holographic Wilson Loops
- Static Quark Potential
- Future Directions




#### Q attracted to side with SMALLER coupling



 $\mathcal{N}=4$  SYM jumping g



 $\mathcal{N}=4$  SYM jumping Q

#### Straight string in Janus



### Interaction energy with image charge









#### Again attracted to side with SMALLER coupling





 $\mathcal{N}=4$  SYM jumping g





















## Interface always attractive!



















# Outline:

- Motivation: Topological Insulators
- Holographic Conformal Interfaces
- Holographic Wilson Loops
- Static Quark Potential
- Future Directions

## **Future Directions**

## • Circular Wilson loops?

- Other representations?
- Image strings?
- Accelerating charges?

