
Holographic Wilson Loops
and

Topological Insulators

Andy O’Bannon

Crete Center for Theoretical Physics
February 21, 2012



Credits

John Estes
Work in progress with:

Timm Wrase

Efstratios Tsatis

Instituut voor Theoretische Fysica
Katholieke Universiteit Leuven

Cornell University

University of Patras



Outline:

• Motivation: Topological Insulators 

• Holographic Conformal Interfaces

• Holographic Wilson Loops

• Static Quark Potential

• Future Directions



Topological Insulators

topological quantum number 
distinct from vacuum

U(1) symmetry

mass gap in charged sector



Topological Insulators

A number invariant under 
continuous deformations that:

topological quantum number

•Preserve all symmetries

•Preserve the mass gap



Topological Insulators

Cannot be classified (just) by 
local order parameter

topological quantum number



Example: Integer QHE



ρxy

ρxx

(Integer) Quantum Hall Effect : Anomalous Insulator

• 2DEG (Heterojunction GaAs/AlGaAS)

H. Buhmann

Edge Channels

magnetic field

-

g

-

-

- -

-

hi l d t tchiral edge states

H. Buhmann

Quantum Well Structures

E

quantized

energy

levels in

di i
Eg2

E z-directionEg1

x
quasi free

electron gas

z (growth direction) y

g

in the 

xy-plane

GaAs

AlGaAs

AlGaAs Magnetic Field

B

No longitudinal resistivity : Insulator

σxy = n
e2

h
with high precision

mardi 21 septembre 2010

1. Introduction

The quantum Hall effect (QHE) is one of the most fascinating phenomena in condensed

matter physics, and has commanded the attention of theorists and experimentalists alike

for nearly 30 years.4 It is also a very general effect, relying on just a few underlying

properties: any system of effectively 2 + 1 dimensional charged particles with broken

parity symmetry and an energy gap for charged excitations can be expected to exhibit

quantum Hall behavior. In the condensed matter setting, these properties typically are

realized by electrons in semiconductor junctions subject to low temperature and large

magnetic fields. The magnetic field breaks the parity symmetry, and the energy gap arises

from a combination of Landau level quantization, disorder, and (at least in the fractional

case) electron-electron interactions. These properties also arise rather naturally in terms

of D-brane configurations in string theory, which is our interest here.

An especially interesting aspect of quantum Hall physics, and one which is still not

completely understood to this day, is the transition between distinct plateaus. At zero

temperature, as we dial some control parameter such as the magnetic field, the Hall con-

ductivity σxy is seen to jump from one quantized value to another. The longitudinal

conductivity vanishes except precisely at the transition point. The transition point is re-

alized when the energy gap of the system vanishes, and the theory at the transition is a

quantum critical point, meaning that it can be described by a scale invariant theory in 2+1

dimensions [6] (to be distinguished from a critical point controlled by thermal fluctuations,

which is described by a scale invariant Euclidean theory living in the spatial dimensions).
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Fig. 1: Schematic illustration of quantum Hall plateau transitions at small
but finite temperature. The longitudinal conductivity increases sharply at
the transition. The slope of the transverse conductivity defines the critical
exponent νz.

4 For reviews and references to the original literature see e.g., [1,2,3,4,5].
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FIG. 6 (a) A HgCdTe quantum well structure. (b) As a
function of layer thickness d the 2D quantum well states cross
at a band inversion transition. The inverted state is the QSHI,
which has helical edge states (c) that have a non equilibrium
population determined by the leads. (d) shows experimental
two terminal conductance as a function of a gate voltage that
tunes EF through the bulk gap. Sample I, with d < dc shows
insulating behavior, while samples III and IV show quantized
transport associated with edge states. Adapted from König,
et al., 2007. Reprinted with permission from AAAS.

ature scattering effects. These experiments convincingly
demonstrate the existence of the edge states of the quan-
tum spin Hall insulator. Subsequent experiments have
established the inherently nonlocal electronic transport
in the edge states (Roth, et al., 2009).

IV. 3D TOPOLOGICAL INSULATORS

In the summer of 2006 three groups of theorists in-
dependently discovered that the topological characteri-
zation of the quantum spin Hall insulator state has a
natural generalization in three dimensions (Fu, Kane
and Mele, 2007; Moore and Balents, 2007; Roy, 2009b).
Moore and Balents (2007) coined the term “topological
insulator” to describe this electronic phase. Fu, Kane and
Mele (2007) established the connection between the bulk
topological order and the presence of unique conduct-
ing surface states. Soon after, this phase was predicted
in several real materials (Fu and Kane, 2007), includ-
ing Bi1−xSbx as well as strained HgTe and α−Sn. In
2008, Hsieh, et al. (2008) reported the experimental dis-
covery of the first 3D topological insulator in Bi1−xSbx.
In 2009 “second generation” topological insulators, in-
cluding Bi2Se3, which has numerous desirable properties,
were identified experimentally (Xia, et al., 2009a) and
theoretically (Xia, et al., 2009a; Zhang, H., et al., 2009).
In this section we will review these developments.
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FIG. 7 Fermi circles in the surface Brillouin zone for (a) a
weak topological insulator and (b) a strong topological insu-
lator. In the simplest strong topological insulator the Fermi
circle encloses a single Dirac point (c).

A. Strong and weak topological insulators

A 3D topological insulator is characterized by four Z2

topological invariants (ν0; ν1ν2ν3) (Fu, Kane and Mele,
2007; Moore and Balents, 2007; Roy, 2009b). They can
be most easily understood by appealing to the bulk-
boundary correspondence, discussed in section II.C. The
surface states of a 3D crystal can be labeled with a 2D
crystal momentum. There are four T invariant points
Γ1,2,3,4 in the surface Brillouin zone, where surface states,
if present, must be Kramers degenerate (Fig. 7(a,b)).
Away from these special points, the spin orbit interac-
tion will lift the degeneracy. These Kramers degenerate
points therefore form 2D Dirac points in the surface band
structure (Fig. 7(c)). The interesting question is how the
Dirac points at the different T invariant points connect
to each other. Between any pair Γa and Γb, the surface
state structure will resemble either Fig. 3a or 3b. This
determines whether the surface Fermi surface intersects
a line joining Γa to Γb an even or an odd number of
times. If it is odd, then the surface states are topologi-
cally protected. Which of these two alternatives occurs
is determined by the four bulk Z2 invariants.
The simplest non trivial 3D topological insulators may

be constructed by stacking layers of the 2D quantum spin
Hall insulator. This is analogous to a similar construction
for 3D integer quantum Hall states (Kohmoto, Halperin
and Wu, 1992). The helical edge states of the layers
then become anisotropic surface states. A possible sur-
face Fermi surface for weakly coupled layers stacked along
the y direction is sketched in Fig. 7(a). In this figure a
single surface band intersects the Fermi energy between
Γ1 and Γ2 and between Γ3 and Γ4, leading to the non
trivial connectivity in Fig. 3(b). This layered state is re-
ferred to as a weak topological insulator, and has ν0 = 0.
The indices (ν1ν2ν3) can be interpreted as Miller indices
describing the orientation of the layers. Unlike the 2D he-
lical edge states of a single layer, T symmetry does not
protect these surface states. Though the surface states
must be present for a clean surface, they can be localized
in the presence of disorder. Interestingly, however, a line
dislocation in a weak topological insulator is associated
with protected 1D helical edge states (Ran, Zhang and
Vishwanath, 2009).
ν0 = 1 identifies a distinct phase, called a strong topo-

(2+1)d

(3+1)d Bi2Se3 Bi2Te3

Sb2Te3
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Bernevig, Hughes, Zhang 2006
König et al. 2007

Hsieh et al. 2008
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UV: some band structure

this circular motion by orbitals that have quantized
energies. This leads to an energy gap separating the
occupied and empty states, just like in an ordinary insu-
lator. At the boundary of the system, however, the elec-
trons undergo a different kind of motion, because the
circular orbits can bounce off the edge, leading to “skip-
ping orbits”, as shown in figure 1b. In quantum theory,
these skipping orbits lead to electronic states that pro-
pagate along the edge in one direction only and do not
have quantized energies. Given that there is no energy
gap, these states can conduct. Moreover, the one-way

flow makes the electronic transport in the edge states
perfect: normally, electrons can scatter off impurities,
but given that there are no backward-moving modes,
the electrons have no choice but to propagate forwards.
This leads to what is known as “dissipationless” trans-
port by the edge states – no electrons scatter and so no
energy is lost as heat – and is ultimately responsible for
the precise quantized transport.

Unlike the quantum Hall effect, which is only seen
when a strong magnetic field is present, topological
insulators occur in the absence of a magnetic field. In
these materials the role of the magnetic field is played
by spin–orbit coupling. This is the interaction of an
electron’s intrinsic angular momentum, or spin, with
the orbital motion of the electrons through space. In
atoms with a high atomic number, such as mercury and
bismuth, the spin–orbit force is strong because the elec-
trons move at relativistic speeds. Electrons travelling
through materials composed of such atoms therefore
feel a strong spin- and momentum-dependent force
that resembles a magnetic field, the direction of which
changes when the spin changes.

This analogy between spin–orbit coupling and a spin-
dependent magnetic field provides a way to understand
the simplest 2D topological insulator – the quantum
spin Hall state (figure 1c). This was first predicted in
2005, and occurs when the spin-up and spin-down elec-
trons, which feel equal and opposite spin–orbit “mag-
netic fields”, are each in quantum Hall states. Like in
an ordinary insulator there is thus a gap separating the
occupied and empty states in the interior, but there are
edge states in which the spin-up and spin-down elec-
trons propagate in opposite directions. The Hall con-
ductance of this state is zero because the spin-up and
spin-down electrons cancel each other. The edge states
can, however, conduct. They form a 1D conductor that
is essentially half of an ordinary 1D conductor (a
“quantum wire”, which can have spin-up and spin-
down electrons moving in either direction). Like the
quantum-Hall edge states, the quantum-spin-Hall edge
states are protected from backscattering. However, in
this case, given that there are states that propagate in
both directions, the protection arises for more subtle
reasons. A key role is played by time-reversal sym-
metry. Time reversal switches both the direction of
propagation and the spin direction, interchanging the
two counter-propagating modes. We will see below that
time-reversal symmetry plays a fundamental role in
guaranteeing the topological stability of these states.

Finally, the next tier of complication in this family of
electronic phases is the 3D topological insulator. This
cannot be understood using the simple picture of a
spin-dependent magnetic field. Nonetheless, the sur-
face states of a 3D topological insulator do strongly
resemble the edge states of a 2D topological insulator.
As in the 2D case, the direction of electron motion
along the surface of a 3D topological insulator is deter-
mined by the spin direction, which now varies continu-
ously as a function of propagation direction (figure 1d).
The result is an unusual “planar metal” where the spin
direction is locked to the direction of propagation. As
in the 2D case, the surface states of a 3D topological
insulator are like half of an ordinary 2D conductor, and
are topologically protected against backscattering.

(a) The insulating state is characterized by an energy gap separating the occupied and empty
electronic states, which is a consequence of the quantization of the energy of atomic orbitals.
(b) In the quantum Hall effect, the circular motion of electrons in a magnetic field, B, is
interrupted by the sample boundary. At the edge, electrons execute “skipping orbits” as shown,
ultimately leading to perfect conduction in one direction along the edge. (c) The edge of the
“quantum spin Hall effect state” or 2D topological insulator contains left-moving and right-
moving modes that have opposite spin and are related by time-reversal symmetry. This edge
can also be viewed as half of a quantum wire, which would have spin-up and spin-down
electrons propagating in both directions. (d) The surface of a 3D topological insulator supports
electronic motion in any direction along the surface, but the direction of the electron’s motion
uniquely determines its spin direction and vice versa. The 2D energy–momentum relation has a
“Dirac cone” structure similar to that in graphene.
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T : M →M∗ M ∈ R
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IR: non-interacting electrons

orM > 0 M < 0

S =
∫

d4x ψ̄ (i!∂ − !A−M) ψ



Extreme IR: axion electrodynamics

θ =

{
0 M > 0
π M < 0

(3+1)d T-invariant Topological Insulators

L =
1
8π

[
ε #E2 − 1

µ
#B2

]
+

θ

4π2
#E · #B

Z2 topological quantum number

mod 2π



14

Spin-ARPES

FIG. 11 Absence of backscattering: Quasiparticle interfer-
ence observed at the surface of Bi0.92Sb0.08 exhibits and ab-
sence of elastic backscattering: (a) Spatially resolved con-
ductance maps of the (111) surface obtained at 0 mV over
a 1000Å×1000Å. (b) Spin-ARPES map of the surface state
measured at the Fermi level. The spin textures from spin-
ARPES measurements are shown with arrows. (c) Fourier
transform scanning tunneling spectroscopy (FT-STS) at EF .
(d) The joint density of states (JDOS) at EF . (e) The spin-
dependent scattering probability(SSP) at EF . (f) Close-up of
the JDOS, FT-STS and SSP at EF , along the Γ-M direction.
Adapted from Hsieh, et al., 2009a; Roushan, et al., 2009.

C. Second generation materials: Bi2Se3, Bi2Te3, Sb2Te3

The surface structure of Bi1−xSbx was rather compli-
cated and the band gap was rather small. This motivated
a search for topological insulators with a larger band gap
and simpler surface spectrum. A second generation of 3D
topological insulator materials (Moore, 2009), especially
Bi2Se3, offer the potential for topologically protected be-
havior in ordinary crystals at room temperature and zero
magnetic field. In 2008, work led by the Princeton group
used ARPES and first principles calculations to study
the surface band structure of Bi2Se3 and observed the
characteristic signature of a topological insulator in the
form of a single Dirac cone (Xia, et al., 2009a). Con-
current theoretical work by Zhang, H., et al. (2009) used
electronic structure methods to show that Bi2Se3 is just
one of several new large band gap topological insulators.
Zhang, H., et al. (2009) also provided a simple tight-
binding model to capture the single Dirac cone observed
in these materials. Detailed and systematic surface inves-
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FIG. 12 Helical fermions: Spin-momentum locked helical
surface Dirac fermions are hallmark signatures of topological
insulators. (a) ARPES data for Bi2Se3 reveals surface elec-
tronic states with a single spin-polarized Dirac cone. The
Surface Fermi surface (b) exhibits a chiral left-handed spin
texture. (c) Surface electronic structure of Bi2Se3 computed
in the local density approximation. The shaded regions de-
scribe bulk states, and the red lines are surface states. (d)
Schematic of the spin polarized surface state dispersion in
Bi2X3 (1; 000) topological insulators. Adapted from Xia, et
al., 2008; Hsieh, et al., 2009b; Xia, et al., 2009b.

tigations of Bi2Se3 (Hor, et al., 2009; Hsieh, et al., 2009b;
Park, et al., 2010), Bi2Te3 (Chen, et al., 2009; Hsieh, et
al., 2009b,c; Xia, et al., 2009b) and Sb2Te3 (Hsieh, et
al., 2009c) confirmed the topological band structure of
all 3 of these materials. This also explained earlier puz-
zling observations on Bi2Te3 (Noh, et al., 2008). These
works showed that the topological insulator behavior in
these materials is associated with a band inversion at
k = 0, leading to the (1; 000) topological class. The
(1; 000) phase observed in the Bi2Se3 series differs from
the (1; 111) phase in Bi1−xSbx due to its weak topologi-
cal invariant, which has implications for the behavior of
dislocations(Ran, Zhang and Vishwanath, 2009).
Though the phase observed in the Bi2Se3 class has the

same strong topological invariant ν0 = 1 as Bi1−xSbx,
there are three crucial differences that suggest that
this series may become the reference material for fu-
ture experiments. The Bi2Se3 surface state is found
from ARPES and theory to be a nearly idealized sin-
gle Dirac cone as seen from the experimental data in
Figs. 12,13,16. Second, Bi2Se3 is stoichiometric (i.e.,
a pure compound rather than an alloy like Bi1−xSbx)
and hence can be prepared in principle at higher purity.
While the topological insulator phase is predicted to be
quite robust to disorder, many experimental probes of
the phase, including ARPES of the surface band struc-
ture, are clearer in high-purity samples. Finally, and
perhaps most important for applications, Bi2Se3 has a
large band gap of approximately 0.3 eV (3600◦K). This
indicates that in its high purity form Bi2Se3 can exhibit

(3+1)d T-invariant Topological Insulators

θ = 0

θ = πθ(z)

z
z = 0

Edge modes: (2+1)d Dirac fermions
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Spin-ARPES

FIG. 11 Absence of backscattering: Quasiparticle interfer-
ence observed at the surface of Bi0.92Sb0.08 exhibits and ab-
sence of elastic backscattering: (a) Spatially resolved con-
ductance maps of the (111) surface obtained at 0 mV over
a 1000Å×1000Å. (b) Spin-ARPES map of the surface state
measured at the Fermi level. The spin textures from spin-
ARPES measurements are shown with arrows. (c) Fourier
transform scanning tunneling spectroscopy (FT-STS) at EF .
(d) The joint density of states (JDOS) at EF . (e) The spin-
dependent scattering probability(SSP) at EF . (f) Close-up of
the JDOS, FT-STS and SSP at EF , along the Γ-M direction.
Adapted from Hsieh, et al., 2009a; Roushan, et al., 2009.

C. Second generation materials: Bi2Se3, Bi2Te3, Sb2Te3

The surface structure of Bi1−xSbx was rather compli-
cated and the band gap was rather small. This motivated
a search for topological insulators with a larger band gap
and simpler surface spectrum. A second generation of 3D
topological insulator materials (Moore, 2009), especially
Bi2Se3, offer the potential for topologically protected be-
havior in ordinary crystals at room temperature and zero
magnetic field. In 2008, work led by the Princeton group
used ARPES and first principles calculations to study
the surface band structure of Bi2Se3 and observed the
characteristic signature of a topological insulator in the
form of a single Dirac cone (Xia, et al., 2009a). Con-
current theoretical work by Zhang, H., et al. (2009) used
electronic structure methods to show that Bi2Se3 is just
one of several new large band gap topological insulators.
Zhang, H., et al. (2009) also provided a simple tight-
binding model to capture the single Dirac cone observed
in these materials. Detailed and systematic surface inves-
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FIG. 12 Helical fermions: Spin-momentum locked helical
surface Dirac fermions are hallmark signatures of topological
insulators. (a) ARPES data for Bi2Se3 reveals surface elec-
tronic states with a single spin-polarized Dirac cone. The
Surface Fermi surface (b) exhibits a chiral left-handed spin
texture. (c) Surface electronic structure of Bi2Se3 computed
in the local density approximation. The shaded regions de-
scribe bulk states, and the red lines are surface states. (d)
Schematic of the spin polarized surface state dispersion in
Bi2X3 (1; 000) topological insulators. Adapted from Xia, et
al., 2008; Hsieh, et al., 2009b; Xia, et al., 2009b.

tigations of Bi2Se3 (Hor, et al., 2009; Hsieh, et al., 2009b;
Park, et al., 2010), Bi2Te3 (Chen, et al., 2009; Hsieh, et
al., 2009b,c; Xia, et al., 2009b) and Sb2Te3 (Hsieh, et
al., 2009c) confirmed the topological band structure of
all 3 of these materials. This also explained earlier puz-
zling observations on Bi2Te3 (Noh, et al., 2008). These
works showed that the topological insulator behavior in
these materials is associated with a band inversion at
k = 0, leading to the (1; 000) topological class. The
(1; 000) phase observed in the Bi2Se3 series differs from
the (1; 111) phase in Bi1−xSbx due to its weak topologi-
cal invariant, which has implications for the behavior of
dislocations(Ran, Zhang and Vishwanath, 2009).
Though the phase observed in the Bi2Se3 class has the

same strong topological invariant ν0 = 1 as Bi1−xSbx,
there are three crucial differences that suggest that
this series may become the reference material for fu-
ture experiments. The Bi2Se3 surface state is found
from ARPES and theory to be a nearly idealized sin-
gle Dirac cone as seen from the experimental data in
Figs. 12,13,16. Second, Bi2Se3 is stoichiometric (i.e.,
a pure compound rather than an alloy like Bi1−xSbx)
and hence can be prepared in principle at higher purity.
While the topological insulator phase is predicted to be
quite robust to disorder, many experimental probes of
the phase, including ARPES of the surface band struc-
ture, are clearer in high-purity samples. Finally, and
perhaps most important for applications, Bi2Se3 has a
large band gap of approximately 0.3 eV (3600◦K). This
indicates that in its high purity form Bi2Se3 can exhibit

Bi2Se3

Xia et al. 0812.2078

Hsieh et al.
Nature 460, 1101

Edge modes: (2+1)d Dirac fermions



Inducing a Magnetic Monopole with
Topological Surface States
Xiao-Liang Qi,1 Rundong Li,1 Jiadong Zang,2 Shou-Cheng Zhang1*

Existence of the magnetic monopole is compatible with the fundamental laws of nature;
however, this elusive particle has yet to be detected experimentally. We show theoretically that an
electric charge near a topological surface state induces an image magnetic monopole charge due
to the topological magneto-electric effect. The magnetic field generated by the image magnetic
monopole may be experimentally measured, and the inverse square law of the field dependence
can be determined quantitatively. We propose that this effect can be used to experimentally realize
a gas of quantum particles carrying fractional statistics, consisting of the bound states of the
electric charge and the image magnetic monopole charge.

The electromagnetic response of a conven-
tional insulator is described by a dielectric
constant e and a magnetic permeability m.

An electric field induces an electric polarization,
whereas a magnetic field induces a magnetic
polarization. As both the electric field E(x) and
themagnetic inductionB(x) are well defined inside
an insulator, the linear response of a convention-
al insulator can be fully described by the effective

actionS0 ¼ 1
8p ∫d

3xdt eE2− 1
mB

2
! "

, where d3xdt is

the volume element of space and time. However,
in general, another possible term is allowed in the
effective action, which is quadratic in the elec-
tromagnetic field, contains the same number of
derivatives of the electromagnetic potential, and
is rotationally invariant; this term is given by
Sq ¼ q

2p

# $

a
2p

# $

∫d3xdtE⋅B. Here,a ¼ e2
ℏc (where ħ

is Planck’s constant h divided by 2p and c is the
speed of light) is the fine-structure constant, andq
can be viewed as a phenomenological parameter
in the sense of the effective Landau-Ginzburg
theory. This term describes the magneto-electric
effect (1), where an electric field can induce a
magnetic polarization, and a magnetic field can
induce an electric polarization.

Unlike conventional terms in the Landau-
Ginzburg effective actions, the integrand in Sq
is a total derivative term, when E(x) and B(x)
are expressed in terms of the electromagnetic
vector potential (where ∂m denotes the partial
derivative; m, n, r, and t denote the spacetime
coordinates; Fmn is the electromagnetic field
tensor; and Am is the electromagnetic potential)

Sq ¼
q
2p

a
16p

∫d3xdtemnrtFmnFrt

¼ q
2p

a
4p

∫d3xdt∂mðemnrsAn∂rAtÞ

Furthermore, when a periodic boundary condi-
tion is imposed in both the spatial and temporal
directions, the integral of such a total derivative
term is always quantized to be an integer; i.e.,
Sq
ℏ ¼ qn (where n is an integer). Therefore, the
partition function and all physically measurable
quantities are invariant when the q parameter is
shifted by 2p times an integer (2). Under time-
reversal symmetry, eiqn is transformed into e–iqn

(here, i2 = –1). Therefore, all time-reversal in-
variant insulators fall into two general classes,
described by either q = 0 or q = p (3). These two
time-reversal invariant classes are disconnected,
and they can only be connected continuously by
time-reversal breaking perturbations. This classi-
fication of time-reversal invariant insulators in
terms of the two possible values of the q
parameter is generally valid for insulators with
arbitrary interactions (3). The effective action
contains the complete description of the
electromagnetic response of topological insula-
tors. Topological insulators have an energy gap in
the bulk, but gapless surface states protected by
the time-reversal symmetry. We have shown (3)

that such a general definition of a topological
insulator reduces to the Z2 topological insulators
described in (4–6 ) for non-interacting band
insulators; this finding is a three-dimensional
(3D) generalization of the quantum spin Hall
insulator in two dimensions (7–10). For generic
band insulators, the parameter q has a micro-
scopic expression of the momentum space
Chern-Simons form (3, 11). Recently, experi-
mental evidence of the topologically nontrivial
surface states has been observed in Bi1−xSbx alloy
(12), which supports the theoretical prediction
that Bi1−xSbx is a Z2 topological insulator (4).

With periodic temporal and spatial boundary
conditions, the partition function is periodic inq
under the 2p shift, and the system is invariant
under the time-reversal symmetry at q = 0 and
q = p. However, with open boundary conditions,
the partition function is no longer periodic in q,
and time-reversal symmetry is generally broken
(but only on the boundary), even whenq = (2n +
1)p. Our work in (3) gives the following physical
interpretation: Time-reversal invariant topologi-
cal insulators have a bulk energy gap but have
gapless excitations with an odd number of Dirac
cones on the surface. When the surface is coated
with a thin magnetic film, time-reversal sym-
metry is broken, and an energy gap also opens up
at the surface. In this case, the low-energy theory
is completely determined by the surface term in
Eq. 1. As the surface term is a Chern-Simons
term, it describes the quantum Hall effect on
the surface. From the general Chern-Simons-
Landau-Ginzburg theory of the quantum Hall
effect (13), we know that the coefficient q =
(2n+1)p gives a quantized Hall conductance of
sxy ¼ nþ 1
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the surface is the physical origin behind the
topological magneto-electric (TME) effect.
Under an applied electric field, a quantized
Hall current is induced on the surface, which in
turn generates a magnetic polarization and vice
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Fig. 1. Illustration of the image charge
and monopole of a point-like electric
charge. The lower-half space is occupied
by a topological insulator (TI) with di-
electric constant e2 and magnetic perme-
ability m2. The upper-half space is occupied
by a topologically trivial insulator (or vac-
uum) with dielectric constant e1 and mag-
netic permeability m1. A point electric
charge q is located at (0, 0, d ). When seen
from the lower-half space, the image
electric charge q1 and magnetic monopole
g1 are at (0, 0, d ); when seen from the
upper-half space, the image electric
charge q2 and magnetic monopole g2
are at (0, 0, −d ). The red solid lines
represent the electric field lines, and blue
solid lines represent magnetic field lines.
(Inset) Top-down view showing the in-plane component of the electric field at the surface (red arrows)
and the circulating surface current (black circles).
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at level of free Dirac Hamiltonians

CLASSIFICATION

•Spatial dimension d

•Number of species

•Mass matrix

Choices:



class\d 0 1 2 3 4 5 6 7 T C S
A Z 0 Z 0 Z 0 Z 0 0 0 0

AIII 0 Z 0 Z 0 Z 0 Z 0 0 1
AI Z 0 0 0 2Z 0 Z2 Z2 + 0 0
BDI Z2 Z 0 0 0 2Z 0 Z2 + + 1
D Z2 Z2 Z 0 0 0 2Z 0 0 + 0

DIII 0 Z2 Z2 Z 0 0 0 2Z − + 1
AII 2Z 0 Z2 Z2 Z 0 0 0 − 0 0
CII 0 2Z 0 Z2 Z2 Z 0 0 − − 1
C 0 0 2Z 0 Z2 Z2 Z 0 0 − 0
CI 0 0 0 2Z 0 Z2 Z2 Z + − 1

Table 1: Classification of topological insulators and superconductors [9,10]; d is the space
dimension; the left-most column (A, AIII, . . ., CI) denotes the ten symmetry classes of
fermionic Hamiltonians, which are characterized by the presence/absence of time-reversal
(T), particle-hole (C), and chiral (or sublattice) (S) symmetries of different types denoted
by ±1 in the right most three columns. The entries “Z”, “Z2”, “2Z”, and “0” represent
the presence/absence of topological insulators and superconductors, and when they exist,
types of these states (see Ref. [9] for detailed descriptions).

two gauge fields play different roles in our construction: The gauge field Aµ “measures”
K-theory charge of the Dq-brane, and in that sense it can be interpreted as an “external”
gauge field. In this picture, the Dq-brane charge is identified with the topological (K-
theory) charge of TIs/TSCs. On the other hand, Ãµ is an internal degree of freedom on
the Dq-brane. For example, in the integer/fractional QHE, the external gauge field is the
electromagnetic U(1) gauge field, which measures the Hall conductivity, while the internal
gauge field is the Chern-Simons (CS) gauge field describing the dynamics of the droplet
itself.

The massive fermions can be integrated out, yielding the description of the topological
phase in terms of the gauge fields. The resulting effective field theory comes with terms of
topological nature, such as the CS or the θ-terms. In our string theory setup, they can be
read off from the Wess-Zumino (WZ) action of the D-branes, by taking one of the D-branes
as a background for the other. One can view these gauge-interacting TIs/TSCs from Dp-
Dq-systems as an analogue of the projective (parton) construction of the (fractional) QHE
[16]. Our string theory realization of TIs/TSCs sheds light on extending the projective
construction of the QHE to more generic TIs/TSCs; it tells us what type of gauge field is
“natural” to couple with fermions in topological phases, and guarantees the topological
stability of the system.

2

Periodic Table of TI’s

Schnyder, Ryu, Furusaki, Ludwig 2008 Kitaev 2009



class\d 0 1 2 3 4 5 6 7 T C S
A Z 0 Z 0 Z 0 Z 0 0 0 0

AIII 0 Z 0 Z 0 Z 0 Z 0 0 1
AI Z 0 0 0 2Z 0 Z2 Z2 + 0 0
BDI Z2 Z 0 0 0 2Z 0 Z2 + + 1
D Z2 Z2 Z 0 0 0 2Z 0 0 + 0

DIII 0 Z2 Z2 Z 0 0 0 2Z − + 1
AII 2Z 0 Z2 Z2 Z 0 0 0 − 0 0
CII 0 2Z 0 Z2 Z2 Z 0 0 − − 1
C 0 0 2Z 0 Z2 Z2 Z 0 0 − 0
CI 0 0 0 2Z 0 Z2 Z2 Z + − 1

Table 1: Classification of topological insulators and superconductors [9,10]; d is the space
dimension; the left-most column (A, AIII, . . ., CI) denotes the ten symmetry classes of
fermionic Hamiltonians, which are characterized by the presence/absence of time-reversal
(T), particle-hole (C), and chiral (or sublattice) (S) symmetries of different types denoted
by ±1 in the right most three columns. The entries “Z”, “Z2”, “2Z”, and “0” represent
the presence/absence of topological insulators and superconductors, and when they exist,
types of these states (see Ref. [9] for detailed descriptions).

two gauge fields play different roles in our construction: The gauge field Aµ “measures”
K-theory charge of the Dq-brane, and in that sense it can be interpreted as an “external”
gauge field. In this picture, the Dq-brane charge is identified with the topological (K-
theory) charge of TIs/TSCs. On the other hand, Ãµ is an internal degree of freedom on
the Dq-brane. For example, in the integer/fractional QHE, the external gauge field is the
electromagnetic U(1) gauge field, which measures the Hall conductivity, while the internal
gauge field is the Chern-Simons (CS) gauge field describing the dynamics of the droplet
itself.

The massive fermions can be integrated out, yielding the description of the topological
phase in terms of the gauge fields. The resulting effective field theory comes with terms of
topological nature, such as the CS or the θ-terms. In our string theory setup, they can be
read off from the Wess-Zumino (WZ) action of the D-branes, by taking one of the D-branes
as a background for the other. One can view these gauge-interacting TIs/TSCs from Dp-
Dq-systems as an analogue of the projective (parton) construction of the (fractional) QHE
[16]. Our string theory realization of TIs/TSCs sheds light on extending the projective
construction of the QHE to more generic TIs/TSCs; it tells us what type of gauge field is
“natural” to couple with fermions in topological phases, and guarantees the topological
stability of the system.
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AII 2Z 0 Z2 Z2 Z 0 0 0 − 0 0
CII 0 2Z 0 Z2 Z2 Z 0 0 − − 1
C 0 0 2Z 0 Z2 Z2 Z 0 0 − 0
CI 0 0 0 2Z 0 Z2 Z2 Z + − 1

Table 1: Classification of topological insulators and superconductors [9,10]; d is the space
dimension; the left-most column (A, AIII, . . ., CI) denotes the ten symmetry classes of
fermionic Hamiltonians, which are characterized by the presence/absence of time-reversal
(T), particle-hole (C), and chiral (or sublattice) (S) symmetries of different types denoted
by ±1 in the right most three columns. The entries “Z”, “Z2”, “2Z”, and “0” represent
the presence/absence of topological insulators and superconductors, and when they exist,
types of these states (see Ref. [9] for detailed descriptions).

two gauge fields play different roles in our construction: The gauge field Aµ “measures”
K-theory charge of the Dq-brane, and in that sense it can be interpreted as an “external”
gauge field. In this picture, the Dq-brane charge is identified with the topological (K-
theory) charge of TIs/TSCs. On the other hand, Ãµ is an internal degree of freedom on
the Dq-brane. For example, in the integer/fractional QHE, the external gauge field is the
electromagnetic U(1) gauge field, which measures the Hall conductivity, while the internal
gauge field is the Chern-Simons (CS) gauge field describing the dynamics of the droplet
itself.

The massive fermions can be integrated out, yielding the description of the topological
phase in terms of the gauge fields. The resulting effective field theory comes with terms of
topological nature, such as the CS or the θ-terms. In our string theory setup, they can be
read off from the Wess-Zumino (WZ) action of the D-branes, by taking one of the D-branes
as a background for the other. One can view these gauge-interacting TIs/TSCs from Dp-
Dq-systems as an analogue of the projective (parton) construction of the (fractional) QHE
[16]. Our string theory realization of TIs/TSCs sheds light on extending the projective
construction of the QHE to more generic TIs/TSCs; it tells us what type of gauge field is
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Inducing a Magnetic Monopole with
Topological Surface States
Xiao-Liang Qi,1 Rundong Li,1 Jiadong Zang,2 Shou-Cheng Zhang1*

Existence of the magnetic monopole is compatible with the fundamental laws of nature;
however, this elusive particle has yet to be detected experimentally. We show theoretically that an
electric charge near a topological surface state induces an image magnetic monopole charge due
to the topological magneto-electric effect. The magnetic field generated by the image magnetic
monopole may be experimentally measured, and the inverse square law of the field dependence
can be determined quantitatively. We propose that this effect can be used to experimentally realize
a gas of quantum particles carrying fractional statistics, consisting of the bound states of the
electric charge and the image magnetic monopole charge.

The electromagnetic response of a conven-
tional insulator is described by a dielectric
constant e and a magnetic permeability m.

An electric field induces an electric polarization,
whereas a magnetic field induces a magnetic
polarization. As both the electric field E(x) and
themagnetic inductionB(x) are well defined inside
an insulator, the linear response of a convention-
al insulator can be fully described by the effective

actionS0 ¼ 1
8p ∫d

3xdt eE2− 1
mB

2
! "

, where d3xdt is

the volume element of space and time. However,
in general, another possible term is allowed in the
effective action, which is quadratic in the elec-
tromagnetic field, contains the same number of
derivatives of the electromagnetic potential, and
is rotationally invariant; this term is given by
Sq ¼ q

2p

# $

a
2p

# $

∫d3xdtE⋅B. Here,a ¼ e2
ℏc (where ħ

is Planck’s constant h divided by 2p and c is the
speed of light) is the fine-structure constant, andq
can be viewed as a phenomenological parameter
in the sense of the effective Landau-Ginzburg
theory. This term describes the magneto-electric
effect (1), where an electric field can induce a
magnetic polarization, and a magnetic field can
induce an electric polarization.

Unlike conventional terms in the Landau-
Ginzburg effective actions, the integrand in Sq
is a total derivative term, when E(x) and B(x)
are expressed in terms of the electromagnetic
vector potential (where ∂m denotes the partial
derivative; m, n, r, and t denote the spacetime
coordinates; Fmn is the electromagnetic field
tensor; and Am is the electromagnetic potential)

Sq ¼
q
2p

a
16p

∫d3xdtemnrtFmnFrt

¼ q
2p

a
4p

∫d3xdt∂mðemnrsAn∂rAtÞ

Furthermore, when a periodic boundary condi-
tion is imposed in both the spatial and temporal
directions, the integral of such a total derivative
term is always quantized to be an integer; i.e.,
Sq
ℏ ¼ qn (where n is an integer). Therefore, the
partition function and all physically measurable
quantities are invariant when the q parameter is
shifted by 2p times an integer (2). Under time-
reversal symmetry, eiqn is transformed into e–iqn

(here, i2 = –1). Therefore, all time-reversal in-
variant insulators fall into two general classes,
described by either q = 0 or q = p (3). These two
time-reversal invariant classes are disconnected,
and they can only be connected continuously by
time-reversal breaking perturbations. This classi-
fication of time-reversal invariant insulators in
terms of the two possible values of the q
parameter is generally valid for insulators with
arbitrary interactions (3). The effective action
contains the complete description of the
electromagnetic response of topological insula-
tors. Topological insulators have an energy gap in
the bulk, but gapless surface states protected by
the time-reversal symmetry. We have shown (3)

that such a general definition of a topological
insulator reduces to the Z2 topological insulators
described in (4–6 ) for non-interacting band
insulators; this finding is a three-dimensional
(3D) generalization of the quantum spin Hall
insulator in two dimensions (7–10). For generic
band insulators, the parameter q has a micro-
scopic expression of the momentum space
Chern-Simons form (3, 11). Recently, experi-
mental evidence of the topologically nontrivial
surface states has been observed in Bi1−xSbx alloy
(12), which supports the theoretical prediction
that Bi1−xSbx is a Z2 topological insulator (4).

With periodic temporal and spatial boundary
conditions, the partition function is periodic inq
under the 2p shift, and the system is invariant
under the time-reversal symmetry at q = 0 and
q = p. However, with open boundary conditions,
the partition function is no longer periodic in q,
and time-reversal symmetry is generally broken
(but only on the boundary), even whenq = (2n +
1)p. Our work in (3) gives the following physical
interpretation: Time-reversal invariant topologi-
cal insulators have a bulk energy gap but have
gapless excitations with an odd number of Dirac
cones on the surface. When the surface is coated
with a thin magnetic film, time-reversal sym-
metry is broken, and an energy gap also opens up
at the surface. In this case, the low-energy theory
is completely determined by the surface term in
Eq. 1. As the surface term is a Chern-Simons
term, it describes the quantum Hall effect on
the surface. From the general Chern-Simons-
Landau-Ginzburg theory of the quantum Hall
effect (13), we know that the coefficient q =
(2n+1)p gives a quantized Hall conductance of
sxy ¼ nþ 1

2

# $

e2
h . This quantized Hall effect on

the surface is the physical origin behind the
topological magneto-electric (TME) effect.
Under an applied electric field, a quantized
Hall current is induced on the surface, which in
turn generates a magnetic polarization and vice
versa.
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Fig. 1. Illustration of the image charge
and monopole of a point-like electric
charge. The lower-half space is occupied
by a topological insulator (TI) with di-
electric constant e2 and magnetic perme-
ability m2. The upper-half space is occupied
by a topologically trivial insulator (or vac-
uum) with dielectric constant e1 and mag-
netic permeability m1. A point electric
charge q is located at (0, 0, d ). When seen
from the lower-half space, the image
electric charge q1 and magnetic monopole
g1 are at (0, 0, d ); when seen from the
upper-half space, the image electric
charge q2 and magnetic monopole g2
are at (0, 0, −d ). The red solid lines
represent the electric field lines, and blue
solid lines represent magnetic field lines.
(Inset) Top-down view showing the in-plane component of the electric field at the surface (red arrows)
and the circulating surface current (black circles).

(1)
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N = 4 SUSY SU(Nc)(3+1)d YM

− 1
2g2

tr(DµΦiDµΦi) +
1

4g2
tr([Φi,Φj ][Φi,Φj ])

L = − 1
4g2

trFµνFµν +
θ

32π2
εµνρσtrFµνFρσ

SO(4, 2)× SO(6)
λ = g2Nc

βλ = 0



N = 4 SUSY SU(Nc)(3+1)d YM

λ = g2Nc

Nc →∞
fixed

− 1
2g2

tr(DµΦiDµΦi) +
1

4g2
tr([Φi,Φj ][Φi,Φj ])

L = − 1
4g2

trFµνFµν +
θ

32π2
εµνρσtrFµνFρσ



=

SO(4, 2)× SO(6)

=

N = 4 SYM
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IIB SUGRA

AdS5 × S5

global symmetry isometry



“holographic”

r =∞

r = 0

boundary

Figure 1: The two slicings of AdS5. The horizontal axis is the direction x transverse to the
brane and the vertical axis is the radial direction of AdS interpolating from the boundary
(solid line) to the horizon (dashed line). The figure on the left shows lines of constant ρ
while the figure on the right shows lines of constant r.

Every AdSd+1 bulk field φd+1(#y, w, r) of mass M , transforming in some representation
of SO(d, 2), decomposes into a tower of AdSd modes φd,n(#y, w) inhabiting representations
of the preserved isometry group SO(d − 1, 2). Each mode is multiplied by an appropriate
wavefunction of the r-direction:

φd+1(#y, w, r) =
∑

n

ψn(r) φd,n(#y, w) . (15)

Among the data of the SO(d − 1, 2) representation is an AdSd-mass mn for each φd,n,

∂2
dφd,n = m2

nφd,n , (16)

where ∂2
d is the AdSd-Laplacian. The mass mn and the wavefunction ψn(r) may be deter-

mined by solving the wave equation for φd+1(#y, x, r). In general the backreaction of the
brane may produce a more general warp factor A(r), ds2 = dr2 + e2A(r)ds2

AdSd
, although (13)

will continue to hold at large |r|; this more general metric still preserves AdSd isometries
associated with dual dCFT. To linear order the wave equation then reduces to an ordinary
differential equation for the wavefunction ψn(r),

∂2
rψn(r) + dA′(r)∂rψn(r) + e−2A(r)m2

nψn(r) − M2ψn(r) = 0 . (17)

This will receive corrections from various interactions in the brane worldvolume theory,7 all
of which affect the calculation of the masses mn.

The field φd+1 of mass M is dual to an ambient operator Od(#y, x) of dimension ∆d (with
∆d(∆d − d) = M2) in the dCFT. Analogously, since the φd,n inhabit an effective AdSd the-
ory (they are representations of SO(d − 1, 2)), they are related to dual “defect operators”

7The brane interactions will generally cause a mixing between the modes corresponding to different bulk
fields φd+1, though we neglect this here. However, precisely the same phenomenon occurs also in the BOPE,
and it is easy to generalize our discussion to incorporate it.
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ds2 =
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r2
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The Janus Solution
Bak, Gutperle, Hirano 2003

Solution of type IIB SUGRA

In non-SUSY Janus, only the metric, dilaton, and Ramond-Ramond (RR) five-form are
nontrivial. In SUSY Janus these are also nontrivial, along with the RR and Neveu-Schwarz
(NS) three-forms. To compute Wilson loops we will introduce strings into these bulk space-
times. We will work exclusively in Einstein frame, in which case the string action involves
the metric, dilaton, and NS two-form. We will work with strings for which the pullback of
the NS two-form vanishes, hence we will ignore all of the form fields in what follows. In
short, in our review of the Janus solutions we will discuss only the metric and dilaton.

2.1 Non-Supersymmetric Janus

To write the non-SUSY Janus solution, let us first introduce the Weierstrass elliptic function
℘(x), defined by the equation

(∂x℘)2 = 4℘3 − g2℘ − g3, (2.8)

where we will parameterize the periods g2 and g3 in terms of a single real number γ,

g2 = 16γ(1 − γ), g3 = 4(γ − 1). (2.9)

Let us also introduce the Weierstrass sigma- and zeta-functions, σ(x) and ζ(x) respectively,
which are related to ℘(x) via

℘(x) = −ζ ′(x), ζ(x) =
σ′(x)

σ(x)
. (2.10)

The metric and dilaton of the non-SUSY Janus solution are

ds2 = R2
(

γ−1h(x)2dx2 + h(x)ds2
AdS4

+ ds2
S5

)

, (2.11a)

φ(x) = φ0 +
√

6(1 − γ)

(

x +
4γ − 3

℘′(χ)

(

ln
σ(x + χ)

σ(x − χ)
− 2ζ(χ)x

))

, (2.11b)

where φ0 is a real constant, χ is defined by ℘(χ) = 2(1 − γ), and the warp factor h(x) is

h(x) = γ

(

1 +
4γ − 3

℘(x) + 1 − 2γ

)

. (2.12)

The solution is completely specified by the two real constants, φ0 and γ. Nothing constrains
φ0, but γ is constrained as follows. When γ = 3/4 the warp factor h(x) = 1, and the
solution is a product geometry AdS4 ×R× S5 with a linear dilaton. Solutions with γ < 3/4
are generally singular, so we will impose γ > 3/4. On the other hand, to maintain reality of
the dilaton we must impose γ ≤ 1. When γ = 1, the dilaton becomes constant, φ(x) = φ0,
and a straightforward exercise shows that the metric becomes that of AdS5 × S5. In short,
we take γ ∈ (3/4, 1]. Notice that the internal space is simply an S5 for any γ.
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the metric, dilaton, and NS two-form. We will work with strings for which the pullback of
the NS two-form vanishes, hence we will ignore all of the form fields in what follows. In
short, in our review of the Janus solutions we will discuss only the metric and dilaton.

2.1 Non-Supersymmetric Janus

To write the non-SUSY Janus solution, let us first introduce the Weierstrass elliptic function
℘(x), defined by the equation

(∂x℘)2 = 4℘3 − g2℘ − g3, (2.8)

where we will parameterize the periods g2 and g3 in terms of a single real number γ,

g2 = 16γ(1 − γ), g3 = 4(γ − 1). (2.9)

Let us also introduce the Weierstrass sigma- and zeta-functions, σ(x) and ζ(x) respectively,
which are related to ℘(x) via

℘(x) = −ζ ′(x), ζ(x) =
σ′(x)

σ(x)
. (2.10)

The metric and dilaton of the non-SUSY Janus solution are

ds2 = R2
(

γ−1h(x)2dx2 + h(x)ds2
AdS4

+ ds2
S5

)

, (2.11a)

φ(x) = φ0 +
√

6(1 − γ)

(

x +
4γ − 3

℘′(χ)

(

ln
σ(x + χ)

σ(x − χ)
− 2ζ(χ)x
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, (2.11b)

where φ0 is a real constant, χ is defined by ℘(χ) = 2(1 − γ), and the warp factor h(x) is

h(x) = γ

(

1 +
4γ − 3

℘(x) + 1 − 2γ

)

. (2.12)

The solution is completely specified by the two real constants, φ0 and γ. Nothing constrains
φ0, but γ is constrained as follows. When γ = 3/4 the warp factor h(x) = 1, and the
solution is a product geometry AdS4 ×R× S5 with a linear dilaton. Solutions with γ < 3/4
are generally singular, so we will impose γ > 3/4. On the other hand, to maintain reality of
the dilaton we must impose γ ≤ 1. When γ = 1, the dilaton becomes constant, φ(x) = φ0,
and a straightforward exercise shows that the metric becomes that of AdS5 × S5. In short,
we take γ ∈ (3/4, 1]. Notice that the internal space is simply an S5 for any γ.
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Figure 1: The two slicings of AdS5. The horizontal axis is the direction x transverse to the
brane and the vertical axis is the radial direction of AdS interpolating from the boundary
(solid line) to the horizon (dashed line). The figure on the left shows lines of constant ρ
while the figure on the right shows lines of constant r.

Every AdSd+1 bulk field φd+1(#y, w, r) of mass M , transforming in some representation
of SO(d, 2), decomposes into a tower of AdSd modes φd,n(#y, w) inhabiting representations
of the preserved isometry group SO(d − 1, 2). Each mode is multiplied by an appropriate
wavefunction of the r-direction:

φd+1(#y, w, r) =
∑

n

ψn(r) φd,n(#y, w) . (15)

Among the data of the SO(d − 1, 2) representation is an AdSd-mass mn for each φd,n,

∂2
dφd,n = m2

nφd,n , (16)

where ∂2
d is the AdSd-Laplacian. The mass mn and the wavefunction ψn(r) may be deter-

mined by solving the wave equation for φd+1(#y, x, r). In general the backreaction of the
brane may produce a more general warp factor A(r), ds2 = dr2 + e2A(r)ds2

AdSd
, although (13)

will continue to hold at large |r|; this more general metric still preserves AdSd isometries
associated with dual dCFT. To linear order the wave equation then reduces to an ordinary
differential equation for the wavefunction ψn(r),

∂2
rψn(r) + dA′(r)∂rψn(r) + e−2A(r)m2

nψn(r) − M2ψn(r) = 0 . (17)

This will receive corrections from various interactions in the brane worldvolume theory,7 all
of which affect the calculation of the masses mn.

The field φd+1 of mass M is dual to an ambient operator Od(#y, x) of dimension ∆d (with
∆d(∆d − d) = M2) in the dCFT. Analogously, since the φd,n inhabit an effective AdSd the-
ory (they are representations of SO(d − 1, 2)), they are related to dual “defect operators”

7The brane interactions will generally cause a mixing between the modes corresponding to different bulk
fields φd+1, though we neglect this here. However, precisely the same phenomenon occurs also in the BOPE,
and it is easy to generalize our discussion to incorporate it.
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The Janus Solution

In non-SUSY Janus, only the metric, dilaton, and Ramond-Ramond (RR) five-form are
nontrivial. In SUSY Janus these are also nontrivial, along with the RR and Neveu-Schwarz
(NS) three-forms. To compute Wilson loops we will introduce strings into these bulk space-
times. We will work exclusively in Einstein frame, in which case the string action involves
the metric, dilaton, and NS two-form. We will work with strings for which the pullback of
the NS two-form vanishes, hence we will ignore all of the form fields in what follows. In
short, in our review of the Janus solutions we will discuss only the metric and dilaton.

2.1 Non-Supersymmetric Janus

To write the non-SUSY Janus solution, let us first introduce the Weierstrass elliptic function
℘(x), defined by the equation

(∂x℘)2 = 4℘3 − g2℘ − g3, (2.8)

where we will parameterize the periods g2 and g3 in terms of a single real number γ,

g2 = 16γ(1 − γ), g3 = 4(γ − 1). (2.9)

Let us also introduce the Weierstrass sigma- and zeta-functions, σ(x) and ζ(x) respectively,
which are related to ℘(x) via

℘(x) = −ζ ′(x), ζ(x) =
σ′(x)

σ(x)
. (2.10)

The metric and dilaton of the non-SUSY Janus solution are

ds2 = R2
(

γ−1h(x)2dx2 + h(x)ds2
AdS4

+ ds2
S5

)

, (2.11a)

φ(x) = φ0 +
√

6(1 − γ)

(

x +
4γ − 3

℘′(χ)

(

ln
σ(x + χ)

σ(x − χ)
− 2ζ(χ)x

))

, (2.11b)

where φ0 is a real constant, χ is defined by ℘(χ) = 2(1 − γ), and the warp factor h(x) is

h(x) = γ

(

1 +
4γ − 3

℘(x) + 1 − 2γ

)

. (2.12)

The solution is completely specified by the two real constants, φ0 and γ. Nothing constrains
φ0, but γ is constrained as follows. When γ = 3/4 the warp factor h(x) = 1, and the
solution is a product geometry AdS4 ×R× S5 with a linear dilaton. Solutions with γ < 3/4
are generally singular, so we will impose γ > 3/4. On the other hand, to maintain reality of
the dilaton we must impose γ ≤ 1. When γ = 1, the dilaton becomes constant, φ(x) = φ0,
and a straightforward exercise shows that the metric becomes that of AdS5 × S5. In short,
we take γ ∈ (3/4, 1]. Notice that the internal space is simply an S5 for any γ.
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we take γ ∈ (3/4, 1]. Notice that the internal space is simply an S5 for any γ.
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Massachusetts Institute of Technology 
Department of Electrical Engineering and Computer Science 

6.641 Electromagnetic Fields, Forces, and Motion 

Problem Set #4  Issued:2/24/05 
Spring Term 2005  Due: 3/3/05 

Suggested Reading Assignment: Zahn- 3.1-3.6, 5.6 

Suggested Video Viewing: H/M Demos 7.7.1 and Supplement, 8.6.1 
[http://web.mit.edu/6.013_book/www/VideoDemo.html] and Demo: 9.4.1 

Quiz 1 – Wednesday, March 9, 2005, 7:30-9:30PM The 6.641 Formula Sheet (attached) 
will be supplied.  You are also allowed to bring one 8 ½” x 11” sheet of notes (both sides) that you 

prepare. The exam covers all material up to and including Problem Set #4 material. 

Problem 4.1 

Zahn diagrams from Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, Robert E. Krieger

 Publishing Company, 1987. Used with permission. 

(a) A point charge q above a flat dielectric boundary requires different sets of image charges to 
solve for the fields in each region. (b) The field in region I is due to the original charge and the 
image charge q' while the field in region II is due only to image charge q". 

A point charge q is within a region of permittivity 1 and is a distance d above a planar boundary 

separating region I from region II, which has a permittivity 2. There is no unpaired (free) surface 

charge on the interface at y=0. The tangential component of E  and the normal component of D 

must be continuous across the interface. 

Let us try to use the method of images by placing an image charge q  at y=-d so that the solution 
in region I is due to this image charge plus the original point charge q. The solution for the field 
in region II will be due to an image charge q" at y=d, the position of the original point charge. 
Note that the appropriate image charge is always outside the region where the solution is desired. 
At this point we do not know if it is possible to satisfy the boundary conditions with these image 

charges, but we will try to find values of q  and q" to do so. 

a) What are the potential and electric field distributions in region I (y>0) and region II (y<0) 

in terms of q, q , and q"? 

b) 

c) 

What equations relate q, q , and q" to satisfy continuity of tangential E 

Solve for q  and q" in terms of q, 1 and 2. 
What is the force on the point charge q? 

 and normal D ? 
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τ = C0 + ie−2φ

SL(2, R)



Jumping coupling

Topological Insulator

Jumping θ-angle

τ → aτ + b

cτ + d ab− cd = 1
a, b, c, d ∈ R

τ =
θ

2π
+ i

2π

g2

SL(2, R)
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Wilson Loops in N = 4 SYM

R = Nc SU(Nc)of

T

WR[C] =
1

Nc
trRP exp

[∮

C
ds

(
iAµẋµ + Φiθ

i|ẋ|
)]

C =
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R = Nc SU(Nc)of

T
L

WR[C] =
1

Nc
trRP exp

[∮

C
ds

(
iAµẋµ + Φiθ

i|ẋ|
)]

C =



Wilson Loops in N = 4 SYM

WR[C] =
1

Nc
trRP exp

[∮

C
ds

(
iAµẋµ + Φiθ

i|ẋ|
)]

V (L) =
f(λ)
L

V (L) = − lim
T→∞

1
T

ln〈W [C]〉



Wilson Loops in N = 4 SYM

Perturbatively

λ! 1

− |ẋ(s)||ẋ(s̃)|θiθj〈PΦi(x(s))Φj(x(s̃))〉
)

+ . . .

〈W [C]〉 = 1 − Nc

2

∮

C
ds

∮

C
ds̃ (ẋµ(s)ẋν(s̃)〈PAµ(x(s))Aν(x(s))〉



Wilson Loops in N = 4 SYM

Sum “ladder” diagrams

that in pure Yang-Mills theory. At large λ, the AdS/CFT correspondence predicts a

square-root dependence of the Coulomb charge [13], so that

α(λ) =















λ

4π
+ · · ·, for λ → 0;

4π2
√

2λ

Γ4(1/4)
+ O(1), for λ → ∞.

(4)

If α(λ) is a smooth function, we expect that perturbative corrections should decrease

the weak coupling value of the Coulomb charge. In this Letter, we shall check this

assertion by computing the correction to α(λ) to the next order in λ. Similar com-

putations for non-supersymmetric Yang-Mills theory have been done in [14, 15].

Feynman rules forN = 4 supersymmetric Yang-Mills theory follow from the action

S =
1

g2

∫

d4x

{

1

4
(F a

µν)
2 + 1

2
(DµΦ

a
i )

2 + i
2
Ψ

a
ΓµDµΨa

+ 1

2
fabc Ψ

a
ΓiΦb

i Ψc + 1

2
fabcfade

∑

i<j

Φa
i Φ

b
jΦ

d
i Φ

e
j

}

where i, j range from 1 to 6, Dµ(·)a ≡ ∂µ(·)a + fabcAb
µ(·)c, and fabc are the structure

constants of the SU(N) Lie algebra (we use the normalization of generators TrT aT b =

δab/2). The Ψa are four-component Majorana fermion fields transforming as a four

dimensional representation of the SO(6) R-symmetry group. We use Feynman gauge

where the gluon propagator is Dµν(x) = δµνg2/4π2x2, and consider the contribution

of all planar diagrams to the Wilson loop to order g4. We have found that individual

diagrams contain ultraviolet divergences, which cancel when all diagrams to order

g4N2 are summed. Nevertheless, the sum of all one-loop contributions to the Wilson

loop expectation value does not yield a well-defined correction to the potential. The

planar ladder diagram contains an extra logarithm of T/L:

− ln

{

1 + + + · · ·
}

=
λ

4π

T

L
− λ2

(2π)3

T

L
ln

T

L
+ · · · . (5)

This logarithmic term threatens to ruin perturbation theory as well as the definition

of static potential (2). A similar behavior (beginning at order g6) has been observed

for Wilson loops in ordinary Yang-Mills theory. According to [15] the logarithm is

due to an infrared divergence coming from soft gluons traveling along the Wilson loop

for a long period of (Euclidean) time t ∝ T . Diagrams with more soft gluons will

have a higher degree of divergence so it is necessary to take all orders into account.

It was argued in [15] that the effect of the soft gluon resummation is to cut off the

divergent integral over t at t ∼ 1/λ. Prototypically, an integral like
∫

dt/t is replaced

4



Wilson Loops in N = 4 SYM

Holographically

λ! 1

18

a. b.

Y  = !

Y  = 0

Fig. 4: The comparison of the two regularization prescrip-
tions. The boundary conditions are imposed at Y = 0 in
(a) and at Y = ε in (b). The shaded regions represent the
regularized areas.

divergence in the area of the minimal surface in AdS5 is proportional to the
circumference of the loop

5
. The linear divergence arises from the leading

behavior of the surface at small Y , i.e. near the boundary of AdS5.
In this section, we have computed the regularized area by imposing the

boundary condition at the boundary Y = 0 of AdS5 and integrating the area
element over the part of the surface Y ≥ ε. This is not the unique way to
regularize the area. Another reasonable way to compute the minimal surface
is to impose the boundary conditions, not at Y = 0, but at Y = ε. The
area bounded by the loop on Y = ε is then by itself finite. A comparison
of the two regularization prescriptions are illustrated in fig. 4. These two
regularizations give the same values for the area, up to terms which vanish
as ε → 0. For example, consider the circular loop. The solution (3.16) can
also be regarded as a minimal surface with the boundary condition on Y = ε,

5
We are using the coordinates X

µ
in (1.2) to describe the configurations of the Wilson

loops. With these coordinates, there is no factor of λ in the relation between the IR cutoff
ε in AdS5 and the UV cutoff of the gauge theory [16]. These coordinates are different from
the coordinates on the D3-brane probe, by a factor of

√
λ [19].

r =∞

r = 0

C

Maldacena
Rey and Yee

1998



Wilson Loops in N = 4 SYM

V (L) = − lim
T→∞

1
T

ln〈W [C]〉 = lim
T→∞

A

T

SNG|solution = A

〈W [C]〉 ∝ e−A

SNG = − 1
2πα′

∫
d2σ

√
−det g
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SNG|solution

diverges at

r =∞

Infinite self-energy
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Y  = 0

Fig. 4: The comparison of the two regularization prescrip-
tions. The boundary conditions are imposed at Y = 0 in
(a) and at Y = ε in (b). The shaded regions represent the
regularized areas.

divergence in the area of the minimal surface in AdS5 is proportional to the
circumference of the loop

5
. The linear divergence arises from the leading

behavior of the surface at small Y , i.e. near the boundary of AdS5.
In this section, we have computed the regularized area by imposing the

boundary condition at the boundary Y = 0 of AdS5 and integrating the area
element over the part of the surface Y ≥ ε. This is not the unique way to
regularize the area. Another reasonable way to compute the minimal surface
is to impose the boundary conditions, not at Y = 0, but at Y = ε. The
area bounded by the loop on Y = ε is then by itself finite. A comparison
of the two regularization prescriptions are illustrated in fig. 4. These two
regularizations give the same values for the area, up to terms which vanish
as ε → 0. For example, consider the circular loop. The solution (3.16) can
also be regarded as a minimal surface with the boundary condition on Y = ε,

5
We are using the coordinates X

µ
in (1.2) to describe the configurations of the Wilson

loops. With these coordinates, there is no factor of λ in the relation between the IR cutoff
ε in AdS5 and the UV cutoff of the gauge theory [16]. These coordinates are different from
the coordinates on the D3-brane probe, by a factor of

√
λ [19].

C
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Legendre transform

Drukker, Gross, Ooguri 1999

A = SNG −
∫

dσ Pr r

∣∣∣∣
∂AdS



Wilson Loops in N = 4 SYM

“Straight string”

Legendre transform 
cancels the divergence!

A = 0 〈W [C]〉 = 1

due to SUSY

⇒
Figure 1: The two slicings of AdS5. The horizontal axis is the direction x transverse to the
brane and the vertical axis is the radial direction of AdS interpolating from the boundary
(solid line) to the horizon (dashed line). The figure on the left shows lines of constant ρ
while the figure on the right shows lines of constant r.

Every AdSd+1 bulk field φd+1(#y, w, r) of mass M , transforming in some representation
of SO(d, 2), decomposes into a tower of AdSd modes φd,n(#y, w) inhabiting representations
of the preserved isometry group SO(d − 1, 2). Each mode is multiplied by an appropriate
wavefunction of the r-direction:

φd+1(#y, w, r) =
∑

n

ψn(r) φd,n(#y, w) . (15)

Among the data of the SO(d − 1, 2) representation is an AdSd-mass mn for each φd,n,

∂2
dφd,n = m2

nφd,n , (16)

where ∂2
d is the AdSd-Laplacian. The mass mn and the wavefunction ψn(r) may be deter-

mined by solving the wave equation for φd+1(#y, x, r). In general the backreaction of the
brane may produce a more general warp factor A(r), ds2 = dr2 + e2A(r)ds2

AdSd
, although (13)

will continue to hold at large |r|; this more general metric still preserves AdSd isometries
associated with dual dCFT. To linear order the wave equation then reduces to an ordinary
differential equation for the wavefunction ψn(r),

∂2
rψn(r) + dA′(r)∂rψn(r) + e−2A(r)m2

nψn(r) − M2ψn(r) = 0 . (17)

This will receive corrections from various interactions in the brane worldvolume theory,7 all
of which affect the calculation of the masses mn.

The field φd+1 of mass M is dual to an ambient operator Od(#y, x) of dimension ∆d (with
∆d(∆d − d) = M2) in the dCFT. Analogously, since the φd,n inhabit an effective AdSd the-
ory (they are representations of SO(d − 1, 2)), they are related to dual “defect operators”

7The brane interactions will generally cause a mixing between the modes corresponding to different bulk
fields φd+1, though we neglect this here. However, precisely the same phenomenon occurs also in the BOPE,
and it is easy to generalize our discussion to incorporate it.

11
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Fig. 4: The comparison of the two regularization prescrip-
tions. The boundary conditions are imposed at Y = 0 in
(a) and at Y = ε in (b). The shaded regions represent the
regularized areas.

divergence in the area of the minimal surface in AdS5 is proportional to the
circumference of the loop

5
. The linear divergence arises from the leading

behavior of the surface at small Y , i.e. near the boundary of AdS5.
In this section, we have computed the regularized area by imposing the

boundary condition at the boundary Y = 0 of AdS5 and integrating the area
element over the part of the surface Y ≥ ε. This is not the unique way to
regularize the area. Another reasonable way to compute the minimal surface
is to impose the boundary conditions, not at Y = 0, but at Y = ε. The
area bounded by the loop on Y = ε is then by itself finite. A comparison
of the two regularization prescriptions are illustrated in fig. 4. These two
regularizations give the same values for the area, up to terms which vanish
as ε → 0. For example, consider the circular loop. The solution (3.16) can
also be regarded as a minimal surface with the boundary condition on Y = ε,

5
We are using the coordinates X

µ
in (1.2) to describe the configurations of the Wilson

loops. With these coordinates, there is no factor of λ in the relation between the IR cutoff
ε in AdS5 and the UV cutoff of the gauge theory [16]. These coordinates are different from
the coordinates on the D3-brane probe, by a factor of

√
λ [19].

C

Wilson Loops from AdS5

Legendre 
transform =



Holography

Ladder Diagrams

V (L) =






− 1
4π

2λ
L , λ" 1

− 1
π

√
2λ
L , λ# 1.

λ! 1

Maldacena
Rey and Yee

1998

Erickson
Semenoff
Zarembo

2000

V (L) = − 4π2

Γ (1/4)4

√
2λ

L



Conformal Interface

Wilson Loops in N = 4 SYM

X3

L

D

X3

XX 33

rightleft

(a.) (b.)

Figure 1: Cartoon depicting the orientations of the Wilson loops in the two cases we consider.
The vertical axis is one of the directions x1 or x2, the horizontal axis is x3. The solid black
vertical line represents the interface, at x3 = 0. The quark and anti-quark, represented by
the solid black dots, define a line that is either parallel or perpendicular to the defect. (a.)
The parallel case, where L is the distance between the quark and anti-quark and D is the
distance to the interface. (b.) The perpendicular case, where the quark and anti-quark sit
at distances xleft

3 and xright
3 from the interface.

diagrams, gives (in each case, only the leading term is shown)

V (λ, L) =











− 1
4π

2λ
L , λ " 1

− 1
π

√
2λ
L , λ # 1.

sum of ladder diagrams. (1.2)

When λ # 1, the dependence on λ is the same as the holographic result, although the
numerical coefficient is different. In other words, the sum of ladder diagrams contain some,
but not all, of the important contributions to the potential at strong coupling. The leading
behavior in λ changes from the weak-coupling factor of λ to the strong-coupling factor of√

λ due to screening effects.

For N = 4 SYM with a conformal interface, L is no longer the only scale in the problem.
The interface spans the x1 and x2 directions, and sits at x3 = 0. The quark and anti-
quark provide two points that define a line. That line may be parallel to the interface,
perpendicular, or some linear combination of the two. For simplicity we will consider only
the parallel and perpendicular cases, which are depicted in figure 1. In the parallel case,
depicted in figure 1 (a.), L is the distance between the quark and anti-quark and D is the
distance to the interface. In the perpendicular case, depicted in figure 1 (b.) the quark and
anti-quark may be at different distances from the interface, which we call xleft

3 and xright
3 .
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V (λ, L) =











− 1
4π

2λ
L , λ " 1

− 1
π

√
2λ
L , λ # 1.

sum of ladder diagrams. (1.2)

When λ # 1, the dependence on λ is the same as the holographic result, although the
numerical coefficient is different. In other words, the sum of ladder diagrams contain some,
but not all, of the important contributions to the potential at strong coupling. The leading
behavior in λ changes from the weak-coupling factor of λ to the strong-coupling factor of√

λ due to screening effects.

For N = 4 SYM with a conformal interface, L is no longer the only scale in the problem.
The interface spans the x1 and x2 directions, and sits at x3 = 0. The quark and anti-
quark provide two points that define a line. That line may be parallel to the interface,
perpendicular, or some linear combination of the two. For simplicity we will consider only
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V (L,D) =
f(λ, D/L)
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The vertical axis is one of the directions x1 or x2, the horizontal axis is x3. The solid black
vertical line represents the interface, at x3 = 0. The quark and anti-quark, represented by
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3 and xright
3 from the interface.
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When λ # 1, the dependence on λ is the same as the holographic result, although the
numerical coefficient is different. In other words, the sum of ladder diagrams contain some,
but not all, of the important contributions to the potential at strong coupling. The leading
behavior in λ changes from the weak-coupling factor of λ to the strong-coupling factor of√

λ due to screening effects.

For N = 4 SYM with a conformal interface, L is no longer the only scale in the problem.
The interface spans the x1 and x2 directions, and sits at x3 = 0. The quark and anti-
quark provide two points that define a line. That line may be parallel to the interface,
perpendicular, or some linear combination of the two. For simplicity we will consider only
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Conformal Interface

Wilson Loops in N = 4 SYM

〈PAµ(x(s))Aν(x(s))〉 acquires image terms

〈PΦi(x(s))Φj(x(s̃)〉 unchanged

Clark, Freedman, Karch, Schnabl 2004

Perturbatively
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Figure 8: Wilson line for a jumping axion with δC = 10 (top) and δC = 1/10 (bottom).
The blue dots are the gravity result, while the gold line is the CFT result. The horizontal
blue line is the AdS5 × S5 result with Φ = 0, while the purple line corresponds to the string
in AdS5 × S5. The right hand side is zoomed in near the peak.
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Figure 9: Wilson line for a jumping coupling with jump δΦ = 1 for supersymmetric Janus.
The blue and purple dots are the gravity results for y = 0 and y = π/2 respectively, while
the gold line is the CFT result. The top purple and low blue line are the AdS5 × S5 values
with Φ = δΦ/2 and Φ = −δΦ/2 respectively. The right side is zoomed in near the x-origin.
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Outline:

• Motivation: Topological Insulators 

• Holographic Conformal Interfaces

• Holographic Wilson Loops

• Static Quark Potential

• Future Directions



Future Directions

•Circular Wilson loops?

•Other representations?

•Image strings?

•Accelerating charges?



Thank You.


