Two Applications of Holography

Umut Gürsoy

CERN

University of Crete, Heraklion-May 2nd, 2012

Based on: arXiv:1111.0580, w/ M. Caselle, L. Castagnini, A. Feo, F. Gliozzi, M. Panero, A. Schafer arXiv:1112:5074, ongoing, w/ E. Plauschinn, H. Stoof, S. Vandoren

Outline

- Universal thermodynamics in the quark-gluon plasma: Universal features of the interaction measure in finite T gauge theories.
- Holography and ARPES sum-rules: Elementary Weyl fermions in a strongly coupled CFT.

APPLICATION I

Take a confining, AF gauge theory at finite T in *d* dimensions. Interaction measure: $\Delta(T) = T^{\mu}_{\mu} = E(T) + (d-1)F(T)$ measures "how far the system is away from conformality".

Take a confining, AF gauge theory at finite T in *d* dimensions. Interaction measure: $\Delta(T) = T^{\mu}_{\mu} = E(T) + (d-1)F(T)$ measures "how far the system is away from conformality". For pure SU(N) in 3 + 1 D:

Lattice: M. Panero '09, Holography: U.G, Kiritsis, Mazzanti, Nitti '09

Take a confining, AF gauge theory at finite T in *d* dimensions. Interaction measure: $\Delta(T) = T^{\mu}_{\mu} = E(T) + (d-1)F(T)$ measures "how far the system is away from conformality". For pure SU(N) in 3 + 1 D:

Lattice: M. Panero '09, Holography: U.G. Kiritsis, Mazzanti, Nitti '09 Observations: (a) Large N is not bad at all,

(b) (improved) holography captures the correct behavior.

Pisarski '11, U.G. et al '11

Pisarski '11, U.G. et al '11

A scaling law in $\frac{\Delta(T)}{T^4} \propto \left(\frac{T_c}{T}\right)^{\#}$ in the range $1.5T_c \lesssim T \lesssim 10T_c$

Pisarski '11, U.G. et al '11

A scaling law in $\frac{\Delta(T)}{T^4} \propto \left(\frac{T_c}{T}\right)^{\#}$ in the range $1.5T_c \lesssim T \lesssim 10T_c$

Pisarski '11, U.G. et al '11

A scaling law in $\frac{\Delta(T)}{T^4} \propto \left(\frac{T_c}{T}\right)^{\#}$ in the range $1.5T_c \lesssim T \lesssim 10T_c$

• Data collapses on $1/T^2$ (3+1D)

Pisarski '11, U.G. et al '11

A scaling law in $\frac{\Delta(T)}{T^4} \propto \left(\frac{T_c}{T}\right)^{\#}$ in the range $1.5T_c \lesssim T \lesssim 10T_c$

- Data collapses on $1/T^2$ (3+1D)
- No satisfactory explanation in field theory Because gauge theory is strongly coupled in that range.

• Consider pure SU(N) at large N, at strong coupling \Rightarrow classical Einstein's GR

- Consider pure SU(N) at large N, at strong coupling \Rightarrow classical Einstein's GR
- Most economic set-up:
 - 1. $Mink^4$ + energy scale \Rightarrow 5 dimensions

- Consider pure SU(N) at large N, at strong coupling \Rightarrow classical Einstein's GR
- Most economic set-up:
 - 1. $Mink^4$ + energy scale \Rightarrow 5 dimensions
 - 2. Only relevant/marginal operators the stress-tensor $T_{\mu\nu}$ and the gluon condensate Tr F^2
 - \Rightarrow Need metric $g_{\mu\nu} \Leftrightarrow T_{\mu\nu}$ and dilaton $\Phi \Leftrightarrow \text{Tr} F^2$

- Consider pure SU(N) at large N, at strong coupling \Rightarrow classical Einstein's GR
- Most economic set-up:
 - 1. $Mink^4$ + energy scale \Rightarrow 5 dimensions
 - 2. Only relevant/marginal operators the stress-tensor $T_{\mu\nu}$ and the gluon condensate Tr F^2

 \Rightarrow Need metric $g_{\mu\nu} \Leftrightarrow T_{\mu\nu}$ and dilaton $\Phi \Leftrightarrow \operatorname{Tr} F^2$

3. Running coupling extremely important for correct thermodynamics \Rightarrow non-conformally invariant background with $e^{\Phi} \propto g^2 N$ a function of r: $\Phi = \Phi(r)$

- Consider pure SU(N) at large N, at strong coupling \Rightarrow classical Einstein's GR
- Most economic set-up:
 - 1. $Mink^4$ + energy scale \Rightarrow 5 dimensions
 - 2. Only relevant/marginal operators the stress-tensor $T_{\mu\nu}$ and the gluon condensate Tr F^2

 \Rightarrow Need metric $g_{\mu\nu} \Leftrightarrow T_{\mu\nu}$ and dilaton $\Phi \Leftrightarrow \operatorname{Tr} F^2$

- 3. Running coupling extremely important for correct thermodynamics \Rightarrow non-conformally invariant background with $e^{\Phi} \propto g^2 N$ a function of r: $\Phi = \Phi(r)$
- 4. $S \propto N^2 \int d^5 x \sqrt{g} \left\{ R \frac{4}{3} (\partial \Phi)^2 + V(\Phi) \right\}$

- Consider pure SU(N) at large N, at strong coupling \Rightarrow classical Einstein's GR
- Most economic set-up:
 - 1. $Mink^4$ + energy scale \Rightarrow 5 dimensions
 - 2. Only relevant/marginal operators the stress-tensor $T_{\mu\nu}$ and the gluon condensate Tr F^2

 \Rightarrow Need metric $g_{\mu\nu} \Leftrightarrow T_{\mu\nu}$ and dilaton $\Phi \Leftrightarrow \operatorname{Tr} F^2$

- 3. Running coupling extremely important for correct thermodynamics \Rightarrow non-conformally invariant background with $e^{\Phi} \propto g^2 N$ a function of r: $\Phi = \Phi(r)$
- 4. $S \propto N^2 \int d^5 x \sqrt{g} \left\{ R \frac{4}{3} (\partial \Phi)^2 + V(\Phi) \right\}$

This approach is most suitable for universal and generic results.

A single "holographic parameter" α determines many qualitative behavior: $V(\Phi) \rightarrow const \times \Phi^{\frac{\alpha-1}{\alpha}} e^{\frac{4}{3}\Phi} + \cdots$ in the IR A single "holographic parameter" α determines many qualitative behavior: $V(\Phi) \rightarrow const \times \Phi^{\frac{\alpha-1}{\alpha}} e^{\frac{4}{3}\Phi} + \cdots$ in the IR

- 1. Spectrum of the glue- balls: $m_n^2 \propto n^{\alpha-1}$, for large *n*;
- 2. The nature of the deconfining transition: for large α , transition more discontinuous, whereas for $\alpha \rightarrow 1$, it is continuous;
- 3. T-dependence in thermodynamics in the intermediate region.

A single "holographic parameter" α determines many qualitative behavior: $V(\Phi) \rightarrow const \times \Phi^{\frac{\alpha-1}{\alpha}} e^{\frac{4}{3}\Phi} + \cdots$ in the IR

- 1. Spectrum of the glue- balls: $m_n^2 \propto n^{\alpha-1}$, for large *n*;
- 2. The nature of the deconfining transition: for large α , transition more discontinuous, whereas for $\alpha \rightarrow 1$, it is continuous;
- 3. T-dependence in thermodynamics in the intermediate region.

• Calculate the thermodynamics from the corresponding black-hole solution:

- Basic thermodynamics: $\frac{\Delta}{N^2 T^4} = \frac{S}{T^3} \frac{4}{T^4} \int_{T_c}^T S(\tilde{T}) d\tilde{T}$
- One needs: $T(r_h) = -f'(r_h)/4\pi$ and $S(r_h) = b(r_h)^3/4G$

• Calculate the thermodynamics from the corresponding black-hole solution:

- Basic thermodynamics: $\frac{\Delta}{N^2 T^4} = \frac{S}{T^3} \frac{4}{T^4} \int_{T_c}^T S(\tilde{T}) d\tilde{T}$
- One needs: $T(r_h) = -f'(r_h)/4\pi$ and $S(r_h) = b(r_h)^3/4G$
- Claim: Region of interest: $T(r_h) \approx \frac{1}{\pi r_h}$ and $b(r_h) \approx \frac{\ell}{r} e^{-(r\Lambda)^{\alpha}}$

• Calculate the thermodynamics from the corresponding black-hole solution:

- Basic thermodynamics: $\frac{\Delta}{N^2 T^4} = \frac{S}{T^3} \frac{4}{T^4} \int_{T_c}^T S(\tilde{T}) d\tilde{T}$
- One needs: $T(r_h) = -f'(r_h)/4\pi$ and $S(r_h) = b(r_h)^3/4G$
- Claim: Region of interest: $T(r_h) \approx \frac{1}{\pi r_h}$ and $b(r_h) \approx \frac{\ell}{r} e^{-(r\Lambda)^{\alpha}}$

• Calculate the thermodynamics from the corresponding black-hole solution:

- Basic thermodynamics: $\frac{\Delta}{N^2 T^4} = \frac{S}{T^3} \frac{4}{T^4} \int_{T_c}^T S(\tilde{T}) d\tilde{T}$
- One needs: $T(r_h) = -f'(r_h)/4\pi$ and $S(r_h) = b(r_h)^3/4G$
- Claim: Region of interest: $T(r_h) \approx \frac{1}{\pi r_h}$ and $b(r_h) \approx \frac{\ell}{r} e^{-(r\Lambda)^{\alpha}}$

- Indeed $T(r_h)$ is approximately conformal
- We need the first confining correction to b(r):
- IR of $V: \Rightarrow b(r_h) \approx \frac{\ell}{r} e^{-(r\Lambda)^{\alpha}}$

- An analytic result: $\Delta/T^d \propto (T_c/T)^{\alpha}$
- α is the "holographic parameter":

- An analytic result: $\Delta/T^d \propto \left(T_c/T\right)^{\alpha}$
- α is the "holographic parameter":
- Qualitatively: IR properties of the theory determines the power.

- An analytic result: $\Delta/T^d \propto \left(T_c/T\right)^{\alpha}$
- α is the "holographic parameter":
- Qualitatively: IR properties of the theory determines the power.
- In 3+1 linear confinement prefers $\alpha = 2$.

- An analytic result: $\Delta/T^d \propto (T_c/T)^{\alpha}$
- α is the "holographic parameter":
- Qualitatively: IR properties of the theory determines the power.
- In 3+1 linear confinement prefers $\alpha = 2$. Perfectly explains the data!
- A qualitative result from holography.

- An analytic result: $\Delta/T^d \propto \left(T_c/T\right)^{\alpha}$
- α is the "holographic parameter":
- Qualitatively: IR properties of the theory determines the power.
- In 3+1 linear confinement prefers $\alpha = 2$. Perfectly explains the data!
- A qualitative result from holography.

Outlook:

- Apparently proportionality factors also universal Pisarski '11
- Other universal phenomena on the μT plane

APPLICATION II

(*) From the photoemission intensity $I(\omega, k)$ one constructs the retarded Green's function G_R of e^-s traveling inside the material.

(*) From the photoemission intensity I(ω, k) one constructs the retarded Green's function G_R of e⁻s traveling inside the material.
(*) Non-interacting case: A sequence of δ-funcs in I.
(*) Strong correlations: Extra "satellites"

(*) From the photoemission intensity $I(\omega, k)$ one constructs the retarded Green's function G_R of e^-s traveling inside the material.

- (*) Non-interacting case: A sequence of δ -funcs in I.
- (*) Strong correlations: Extra "satellites"
- (*) ARPES sum-rule: $\frac{1}{\pi} \int d\omega \text{Im}[G(\omega, k)] = 1, \quad \forall k, T$
- (*) From canonical com. rels of elementary operators
- (*) Difficult in AdS/CFT, as \mathcal{O} is composite \Rightarrow UV divergences.

- Consider a system (e.g. semi-metal, super-conductor,..) at criticality at zero T.
- Perturb the system \Rightarrow excite an elementary electronic d.o.f. ψ_+

- Consider a system (e.g. semi-metal, super-conductor,..) at criticality at zero T.
- Perturb the system \Rightarrow excite an elementary electronic d.o.f. ψ_+
- In principle sources to all CFT operators \mathcal{O}_{Δ} .
- Assume a dominant channel $\int dt d^{d-1}x \ g \ (\overline{\psi}_+ \mathcal{O}_- + \overline{\mathcal{O}}_- \psi_+)$

- Consider a system (e.g. semi-metal, super-conductor,..) at criticality at zero T.
- Perturb the system \Rightarrow excite an elementary electronic d.o.f. ψ_+
- In principle sources to all CFT operators \mathcal{O}_{Δ} .
- Assume a dominant channel $\int dt d^{d-1}x \ g \ (\overline{\psi}_+ \mathcal{O}_- + \overline{\mathcal{O}}_- \psi_+)$
- Interaction should be irrelevant in UV \Rightarrow relevant in IR.
- Consider a Lifshitz CFT in general with $\vec{x} \to \lambda \vec{x}, t \to \lambda^z t$
- One should demand $\Delta < z + \frac{d-1}{2}$.

- Consider a system (e.g. semi-metal, super-conductor,..) at criticality at zero T.
- Perturb the system \Rightarrow excite an elementary electronic d.o.f. ψ_+
- In principle sources to all CFT operators \mathcal{O}_{Δ} .
- Assume a dominant channel $\int dt d^{d-1}x \ g \ (\overline{\psi}_+ \mathcal{O}_- + \overline{\mathcal{O}}_- \psi_+)$
- Interaction should be irrelevant in UV \Rightarrow relevant in IR.
- Consider a Lifshitz CFT in general with $\vec{x} \to \lambda \vec{x}, t \to \lambda^z t$
- One should demand $\Delta < z + \frac{d-1}{2}$.

The retarded Green's function of ψ_+ is $G_R \sim \frac{1}{\omega + g \,\omega^{\frac{2M}{z}}}$ with $M = \Delta + \frac{z+d-1}{2} \Rightarrow$ The condition is M < z/2. One is guaranteed to satisfy the sum-rule: $\frac{1}{\pi} \int_{-\infty}^{\infty} Im G_R \, d\omega = 1$.

- Consider a system (e.g. semi-metal, super-conductor,..) at criticality at zero T.
- Perturb the system \Rightarrow excite an elementary electronic d.o.f. ψ_+
- In principle sources to all CFT operators \mathcal{O}_{Δ} .
- Assume a dominant channel $\int dt d^{d-1}x \ g \ (\overline{\psi}_+ \mathcal{O}_- + \overline{\mathcal{O}}_- \psi_+)$
- Interaction should be irrelevant in UV \Rightarrow relevant in IR.
- Consider a Lifshitz CFT in general with $\vec{x} \to \lambda \vec{x}, t \to \lambda^z t$
- One should demand $\Delta < z + \frac{d-1}{2}$.

The retarded Green's function of ψ_+ is $G_R \sim \frac{1}{\omega + g \, \omega^{\frac{2M}{z}}}$ with $M = \Delta + \frac{z+d-1}{2} \Rightarrow$ The condition is M < z/2. One is guaranteed to satisfy the sum-rule: $\frac{1}{\pi} \int_{-\infty}^{\infty} Im G_R \, d\omega = 1$. How to derive this holographically?

(not only semi-holographically as in Faulkner, Polchinski '11.)

Introduce $\Psi = \Psi_+ + \Psi_$ with $\Psi_+(r_0) \Leftrightarrow \psi_+, \Psi_-(r_0) \Leftrightarrow \langle \mathcal{O}_- \rangle$ Dirichlet at r_0 , in-fall at r_h

$$G_R[\mathcal{O}_{-}] = \lim_{r_0 \to \infty} r_0^{2M} \psi_{-}(r_0) / \psi_{+}(r_0)$$

r=nh

Introduce $\Psi = \Psi_+ + \Psi_$ with $\Psi_+(r_0) \Leftrightarrow \psi_+, \Psi_-(r_0) \Leftrightarrow \langle \mathcal{O}_- \rangle$ Dirichlet at r_0 , in-fall at r_h

 $G_R[\mathcal{O}_-] = \lim_{r_0 \to \infty} r_0^{2M} \psi_-(r_0) / \psi_+(r_0)$

Prescription for the elementary field: Calculate the G_R of the dynamical source ψ_+ ! U.G, Plauschinn, Stoof, Vandoren arXiv:1112:5074

Introduce $\Psi = \Psi_+ + \Psi_$ with $\Psi_+(r_0) \Leftrightarrow \psi_+, \Psi_-(r_0) \Leftrightarrow \langle \mathcal{O}_- \rangle$ Dirichlet at r_0 , in-fall at r_h

 $G_R[\mathcal{O}_{-}] = \lim_{r_0 \to \infty} r_0^{2M} \psi_{-}(r_0) / \psi_{+}(r_0)$

Prescription for the elementary field: Calculate the G_R of the dynamical source ψ_+ ! U.G. Plauschinn, Stoof, Vandoren arXiv:1112:5074 Results:

$$G_{R}[\psi_{+}] = \frac{-1}{\not p(1+g \ p^{2M-1})} \qquad \text{(for } z = 1\text{)}$$

$$G_{R}[\psi_{+}] = \frac{-1}{\omega - \eta \ \vec{\sigma} \cdot \hat{k} \ k^{z} g \ \omega^{\frac{2M}{z}} \left(f_{1}(\omega/k^{z}) + \vec{\sigma} \cdot \hat{k} \ f_{2}(\omega/k^{z})\right)} \qquad \text{(for generic } z\text{)}$$

with $f_2(u, M) = f_1(u, M)\sqrt{1 + (f_1(u, M)f_1(u, -M))^{-1}}$.

Introduce $\Psi = \Psi_+ + \Psi_$ with $\Psi_+(r_0) \Leftrightarrow \psi_+, \Psi_-(r_0) \Leftrightarrow \langle \mathcal{O}_- \rangle$ Dirichlet at r_0 , in-fall at r_h

 $G_R[\mathcal{O}_{-}] = \lim_{r_0 \to \infty} r_0^{2M} \psi_{-}(r_0) / \psi_{+}(r_0)$

Prescription for the elementary field: Calculate the G_R of the dynamical source ψ_+ ! U.G, Plauschinn, Stoof, Vandoren arXiv:1112:5074 Results:

with $f_2(u, M) = f_1(u, M)\sqrt{1 + (f_1(u, M)f_1(u, -M))^{-1}}$.

Satisfies the sum-rule and Kramers-Kronig for -z/2 < M < z/2!

The background:

$$ds^{2} = \frac{dr^{2}}{r^{2} f(r)} - f(r) r^{2z} dt^{2} + r^{2} d\vec{x}^{2} ,$$

Temperature: $T = \frac{d+z-1}{4\pi} (r_{h})^{z} .$

$$f(r) = 1 - \left(\frac{r_h}{r}\right)^{d+z-1}$$
.

The background:

$$ds^{2} = \frac{dr^{2}}{r^{2}f(r)} - f(r) r^{2z} dt^{2} + r^{2} d\vec{x}^{2} , \qquad f(r) = 1 - \left(\frac{r_{h}}{r}\right)^{d+z-1} .$$

Temperature: $T = \frac{d+z-1}{4\pi} (r_{h})^{z} .$
Lifshitz isometry: $r \to \lambda r, \quad t \to \lambda^{-z} t, \quad x \to \lambda^{-1} x, \quad T \to \lambda^{z} T.$

The background:

 $ds^{2} = \frac{dr^{2}}{r^{2}f(r)} - f(r)r^{2z}dt^{2} + r^{2}d\vec{x}^{2}, \qquad f(r) = 1 - \left(\frac{r_{h}}{r}\right)^{d+z-1}.$ Temperature: $T = \frac{d+z-1}{4\pi}(r_{h})^{z}$. Lifshitz isometry: $r \to \lambda r, \quad t \to \lambda^{-z}t, \quad x \to \lambda^{-1}x, \quad T \to \lambda^{z}T.$

Compute $G_{\mathcal{O}}$ of a ferminic operator \mathcal{O}_{-} on Lifshitz: solve Dirac $(\mathcal{D} - M)\Psi = 0$. Decompose $\Gamma^{\underline{r}}\Psi_{\pm} = \pm \Psi_{\pm}$. UV asymptotics:

$$\psi_{\pm} = r^{\pm M - \frac{1}{2}(z+d-1)} \left(1 + \cdots \right) A_{\pm} + r^{\mp M - \frac{1}{2}(z+d+1)} \left(1 + \cdots \right) B_{\pm} ,$$

The background:

 $ds^{2} = \frac{dr^{2}}{r^{2}f(r)} - f(r) r^{2z} dt^{2} + r^{2} d\vec{x}^{2} , \qquad f(r) = 1 - \left(\frac{r_{h}}{r}\right)^{d+z-1} .$ Temperature: $T = \frac{d+z-1}{4\pi} (r_{h})^{z} .$ Lifshitz isometry: $r \to \lambda r, \quad t \to \lambda^{-z}t, \quad x \to \lambda^{-1}x, \quad T \to \lambda^{z}T.$

Compute $G_{\mathcal{O}}$ of a fermonic operator \mathcal{O}_{-} on Lifshitz: solve Dirac $(\mathcal{D} - M)\Psi = 0$. Decompose $\Gamma^{\underline{r}}\Psi_{\pm} = \pm \Psi_{\pm}$. UV asymptotics:

$$\psi_{\pm} = r^{\pm M - \frac{1}{2}(z+d-1)} \left(1 + \cdots \right) A_{\pm} + r^{\mp M - \frac{1}{2}(z+d+1)} \left(1 + \cdots \right) B_{\pm} ,$$

- Discover $M = \Delta + \frac{z+d-1}{2}$
- Find $G_{\mathcal{O}}$ from $A_{-} \sim G_{\mathcal{O}} A_{+}$.
- Define $\psi_{-}(r,p) = -i\xi(r,p)\,\psi_{+}(r,p)$
- Then $G_{\mathcal{O}}(\omega) = \lim_{r \to \infty} r^{2M} \xi(r, \omega), \quad -\frac{z}{2} < M < \frac{z}{2},$

Eigenvalues of $\xi \Leftrightarrow$ components of $G_{\mathcal{O}}$.

Eigenvalues of $\xi \Leftrightarrow$ components of $G_{\mathcal{O}}$.

 ξ satisfies a first order equation:

$$r^2 V \xi'_{\pm} + 2M r \xi_{\pm} = -\tilde{\omega} \mp k + (-\tilde{\omega} \pm k) \xi_{\pm}^2,$$

with b.c. $\xi(r_h) = i$ at r_h (defined $\tilde{\omega} = -\frac{\omega}{r^{z-1}\sqrt{f}}$)

Eigenvalues of $\xi \Leftrightarrow$ components of $G_{\mathcal{O}}$.

 ξ satisfies a first order equation:

$$r^2 V \xi'_{\pm} + 2M r \xi_{\pm} = -\tilde{\omega} \mp k + (-\tilde{\omega} \pm k) \xi_{\pm}^2,$$

with b.c. $\xi(r_h) = i$ at r_h (defined $\tilde{\omega} = -\frac{\omega}{r^{z-1}\sqrt{f}}$) Symmetries of $\xi \Leftrightarrow$ symmetries of $G_{\mathcal{O}}$:

• Lifshitz:

$$G_{\mathcal{O}} = k^{2M} \mathcal{F}_1\left(\frac{\omega}{k^z}, \frac{T}{k^z}\right) = \omega^{\frac{2M}{z}} \mathcal{F}_2\left(\frac{k}{\omega^{\frac{1}{z}}}, \frac{T}{\omega}\right) = T^{\frac{2M}{z}} \mathcal{F}_3\left(\frac{\omega}{T}, \frac{k^z}{T}\right)$$

• Parity:
$$G^+_{\mathcal{O}}(\omega, \vec{k}) = G^-_{\mathcal{O}}(\omega, -\vec{k})$$
.

- Particle-hole: $\operatorname{Tr} G_{\mathcal{O}}^{\dagger}(\vec{k},\omega) = -\operatorname{Tr} G_{\mathcal{O}}(\vec{k},-\omega)$.
- Inversion of M: $G^+_{\mathcal{O}}(-M, -k, \omega) = G^-_{\mathcal{O}}(M, k, \omega)$.

Eigenvalues of $\xi \Leftrightarrow$ components of $G_{\mathcal{O}}$.

 ξ satisfies a first order equation:

$$r^2 V \xi'_{\pm} + 2M r \xi_{\pm} = -\tilde{\omega} \mp k + (-\tilde{\omega} \pm k) \xi_{\pm}^2,$$

with b.c. $\xi(r_h) = i$ at r_h (defined $\tilde{\omega} = -\frac{\omega}{r^{z-1}\sqrt{f}}$) Symmetries of $\xi \Leftrightarrow$ symmetries of $G_{\mathcal{O}}$:

• Lifshitz:

$$G_{\mathcal{O}} = k^{2M} \mathcal{F}_1\left(\frac{\omega}{k^z}, \frac{T}{k^z}\right) = \omega^{\frac{2M}{z}} \mathcal{F}_2\left(\frac{k}{\omega^{\frac{1}{z}}}, \frac{T}{\omega}\right) = T^{\frac{2M}{z}} \mathcal{F}_3\left(\frac{\omega}{T}, \frac{k^z}{T}\right)$$

• Parity:
$$G^+_{\mathcal{O}}(\omega, \vec{k}) = G^-_{\mathcal{O}}(\omega, -\vec{k})$$
.

- Particle-hole: $\operatorname{Tr} G_{\mathcal{O}}^{\dagger}(\vec{k},\omega) = -\operatorname{Tr} G_{\mathcal{O}}(\vec{k},-\omega)$.
- Inversion of M: $G^+_{\mathcal{O}}(-M, -k, \omega) = G^-_{\mathcal{O}}(M, k, \omega)$.

Single-particle Green's function

Calculate the G_R of the dynamical source ψ_+ :

Single-particle Green's function

Calculate the G_R of the dynamical source ψ_+ :

- Introduce $S_{kin}[\psi_+] = \int \overline{\psi}_+ p \psi_+$
- Effective action:

 $S[\Psi_{+}] = -\int_{r=r_{0}} \frac{\mathrm{d}^{d}p}{(2\pi)^{d}} \sqrt{-h} \psi_{+}^{\dagger} \left[g_{f} \sqrt{g^{rr}} \xi(r,p) + Z \not\!\!\!D_{z}(p) \right] \psi_{+} .$

- Legendre transform w.r.t. ψ_+ $G_R(r_0, p) = -\left(r_0^z V(r_0) D_z(p) + \frac{g_f}{Z} r_0^{1+z} V^2(r_0) \xi(r_0, p)\right)^{-1}$.
- Remove cut-off: $r_0 \to \infty$, $g_f \to 0$, $g_f r_0^{1+z-2M} \equiv g$
- Result: $G_R(\omega, \vec{k}) = -\left(\Delta_z(\omega, \vec{k}) + g G_O(\omega, \vec{k})\right)^{-1}$.

Single-particle Green's function

Calculate the G_R of the dynamical source ψ_+ :

- Introduce $S_{kin}[\psi_+] = \int \overline{\psi}_+ p \psi_+$
- Effective action:

 $S[\Psi_{+}] = -\int_{r=r_{0}} \frac{\mathrm{d}^{d}p}{(2\pi)^{d}} \sqrt{-h} \psi_{+}^{\dagger} \left[g_{f} \sqrt{g^{rr}} \xi(r,p) + Z \not\!\!\!D_{z}(p) \right] \psi_{+} .$

- Legendre transform w.r.t. ψ_+ $G_R(r_0, p) = -\left(r_0^z V(r_0) D_z(p) + \frac{g_f}{Z} r_0^{1+z} V^2(r_0) \xi(r_0, p)\right)^{-1}$.
- Remove cut-off: $r_0 \to \infty$, $g_f \to 0$, $g_f r_0^{1+z-2M} \equiv g$

• Result:
$$G_R(\omega, \vec{k}) = -\left(\Delta_z(\omega, \vec{k}) + g G_O(\omega, \vec{k})\right)^{-1}$$

$$G_{R}[\psi_{+}] = \frac{-1}{\not p(1+g \ p^{2M-1})} \qquad \text{(for } z = 1\text{)}$$

$$G_{R}[\psi_{+}] = \frac{-1}{\omega - \eta \ \vec{\sigma} \cdot \hat{k} \ k^{z} g \ \omega^{\frac{2M}{z}} \left(f_{1}(\omega/k^{z}) + \vec{\sigma} \cdot \hat{k} \ f_{2}(\omega/k^{z})\right)} \qquad \text{(for generic } z\text{)}$$

with $f_2(u, M) = f_1(u, M)\sqrt{1 + (f_1(u, M)f_1(u, -M))^{-1}}$.

M > 0

M < 0

$$\begin{split} M > 0 & M < 0 \\ \text{One proves that, dispersion is gapped for } M < 0 \Rightarrow \Delta < \frac{z+d-1}{2} \text{:} \\ \text{From } Re[G_R^{-1}] = 0 \Rightarrow \omega(0) = \left(g\left(2z\right)^{-\frac{2M}{z}} \frac{\Gamma\left(\frac{1}{2} - \frac{M}{z}\right)}{\Gamma\left(\frac{1}{2} + \frac{M}{z}\right)} |\cos(\pi(M + \frac{1}{2}))|\right)^{\frac{z}{z-2M}} \end{split}$$

 $M > 0 \qquad M < 0$ One proves that, dispersion is gapped for $M < 0 \Rightarrow \Delta < \frac{z+d-1}{2}$: From $Re[G_R^{-1}] = 0 \Rightarrow \omega(0) = \left(g\left(2z\right)^{-\frac{2M}{z}} \frac{\Gamma\left(\frac{1}{2} - \frac{M}{z}\right)}{\Gamma\left(\frac{1}{2} + \frac{M}{z}\right)} |\cos(\pi(M + \frac{1}{2}))|\right)^{\frac{z}{z-2M}}$ Spontaneous gap generation (similar to technicolor):

chiral fermion acquires mass when the dominant channel it couples in the CFT has $\Delta < \frac{z+d-1}{2}$.

- A change in the number of Fermi surfaces.
- Fermi surface: $k(\omega \rightarrow 0) = finite$ in the dispersion.

- A change in the number of Fermi surfaces.
- Fermi surface: $k(\omega \rightarrow 0) = finite$ in the dispersion.

- Analytical proof: U.G. et al, ongoing For 1/2 < |M| < z/2, $\eta > 0$ and 0 < |M| < 1/2, $\eta < 0$.
- η is the "spin-orbit coupling"

- A change in the number of Fermi surfaces.
- Fermi surface: $k(\omega \rightarrow 0) = finite$ in the dispersion.

- Analytical proof: U.G. et al, ongoing For $1/2 < |M| < z/2, \eta > 0$ and $0 < |M| < 1/2, \eta < 0$.
- η is the "spin-orbit coupling"
- Location of the Fermi surface:

$$k_F = \left(\frac{g}{\eta}|c_1|\right)^{\frac{1}{z-2M}}$$
 with $c_1 = 2^{-2M} \frac{\Gamma(\frac{1}{2}-M)}{\Gamma(\frac{1}{2}+M)}.$

Outlook

- Explore these transitions in detail U.G. et al, ongoing
- How to tune the parameters of the UV theory to produce them
- Finite T and μ in detail
- Consider more general situations than Hertz-Millis
- Break particle-hole symmetry and apply to cold-atoms.

THANK YOU !