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o Universal thermodynamics in the quark-gluon plasma:
Universal features of the interaction measure in finite T gauge
theories.

o Holography and ARPES sum-rules: Elementary Weyl fermions
in a strongly coupled CFT.
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APPLICATION I
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The interaction measure
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Take a confining, AF gauge theory at finite T in d dimensions.
Interaction measure: A(T) =T}, = E(T)+ (d — 1)F(T)
measures “how far the system is away from conformality™.
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Take a confining, AF gauge theory at finite T in d dimensions.
Interaction measure: A(T) =T}, = E(T) + (d — 1)F(T)
measures “how far the system is away from conformality™.
For pure SU(N) in 3 + 1 D:
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Lattice: M. Panero 09, Holography: U.G, Kiritsis, Mazzanti, Nitti *09
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Take a confining, AF gauge theory at finite T in d dimensions.
Interaction measure: A(T) =T}, = E(T) + (d — 1)F(T)
measures “how far the system is away from conformality™.
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Lattice: M. Panero 09, Holography: U.G, Kiritsis, Mazzanti, Nitti *09
Observations: (a) Large N 1s not bad at all,

(b) improved) holography captures the correct behavior.
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An intriguing universal behavior
Pisarski 11, U.G.etal ’11
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Pisarski 11, U.G.etal ’11
A scaling law in AT(Z) X (%)# in the range 1.57. < T < 107,

T2 behaviour in A
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Pisarski 11, U.G.etal ’11

A scaling law in AT(Z) X (%)# in the range 1.57. < T < 107,

T2 behaviour in A
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o Data collapses on 1/77 (3+1D)
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Pisarski 11, U.G.etal ’11
A(T)
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A scaling law in X (T

)# in the range 1.57.

T2 behaviour in A

%
T

A/ T4, normalized to the SB limit of p / 7

=
~
T

N
T

o —_
0 o
T

<
=)}
T T

_.
o
T

o Data collapses on 1/77 (3+1D)

o No satisfactory explanation in field theory
Because gauge theory is strongly coupled in that range.
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The GR dual v, Kiritsis; U.G. Kiritsis, Nitti *07
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U.G, Kiritsis; U.G. Kiritsis, Nitti 07

o Consider pure SU(N) at large N, at strong coupling =
classical Einstein’s GR
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U.G, Kiritsis; U.G. Kiritsis, Nitti 07

o Consider pure SU(N) at large N, at strong coupling =
classical Einstein’s GR

e Most economic set-up:

1. Mink* + energy scale = 5 dimensions
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U.G, Kiritsis; U.G. Kiritsis, Nitti 07

o Consider pure SU(N) at large N, at strong coupling =
classical Einstein’s GR

e Most economic set-up:
1. Mink* + energy scale = 5 dimensions
2. Only relevant/marginal operators the stress-tensor 7, and

the gluon condensate Tr F
= Need metric g, < T}, and dilaton ® < Tr F*
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U.G, Kiritsis; U.G. Kiritsis, Nitti 07

o Consider pure SU(N) at large N, at strong coupling =
classical Einstein’s GR

e Most economic set-up:
1. Mink* + energy scale = 5 dimensions

2. Only relevant/marginal operators the stress-tensor 7, and

the gluon condensate Tr F
= Need metric g, < T}, and dilaton ® < Tr F*

3. Running coupling extremely important for correct
thermodynamics = non-conformally invariant background
with e® oc g?N a function of r; ® = ®(7)
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U.G, Kiritsis; U.G. Kiritsis, Nitti 07

o Consider pure SU(N) at large N, at strong coupling =
classical Einstein’s GR

e Most economic set-up:
1. Mink* + energy scale = 5 dimensions

2. Only relevant/marginal operators the stress-tensor 7, and
the gluon condensate Tr F
= Need metric g, < T}, and dilaton ® < Tr F*

3. Running coupling extremely important for correct
thermodynamics = non-conformally invariant background
with e® oc g?N a function of r; ® = ®(7)

4. Sx N? [d°z/g{R — 5(02)* + V (D)}
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U.G, Kiritsis; U.G. Kiritsis, Nitti 07

o Consider pure SU(N) at large N, at strong coupling =
classical Einstein’s GR

e Most economic set-up:
1. Mink* + energy scale = 5 dimensions

2. Only relevant/marginal operators the stress-tensor 7, and

the gluon condensate Tr F
= Need metric g, < T}, and dilaton ® < Tr F*

3. Running coupling extremely important for correct
thermodynamics = non-conformally invariant background
with e® oc g?N a function of r; ® = ®(7)

4. Sx N? [d°z/g{R — 5(02)* + V (D)}
This approach 1s most suitable for universal and generic results.
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A single “‘holographic parameter" o determines many qualitative
behavior: V(®) — const x " e3® 4+ ... in the IR
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A single “‘holographic parameter" o determines many qualitative
1

behavior: V(®) — const x "o e3® 4+ ... in the IR

1. Spectrum of the glue- balls: m? oc n®~ !, for large n;

2. The nature of the deconfining transition: for large o, transition
more discontinuous, whereas for o — 1, it 1S continuous;

3. T-dependence in thermodynamics in the intermediate region.
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A single “‘holographic parameter" o determines many qualitative

a—1

behavior: V(®) — const x "o e3® 4+ ... in the IR

1. Spectrum of the glue- balls: m? oc n®~ !, for large n;

2. The nature of the deconfining transition: for large o, transition
more discontinuous, whereas for o — 1, it 1S continuous;

3. T-dependence in thermodynamics in the intermediate region.

Trace of the energy-momentum tensor from holography
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An analytic holographic answer arXiv:1111.0580
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An analytic holographic answer arXiv:1111.0580

o Calculate the thermodynamics from the corresponding
black-hole solution:

ds? = b2(r) (dt2 f(r) + dz? + ;l(—Q)) . Horizon f(rp,) = 0.

 Basic thermodynamics: ﬁ = % fg S(T)dT

o One needs: T'(ry) = —f'(ry,) /4w and S(ry) = b(ry,)> /4G
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An analytic holographic answer arXiv:1111.0580

o Calculate the thermodynamics from the corresponding
black-hole solution:

ds? = b2(r) (dt2 f(r) + dz? + ;l(—Q)) . Horizon f(rp,) = 0.

 Basic thermodynamics: ﬁ = % fgc S(T)dT
o One needs: T'(ry) = —f'(ry,) /4w and S(ry) = b(ry,)> /4G

o Claim: Region of interest: 7'(r,) ~ % and b(ry,) ~ Le=(MV)?
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An analytic holographic answer arXiv:1111.0580

o Calculate the thermodynamics from the corresponding
black-hole solution:

ds? = b2(r) (dth( ) + da® + 4 )) Horizon f(r},) = 0.

o Basic thermodynamics: ﬁ — % — % fgc S(T)dT

o One needs: T'(ry,) = —f'(ry) /4w and S(rh) — b(rh)3/4G

o Claim: Region of interest: 7'(r;,) ~ - and b(r) ~ Le=(rb)®

o Indeed T'(r) is approximately
conformal

o We need the first confining
correction to b(r):

e IRof V:=b(ry) = %e_(”\)a

th
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Within these approximations arXiv:1111.0580
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Within these approximations arXiv:1111.0580
o An analytic result: A /7T oc (T../7)"

o « 1s the “holographic parameter”:
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Within these approximations arXiv:1111.0580
o An analytic result: A /7T oc (T../7)"
o « 1s the “holographic parameter”:

o Qualitatively: IR properties of the theory determines the power.
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Within these approximations arXiv:1111.0580
o An analytic result: A /7T oc (T../7)"
o « 1s the “holographic parameter”:
o Qualitatively: IR properties of the theory determines the power.

o In 3+1 linear confinement prefers a = 2.
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Within these approximations arXiv:1111.0580
o An analytic result: A /7T oc (T../7)"
o « 1s the “holographic parameter”:
o Qualitatively: IR properties of the theory determines the power.

o In 3+1 linear confinement prefers o = 2. Perfectly explains the
data!

o A qualitative result from holography.
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Within these approximations arXiv:1111.0580
o An analytic result: A /7T oc (T../7)"
o « 1s the “holographic parameter”:
o Qualitatively: IR properties of the theory determines the power.

o In 3+1 linear confinement prefers o = 2. Perfectly explains the
data!

o A qualitative result from holography.
Outlook:
» Apparently proportionality factors also universal Pisarski 11

o Other universal phenomena on the 1 — T plane
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APPLICATION II
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Condensed Matter and ARPES sum-rules
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Condensed Matter and ARPES sum-rules
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(*) From the photoemission intensity /(w, k) one constructs the
retarded Green’s function Gy of e” s traveling inside the material.
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(*) From the photoemission intensity I (w, k) one constructs the
retarded Green’s function Gy of e” s traveling inside the material.
(*) Non-interacting case: A sequence of o-funcs in [I.

(*) Strong correlations: Extra “satellites™
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(*) From the photoemission intensity I (w, k) one constructs the
retarded Green’s function Gy of e” s traveling inside the material.
(*) Non-interacting case: A sequence of o-funcs in [I.

(*) Strong correlations: Extra “satellites™

(*) ARPES sum-rule: 1 [ dwIm[G(w, k)] = 1, vk, T

(*) From canonical com. rels of elementary operators

(*) Difficult in AdS/CFT, as O 1s composite = UV divergences.
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o Consider a system (e.g. semi-metal, super-conductor,..) at
criticality at zero T.

o Perturb the system = excite an elementary electronic d.o.f. .
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Consider a system (e.g. semi-metal, super-conductor,..) at
criticality at zero T.

Perturb the system =- excite an elementary electronic d.o.f. .
In principle sources to all CFT operators O .
Assume a dominant channel [ dtd® 'z g (¢, O_ + O_1)y)
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Consider a system (e.g. semi-metal, super-conductor,..) at
criticality at zero T.

Perturb the system =- excite an elementary electronic d.o.f. .
In principle sources to all CFT operators O .

Assume a dominant channel [ dtd® 'z g (¢, O_ + O_1)y)
Interaction should be irrelevant in UV = relevant in IR.
Consider a Lifshitz CFT in general with ¥ — Az, t — A\t

One should demand A < z + %.
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o Consider a system (e.g. semi-metal, super-conductor,..) at
criticality at zero T.

o Perturb the system = excite an elementary electronic d.o.f.
o In principle sources to all CFT operators O .

o Assume a dominant channel [ dtd* 'z g (v, O_ + O_1;)
 Interaction should be irrelevant in UV = relevant in IR.

o Consider a Lifshitz CFT in general with ¥ — Az, — \*t

o One should demand A < z + 1.

The retarded Green’s function of v 1s G ~ L

wt+gw z

with M = A + Z+g_1 = The condition is M < z/2.

One is guaranteed to satisfy the sum-rule: % | fooo ImGpr dw = 1.
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o Consider a system (e.g. semi-metal, super-conductor,..) at
criticality at zero T.

o Perturb the system = excite an elementary electronic d.o.f.
o In principle sources to all CFT operators O .

o Assume a dominant channel [ dtd* 'z g (v, O_ + O_1;)
 Interaction should be irrelevant in UV = relevant in IR.

o Consider a Lifshitz CFT in general with ¥ — Az, — \*t

o One should demand A < z + 1.

The retarded Green’s function of v 1s G ~ L

wt+gw z

with M = A + Z+g_1 = The condition is M < z/2.

One is guaranteed to satisfy the sum-rule: % | fooo ImGpr dw = 1.

How to derive this holographically?

(not only semi-holographically as in Faulkner, Polchinski *11.)
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Standard AdS/CFT prescription:
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Standard AdS/CFT prescription:

Wy

T N Ny

Lifshitz black-hole

r=rec r=m
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Standard AdS/CFT prescription:

! Introduce ¥V = WV, + W_
/\_/\: with \If_i_(T()) <:>?7b_|_,\11_(7“0) S <O_>

Dirichlet at rq, in-fall at r,

GrlO_] = lim r5"y_(ro)/v4(ro)

To—00

W,

Lifshitz black-hole

r=rec =t
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Standard AdS/CFT prescription:

Introduce ¥ = ¥, + W _
with \IJ+(TQ) S Py, \If_(To) = <O_>
Dirichlet at rq, in-fall at r,

GrlO-] = lim 15" (ro)/1+(r0)

To—00

W,

T N Ny

Lifshitz black-hole

r=rec =t

Prescription for the elementary field: Calculate the Gg of the
dynamical source 1), ! UG, Plauschinn, Stoof, Vandoren arXiv:1112:5074
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Standard AdS/CFT prescription:

Introduce ¥ = W, + W_
with \If+(To) S Py, \If_(To) e <O_>
Dirichlet at rq, in-fall at r,

GrlO-] = lim rg"™y_(ro)/v+(ro)

To—00

T N Ny

|
w, |
|
|

Lifshitz black-hole

r=rc r=r

Prescription for the elementary field: Calculate the Gg of the
dynamical source 1), ! UG, Plauschinn, Stoof, Vandoren arXiv:1112:5074
Results:

GR[w-F] p(1_|_g_pl2M—1) (for z =1)

G — for generic z
RlV+] = wn Gk kPgw s (fr(w/k*)+5k fa(w/k?)) forg )

with fo(u, M) = f1(u, M)\/1+ (f1(u, M) f1(u, —M)) L.

Two Applications of Holography — p.13



Standard AdS/CFT prescription:

Introduce ¥ = W, + W_
with \If+(T0) S Py, qf_(?“o) e <O_>
Dirichlet at rq, in-fall at r,

GrlO-] = lim rg"™y_(ro)/v+(ro)

To—00

T N Ny

|
w, |
|
|

Lifshitz black-hole

r=rec r=m

Prescription for the elementary field: Calculate the Gg of the
dynamical source 1), ! UG, Plauschinn, Stoof, Vandoren arXiv:1112:5074
Results:

GR[w-F] p(1_|_g_pl2M—1) (for z =1)

G — for generic z
RlV+] = wn Gk kPgw s (fr(w/k*)+5k fa(w/k?)) forg )

with fo(u, M) = f1(u, M)\/1+ (f1(u, M) f1(u, —M))~ L.

Satisfies the sum-rule and Kramers-Kronig for —z/2 < M < z/2!
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The background:

2 &2 22 142 2122 o I\ FEt
ds® = =Fm f(r)r<2dt® 4+ r=dz =, f(r)y=1 .

Temperature: 7' = 421 (r),)* .
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The background:

> dr? 22142 | 2172 ) T
ds? = Ao — f(r)r22d? + 02472, f(r) = —(7) .
Temperature: 7' = “==1 (1)) .

Lifshitz isometry: r — \r, ¢t — \"%t, = — X'z, T — NT.
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The background:

2 _ _dr? 22942 | 2772 ) T
ds? = A7 — f(r)r?de? + r2dz? f(r)zl—(7> |
Temperature: 7' = “==1 (1)) .

Lifshitz isometry: r — \r, ¢t — \"%t, = — X'z, T — NT.

Compute G of a fermonic operator O_ on Lifshitz:
solve Dirac (P — M)¥ = 0 . Decompose [“ ¥, = £ U, . UV
asymptotics:
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The background:

> dr? 22142 | 2172 ) T
ds? = A7 — f(r)r?de? + r2dz? f(r)zl—(7> |
Temperature: 7' = “==1 (1)) .

Lifshitz isometry: r — \r, ¢t — \"%t, = — X'z, T — NT.

Compute G of a fermonic operator O_ on Lifshitz:
solve Dirac (P — M)¥ = 0 . Decompose [“ ¥, = £ U, . UV
asymptotics:

hy — pEM—1(z+d—1) (1 e ")Ai 4 M= (+d+1) (1 . )Bi |

e Discover M — A Z+g_1

Find Gp from A ~ Gp A..

Define ¢_(r,p) = —i&(r, p) Y (7, p)
Then Gp(w) = lim, o0 TQM&(Ta w), —
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Eigenvalues of £ < components of Gp.
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Eigenvalues of £ < components of Gp.
¢ satisfies a first order equation:

rPVEL +2Mréy = -0 Tk + (—0 £ k)€,

with b.c. {(rp,) = @ at rp, (defined @ = — —5—)
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Eigenvalues of £ < components of Gp.
¢ satisfies a first order equation:

r2VEL +2Mréy = -0 Tk + (—0 £+ k)E2,

with b.c. f(?‘h) — ¢ at 1y, (defined @ = —

—=177)
rz 1\/?
Symmetries of £ < symmetries of G :
o Lifshitz:
2M 2M z
Go = KM F (. ) =w ™ P (. L) =T 7 (3.5)

e Parity: G (w, k) = G (w, —k) .
o Particle-hole: Tr G (E w)

||
|
=
Q
Q
=
3
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Eigenvalues of £ < components of Gp.
¢ satisfies a first order equation:

r2VEL +2Mréy = -0 Tk + (—0 £+ k)E2,

with b.c. f(?‘h) — ¢ at 1y, (defined @ = —

—=177)
rz 1\/?
Symmetries of £ < symmetries of G :
o Lifshitz:
2M 2M z
Go = KM F (. ) =w ™ P (. L) =T 7 (3.5)

e Parity: G (w, k) = G (w, —k) .
o Particle-hole: Tr G (E w)

||
|
=
Q
Q
=
3

Two Applications of Holography — p.15



Calculate the G of the dynamical source v, :
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Calculate the G of the dynamical source v, :

o Introduce Sy, [t1] = [, poy

o Effective action:
S|Vy] =

o Legendre transtform w.r.t. ¢

Gr(ro,p) = — (rgV(ro)D.(p) + %ry™*V2(ro) &(r0,p))
1-|—z 2M __

o Remove cut-off: ro — oo, gr — 0,

r=ro (27T)d Fw-l— [gfﬁg(r p> + ZlD ( )}

— = S\ —1
o Result: Gplw, k) = — (Az(w, £) + g Golw, k:)) |

Two Applications
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Calculate the G of the dynamical source v, :
o Introduce Sy, [t1] = [, poy

o Effective action:
S+ =—J—, (27r)d V=hl [9pv/gTE(r,p) + ZD.(P)] vy
o Legendre transtform w.r.t. ¢

Gr(ro,p) = — (rgV (ro) . (p) + Zry*V2(ro) £(ro, p))

o Remove cut-off: ro — oo, gr — 0, grr é+z M= g

—1

— = S\ —1
o Result: Gplw, k) = — (Az(w, £) + g Golw, k)) |

G R[] p(Hg_plgM_l) (for z = 1)

G =L for generic z
R[¢+] W— nakkzngz (fl(w/k:z)—l—akfg(w/kz)) ( = )

with fo(u, M) = f1(u, M)\/1+ (f1(u, M) f1(u, —M))~ L.
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Gap generation:
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Gap generation:

M >0 M <0
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Gap generation:

M >0 M <0

One proves that, dispersion is gapped for M < 0 = A < Zt&=1.

200 (4 2) i

From Re[G ;'] = 0 = w(0) = (5 222 KT contr(ar + %))\)
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Gap generation:

M >0 M <0

One proves that, dispersion is gapped for M < 0 = A < 2=

z
—2M

20 1 (4= 24)

From Re[Gé ] = 0= w(0) = ( (22)” = yerE: )|cos( (M + 2))\)

Spontaneous gap generation (similar to technicolor):

chiral fermion acquires mass when the dominant channel it couples

in the CFT has A < 22!
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A topological phase transition:
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A topological phase transition:

e A change in the number of Fermi surfaces.

o Fermi surface: k(w — 0) = finite in the dispersion.
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A topological phase transition:

e A change in the number of Fermi surfaces.

o Fermi surface: k(w — 0) = finite in the dispersion.

o Analytical proof: U.G. et al, ongoing
For1/2 < |M| < z/2,n>0and 0 < |M| < 1/2,n < 0.

o 7 1s the “spin-orbit coupling”
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A topological phase transition:

e A change in the number of Fermi surfaces.

o Fermi surface: k(w — 0) = finite in the dispersion.

o Analytical proof: U.G. et al, ongoing
For1/2 < |M| < z/2,n>0and 0 < |M| < 1/2,n < 0.

o 7 1s the “spin-orbit coupling”
o Location of the Fermi surface:

1
z—2M . B INE Y
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Explore these transitions in detail U.G. et al, ongoing

How to tune the parameters of the UV theory to produce them
Finite T and p in detail

Consider more general situations than Hertz-Millis

Break particle-hole symmetry and apply to cold-atoms.
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THANK YOU !
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