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Introduction



Strong (hydro)dynamics

Hydrodynamics is a universal low energy effective theory for scales
L > {mp over which an interacting system can achieve local thermal
equilibrium

But its application to strongly-interacting theories is nontrivial
w requires thermodynamic functions & transport coefficients.

dilute gas/free streaming
freeze-out

phase transition hydrodynamics

emateaten (sotopiaton A AdS/CFT has provided
strong-coupling “data” for
both, e.g. for models of the
sQGP which appears to be
a (nearly) perfect fluid with

very low n/s.
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Hydrodynamics is a universal low energy effective theory for scales
L > {mp over which an interacting system can achieve local thermal
equilibrium

Temperature

But its application to strongly-interacting theories is nontrivial
w requires thermodynamic functions & transport coefficients.

Insglator and )
antiferromagnetic We can ask related questions

& about the hydrodynamic regime of
2 Strange & strongly-correlated systems in 2+1D
A iz < (e.g. strange metal phase).
| Fermi m Focus of this talk is 2+1D
ol liquid hydrodynamics, emphasizing the

role of parity™®, with applications

to (anomalous) Hall transport.

Superconductivity QcP Doping

@#) In 2+1D, P: x' — -x', analogous to T, and pseudoscalars like
magnetic field or vorticity can play an important role.



Strong (hydro)dynamics
» Hall Viscosity from Holography Son-Saremi 11

Break parity through a gravitational axion

S = Sgrav[g, 0] — 2/d4xm9(f)€prR“m3RV,M,)
With a black brane Ansatz of the form
ds® = 2H(r)dvdr — r?f(r)dv? + r2dxm,dx™
the Hall viscosity is

A r(ne(n
M= "8xGn  4H(r)

r=ry
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Strong (hydro)dynamics

» Another parity breaking term: Gauge axion

S= Sgrav[g; o] + / d*x v _gg(r)euVﬂéﬁFleaﬁ

» Contributions to "anomalous Hall conductivity"

» In this course we will develop the general theory of parity
breaking hydrodynamics in 2+1 dimensions to first order in
derivatives (for small magnetic field and vorticity
backgrounds)

» New dissipationless transport coefficients
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Basics of Hydrodynamics



Ideal hydrodynamics

e Conservation laws:

8, T" = F**J,  9,J"=0

 Constitutive relations (assuming local equilibrium):

T = eutu” + pP*" JH = put

NB: w'u,=-1, P" =n"" +utu”



Systematic Corrections

Near equilibrium iff timerm « At, Al/v  derivative expansion

pv _ v pv o TR "
T =T += J = Jl v
Landau frame : u, 7" = u,v"* =0

Dissipative corrections (assuming P invariance!)
T = —not” — (PO - u oM = 9<HyuV>

L A Tau%)



Systematic Corrections

Near equilibrium iff timerm « At, Al/v  derivative expansion

pv _ v pv o TR "
T =T += J = Jl v
Landau frame : u, 7" = u,v"* =0

Dissipative corrections (assuming P invariance!)
Tt = —na“” . CP‘“’@ U oM = 9<HyuV>

vt Lo \E, Tau%)

Transport coefficients,
positive for 9-S =0
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Comments

» Boost invariance broken by a prefered frame
= timelike vector u*

» State variables describing the hydro flow: T, u, u*

» Decomposition of T and J* with respect to u*

T;U/ — ((:UMUV + rPPuu + (qp,uu + qDUH) + Y
JE=NU* + v#
e g* and v* are transverse, m+” transverse symmetric
traceless

e £, P, g* etc. are local functions of T, u, u* and their
derivatives



Comments

» Decomposition of T and J* with respect to u*

Tw — Eyty” + PPH + (q/l,ul/ + quu,u,) 4 v
JH = Nut + v#

» Freedom for field redefinition

(Top ") = (T + 0T, pp+ op, UM + Sut)



Comments

» Decomposition of T and J* with respect to u*
T[J,V — 5U”’UV + PP/H/ + (q/l,ul/ + quu,u,) + P acd
JH = Nut + v#

» Freedom for field redefinition
(Top ") = (T + 0T, pp+ op, UM + Sut)

» Choice of frame: Landau frame

e Choose u* = velocity of energy flow =

e Choose T s.t. £ = ¢y local thermodynamic energy
density

e Choose p s.t. N' = pg local thermodynamic charge
density

= Unique derivative expansion
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Parity Breaking in First Order Hydrodynamics



How to write down the hydro equations

» Microscopic parity violation will persist on macroscopic
(hydrodynamic) level
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How to write down the hydro equations

» Microscopic parity violation will persist on macroscopic
(hydrodynamic) level

» Augment the expansions of P, 7#¥, v* with parity-odd
terms

» Certain external fields (magnetic field, vorticity) break
parity but leave the system in equilibrium

» Strategy to fix the constitutive relations:

1. Write down a 1-derivative parity odd tensor basis

2. Entropy current with positive divergence

3. Use Onsager relations/susceptibility & positivity constraints
to further constrain remaining magnetizations
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The general constitutive relations in Landau Frame

» Independent (pseudo)scalars, vectors, tensors

scalars

pseudoscalars

transverse vectors

tensors

vV, ut

P v,
Q = —ePu,V,u,

_ 1
B= —éf’u pU'LLFI/p

Vi = Py, T
Vi = Frry, — EW
Vi = Er — TPV, L

loiad

Pseudovectors and pseudotensors are defined via

e

o1
0 ot :E(

moB o’ + e Puyosh)

» This is a minimal set of independent quantities.




The general constitutive relations in Landau Frame

» Independent (pseudo)scalars, vectors, tensors

scalars

pseudoscalars

transverse vectors

tensors

vV, ut

P v,
Q = —ePu,V,u,

Vi = Py, T
Vi = Frry, — EW

Vi = Er — TPHYY, L

loiad

The constitutive relations then are

T =
g =

T =

By

dPy —

—not¥ —nyet
oV + xeE* + xTVi'+ |6V + ReB" + 31 V)
SodT + podp,

€0+ Po=50T + popt.

eoU'u” + (Po—XBB — XoQ — (VU )PHY 4 kv
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Positivity of Entropy Production
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thermodynamics
Vuds >0
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Positivity of Entropy Production

» Positivity of divergence entropy current = Second law of
thermodynamics
Vuds >0

» No entropy production in equilibrium: V,Jg = 0
» Derivative corrections

corrections)

Jg — S()Uu +( gradient

» In the presence of parity breaking, the canonical entropy
Current COU|d be Corrected Landau Lifshitz 6, Minwalla-Yarom-etal 1105.3733

u Il ibl
Jg = Sout — %T“ — 7”7"“’ + (suﬁgg:{%:?;m)
JH

S,can

NB: T and 7 include the derivative corrections 7w and v plus
(magn. and vortical) magnetization contributions at O(9")
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straightforward. | will stress the main points. If somebody
is interested in the calculation, we can discuss in private.
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» The whole argument is algebraically involved but otherwise
straightforward. | will stress the main points. If somebody
is interested in the calculation, we can discuss in private.

» More convenient basis for first order pseudovectors :
Vit = eru, v, T = —TV{ + Ry TV
vy =V} ) )
\/H uvp L Vi vy
V3 = eu,Vplh = -3+ F
vy = %eWPF,,p = V2“N+ u*B

VI = ePV,u, = - V' 4+ u'Q




Remarks

» The whole argument is algebraically involved but otherwise
straightforward. | will stress the main points. If somebody
is interested in the calculation, we can discuss in private.

» More convenient basis for first order pseudovectors :
Vit = eru, v, T = —TV{ + Ry TV
vy =V} ) )
\7.“ uvp 14 vy 2
Vo = "Pu N7 = -4+ F
vy = %eWPF,,p = V2“N+ u*B

VE = PV u, = —VI' 4 urQ

» Ansatz for the entropy current

3 5 ~
JE = JE can+ro(p, T)(V-u)ur+ Z vi(p, T)VF' + E vi(p, T)VH

i=1 i=1



Remarks

» Schematic structure of the entropy current divergence

[ products of second order
VHJS - (f'rSt order | + ( scalar data )

data



Remarks

» Schematic structure of the entropy current divergence
Vit = (i) + (s
» Second order contributions have to vanish separately,
severly restricting the form of the entropy current. Coupling

to a curved background is important: [Minwalla-Yarom 1105.3733]
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+ (Vo + 1/1) UQVOCVMU'“—W uut Ra/t
_DZUQVQB+( products of )
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» Schematic structure of the entropy current divergence
d f
Vit = (Tess) -+ (o g
» Second order contributions have to vanish separately,
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to a curved background is important: [Minwalla-Yarom 1105.3733]
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» The products of first order data have to either vanish or be
complete squares.



Remarks

» Schematic structure of the entropy current divergence
d f
Vit = (Tess) -+ (o g
» Second order contributions have to vanish separately,
severly restricting the form of the entropy current. Coupling
to a curved background is important: [Minwalla-Yarom 1105.3733]

Van‘ = + (1/2 — V—_;’) VME“ + VgAﬁwvu&,%
-+ (VO + 1/1) UQVQVMU“—V1 uut R{y,u,
_DZUQVQB+( products of )

first order data

= V=11 =V =13=10p=0

» The products of first order data have to either vanish or be
complete squares.

» Ambiguity : J§ — J& + PV, (Gu,)

Invariants 74, Oris + i1,  Ouiis + 3
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Results

» Parametrize two invariants with magnetizations
Toy, = Mg, 3% U5 + g = %8%./\/19 — Mg
» Constraint fixes the third invariant up to a free function
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Results

» Parametrize two invariants with magnetizations
Toy=Mp, Ouis+ig=19uMg— Mg
» Constraint fixes the third invariant up to a free function
%(TZ(arﬂs + 1) — TOTMq+2Mq) =0
= T2(01i55 + i) = TOrMgq — 2Mq + fo(T)
» The role of fo(T) remains unclear so far. In the

magnetovortical frame it contributes to the vorticity
magnetization subtraction of the energy density.
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» Transport Coefficients in Landau Frame:

(UaC-/U)ZO: 5—7776]}{7 XE:XTZO



Results

» Transport Coefficients in Landau Frame:

(n,¢,0) >0, G, i€R, xe=x7=0
AP, oM oM APy OM
<5 0 (T I B *Ms) 4 9P B
deg oT op dpy Op
OPy [_OMq Mg ) oP, (3/\49 )
¢ T + +ia(T) —2Mq ) + — - M
Xa 94 ( a7 H on (T) Q B0 on B
~ oMp OMgq
XE om Ro ( - Ms)
oMg  OMg ) ( OMq Mg )
X T “Mg) —Ry (T + T fo(T) — 2M
X7 ( a7 B o a7 T o f(T) Q
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Results
» Transport Coefficients in Landau Frame:

(n,¢,0) >0, g.ifeR, xe=x7=0

Py /_OMg oMg Py dMg
oo T(rMe M ) o

deg oT on dpy Op

Py [_9Mq aMq ) oP, <3MQ )
‘o = T + +i(T) —2Mgq ) + —2 -M
Xa 94 ( a7 H on (T) Q B0 on B

oM oM
Xe = 5 R ( g Ms)

op op

oMg  OMp ) ( Mg  IMq )

Xt = (T + —Mg) =Ry (T + + fo(T) — 2M
XT ( ar " on B o ar " on f(T) Q

» Incidentally also frame-invariant!

» n,(, 0,1, 5 are transport coefficients (encode dynamical
information)



Results

» Transport Coefficients in Landau Frame:

(n,¢,0) >0, gieR, xe=xr=0

B Py /_OMg oMg Py dMg
X = (T I - Ms) —
deg oT op dpy Op
Py [_9Mq aMq ) oP, (3/\49 )
‘o = T + +ia(T) —2Mq ) + — -M
Xa 94 ( o M an (T) Q Bro \ on B
oM oM
Xe = 5 R ( g Ms)
op op
oMg  OMp ) ( Mg  IMq )
Xt = (T + —Mg) =Ry (T + + fq(T) — 2M
XT ( ar " on B o ar " on f(T) Q

» Incidentally also frame-invariant!

» n,(, 0,1, 5 are transport coefficients (encode dynamical
information)

> B, XE, XT, Xq are thermodynamic response parameters
(calculable from Euclidean Greens functions)
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Linearized Hydrodynamics

» In the presence of small sources (A, h,,) the
hydrodynamic equations of motion can be solved in linear
response theory.

» The resulting VEVs T#” and J* encode
retarded hydrodynamic correlators

gv o~ e guvo _ SV/=GTHY)
A SAy A=h=0 A 5Ay A=h=0
apr = 26(\/79‘/") GgmH = 25(\/79T”)
Shuv lazheo Shuv | aspoo

» These correlators have to fulfill several constraints

Positivity of spectral function, Onsager relations,
Reproduce thermodynamic susceptibilities

» Can those reproduce the entropy current results? Can we
further determine Mg, Mg, fo, such as e.g. Mg = %57?

Cooper-Halperin-Ruzin cond-mat/9607001
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Constraints from Linearized Hydro

» The Parity even sector :

T = ot + (Py — CV U )PP — ot
S pout o (EF = TPV, L) 4 xgE 4PV, T

» The following susceptibility constraints must hold
: 0,0 _(op ; 0,00 _ 1o
lllino G (0. k) = (aﬂ)r ’ 4@0 Gr™(0.K) T(‘”);



Constraints from Linearized Hydro
» The Parity even sector :
T = eU'u” + (Po — (VU )P — ot
S pout o (EF = TPV, L) 4 xgE 4PV, T
» The following susceptibility constraints must hold
m Ga*e = (i), Imex ek =T (i),

» Direct computation yields

Gp°(0,0) = (6 ) +(T<sa" war))
) ou €

+P)o+ Toxr XE
0,00 __(4P)e T (0 _(£P)Txr  (9p
Gg(0,0) = (FP)oTToxr T (ar) f + &P Toxt (fw) T



Constraints from Linearized Hydro

» The Parity even sector :

TH = eut” + (Po — (V,UP)PH — not”
S pout o (EF = TPV, L) 4 xgE 4PV, T

» The following susceptibility constraints must hold

- 0,0 (o - 0,00 _ (o
ILILnO Gr(0.k) = (ON)T ’ 4@0 Gp(0.k) =T (07)¢

» Direct computation yields

T(s2e
GO,O(O’ 0) = <6u) + (e-<i-sP)U+pTi;;()TXE

0,00 (Pl () . (PTyr (9
Gr(0,0) = rpyorTons | (ar)»; + Pt T <aﬂ)r

=>[xe=xr=0]
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Constraints from Linearized Hydro
» The Parity even sector :
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» Positivity of the spectral function:
G (w,k) >0 SGLI(w,k) >0
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Constraints from Linearized Hydro
» The Parity even sector :
T = eu'u” + (Py — (VU )P — not”
S pout o (EF = TPV, L) 4 xeEF 4 P T
» Positivity of the spectral function:
G (w,k) >0 SGLI(w,k) >0
» Direct computation yields e.g. for 6;2’12 and G}?’1
GE % (w, k= 0) = —P + inw + O(w?)
Gh'(w k= 0) = — L% + iow + O(w?)
G (w,k=0) = C+i(n+ Quw+ Ow?)

:>‘77,(I,CZO, Xe=x7=0 ‘
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The Parity Even and Odd Sectors

» Results from the parity even sector are unchanged.

» Possible contributions from higher order terms prevent
safe application of many retarded correlators in the full
theory without knowledge of second-order hydrodynamics.

» Some Kubo Formulas are safe:

0 — (%) 0'70 i (%)po 700, ¢l = J1 — Ry

9po /.
1 (0P o2 9Py 00,2
6 = lim (0T (0, k) = lim G20, k) + =2 GX2(0, k
%6 Jm k< %)a(0.K) = im - (a Ok + 526 E0.10
1 (0P aP
%o = lim —(®7%)p(0,k) = lim — [ =2a%%(0, k) + 2 GX0%(0, k)
k—0 jk k—0 ik \ dpg e
- _ 1 1702 0,02
%E = kllmol (€2 T7%) R0, k) = ani (G (0, k) — RyGY (O,k))

TX =  — lim — 00 K = lim — (G%2(0. k _RGOO,OZO,k
K Jm (€T (0,6) = i = (G200, K) — RGP %%(0, )



The Parity Even and Odd Sectors

» Kubo Formulas for parity-odd transport coefficients
- 1 i
n = JJILFIO 5(5,';(6]/ Im G;j?’k/(w, 0)

1
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» Kubo Formulas for parity-odd transport coefficients

1
io= lim 475,,@,,11116’/"’( N0))
1 3
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The Parity Even and Odd Sectors

» Kubo Formulas for parity-odd transport coefficients

1
i = lim oGk Im G (w,0)
1 3
F+Xe = ul}lgnoze;jlmGg(w,O)

» Onsager relations relate Xq, X8, X, XT:
Gl(w,k; ba) = minjGl(w, —k; —ba)  (©0:0~1 = n0))

» Relating (C°C?) to (C2CP) in this way yields

o Po - 6P0~ 8P0T
XB €0+P0X ao ao XT




The Parity Even and Odd Sectors

» Kubo Formulas for parity-odd transport coefficients

1
io= 0IJ|E1 4—5,kej/ImG”k/( ,0)
1 .
0+ XE = JTOZEUImG%(w’O)

» Onsager relations relate Xq, X8, X, XT:
GU (w K; ba) = n,an’ (w —k; ba) (90;9_1 = I’I,‘O,’)

» Relating (C°C?) to (C2CP) in this way yields

o Po - 6P0~ 8P0T
XB 50+P0X 80 ao XT

» Satisfied by the results from the entropy current
— Consistency check
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The Magnetovortical Frame

>

Constant B, Q2 should characterize
equilibrium configurations of the fluid

Examples: 1) Rigid rotation on a disc with radius R and
angular velocity wR <« 1; 2) Kerr BH [Petkou et.al. 2011]

Thermodynamics now depends on T, u, B, Q

oP oP
dP = sdT + pdju + 5508+ 52dQ, ¢+ P=sT +pu

Equilibrium constitutive relations are unknown, but can be
parametrized by functions of u, T

T = (¢ —egB— eQ)uu” + (P — xgB — xqf2) P*¥
Jbo= (p —rgB— I’QQ)U“
Magnetic Subtractions: xg = rq = 95

Cooper-Halperin-Ruzin cond-mat/9607001
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The Magnetovortical Frame

» A similar derivation for vortical subtractions is missing
[JKKMRY, in progress]
» Used Kubo formulas for ¥a, X8, X7, X£, Which are frame
independent , to match the expressions for Yq, X5, X7, XE
in terms of Mg, Mq, fo to this parametrization:

W _ 0P 0P
B = 9B T a0
oP oP
Mg = {TB+hB(M), MﬂfafﬂJth(u, T)
es = hg—puhg, rg=-—hg, eq, rqoundetermined

» If we match to the literature and set hg =0, and
furthermore conjecture the same for vorticity,
I'Q:MB, GQZMQ—fQ(T), hQZO
we fully define a different hydrodynamic frame, the
magnetovortical frame .



The Magnetovortical Frame

» The constitutive relations in the magnetovortical frame
read

T = (e—(Ma—fa)Q)u't” + (P — (MpB+ MqQ)) A"
J' = (p— MpQ)ut
oP _ 9P

Ms = 35 Ma=5g



The Magnetovortical Frame

» The constitutive relations in the magnetovortical frame
read

T = (e—(Ma—fa)Q)u't” + (P — (MpB+ MqQ)) A"
J' = (p— MpQ)ut

oP oP
MB - 8787 MQ_aiﬂ

» Consistency Check: Starting from these relations, the
susceptibility results

} OPy [_OMpg  OMg Py OMg

8 = T I - Mg )+ —
deg oT op dpy Op
AP, OM OM Py / OM

fa = o2 (TEIR T8 () - 2ma ) + 20 (B2 - )
deg oT Ou dpg op
OM oM

e = B _ R ( e _ MB)
op op

oMg  OMp ) ( Mg  IMq )
T% = T + —Mpg)—Ry (T + + fo(T) — 2M
X7 ( ot " on B o o " on (T) Q

could have been reproduced from linearized hydro alone.
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A Strongly Coupled Example

» A strongly interacting matter example:

S = Syav — 1525 | A*xV=G & — 2 [0(0)F A F

» Analytic black hole from high temperature limit varom, 0912.2100]
» Calculated Susceptibilities = Consistent!

» Fluid-Gravity Correspondence = Constitutive Relations

~_9(¢(fh)) dp 2 2 . Op 2 2
0= 872 _8B+O(M 7J¢>)7 XE_aB+O(M 7J¢>)
c= 0GR L), TRr= e+ 038, )

167Gy el oB oo

= Anomalous Hall Conductivity: & + g = 6(6(1p))
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Conclusions and Outlook

» New dissipationless transport coefficients from parity
non-invariance in first order 2+1-dimensional
hydrodynamics

» Computable in strong coupling examples via AdS/CFT

» A parity odd conductivity &, and four "thermodynamic"
transport coefficients Yg, X7, X8, X0

» Allows for anomalous Hall transport with conductivity
X0+ XE

» Open points
e Derivation of Magnetovortical Frame
e More planar equilibrium states with vorticity?
¢ Going beyond small magnetic and vortical backgrounds
e Search for interesting real-world systems

e A membrane paradigm for the Hall conductivity?



	Introduction
	Basics of Hydrodynamics
	Parity Breaking in First Order Hydrodynamics
	Positivity of Entropy Production
	Linearized Hydrodynamics
	The Magnetovortical Frame
	A strongly coupled example
	Conclusions and Outlook

