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Strong (hydro)dynamics
I Hall Viscosity from Holography Son-Saremi ’11

Break parity through a gravitational axion

S = Sgrav [g, θ]− λ

4

∫
d4x
√
−gθ(r)ελραβRµ

ναβRν
µλρ

With a black brane Ansatz of the form

ds2 = 2H(r)dvdr − r2f (r)dv2 + r2dxmdxm

the Hall viscosity is

ηH = − λ

8πGN

r4f ′(r)θ′(r)

4H2(r)

∣∣∣∣
r=rH
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I Another parity breaking term: Gauge axion

S = Sgrav [g, θ] +
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I Contributions to "anomalous Hall conductivity"

I In this course we will develop the general theory of parity
breaking hydrodynamics in 2+1 dimensions to first order in
derivatives (for small magnetic field and vorticity
backgrounds)

I New dissipationless transport coefficients
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Comments

I Boost invariance broken by a prefered frame
⇒ timelike vector uµ

I State variables describing the hydro flow: T , µ, uµ

I Decomposition of Tµν and Jµ with respect to uµ

Tµν = Euµuν + PPµν + (qµuν + qνuµ) + πµν

Jµ = Nuµ + νµ

• qµ and νµ are transverse, πµν transverse symmetric
traceless
• E , P, qµ etc. are local functions of T , µ,uµ and their
derivatives
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I Decomposition of Tµν and Jµ with respect to uµ

Tµν = Euµuν + PPµν + (qµuν + qνuµ) + πµν

Jµ = Nuµ + νµ

I Freedom for field redefinition

(T , µ,uµ) 7→ (T + δT , µ+ δµ,uµ + δuµ)

I Choice of frame: Landau frame
• Choose uµ = velocity of energy flow⇒ qµ = 0

• Choose T s.t. E = ε0 local thermodynamic energy
density
• Choose µ s.t. N = ρ0 local thermodynamic charge
density

⇒ Unique derivative expansion
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How to write down the hydro equations
I Microscopic parity violation will persist on macroscopic

(hydrodynamic) level

I Augment the expansions of P, πµν , νµ with parity-odd
terms

I Certain external fields (magnetic field, vorticity) break
parity but leave the system in equilibrium

I Strategy to fix the constitutive relations:

1. Write down a 1-derivative parity odd tensor basis

2. Entropy current with positive divergence
3. Use Onsager relations/susceptibility & positivity constraints

to further constrain remaining magnetizations
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The general constitutive relations in Landau Frame

I Independent (pseudo)scalars, vectors, tensors

scalars pseudoscalars transverse vectors tensors

∇µuµ Ω = −εµνρuµ∇νuρ Vµ
1 = Pµν∇νT σµν

B = −1
2ε
µνρuµFνρ Vµ

2 = Fµνuν = Eµ

Vµ
3 = Eµ − TPµν∇ν µT
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2 = Fµνuν = Eµ

Vµ
3 = Eµ − TPµν∇ν µT

Pseudovectors and pseudotensors are defined via

Ṽµ
i = εµνρuνVi,ρ , σ̃µν =

1
2

(εµαβuασβν + εναβuασβµ)

I This is a minimal set of independent quantities.



The general constitutive relations in Landau Frame

I Independent (pseudo)scalars, vectors, tensors

scalars pseudoscalars transverse vectors tensors

∇µuµ Ω = −εµνρuµ∇νuρ Vµ
1 = Pµν∇νT σµν

B = −1
2ε
µνρuµFνρ Vµ

2 = Fµνuν = Eµ

Vµ
3 = Eµ − TPµν∇ν µT

The constitutive relations then are

Tµν = ε0uµuν + (P0−χ̃BB − χ̃ΩΩ− ζ∇µuµ)Pµν + πµν

Jµ = ρ0uµ + νµ

πµν = −ησµν−ηH σ̃
µν

νµ = σVµ
3 + χEEµ + χT Vµ

1 +
[
σ̃Ṽµ

3 + χ̃E Ẽµ + χ̃T Ṽµ
1

]
dP0 = s0dT + ρ0dµ , ε0 + P0 = s0T + ρ0µ .
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Positivity of Entropy Production
I Positivity of divergence entropy current ⇒ Second law of

thermodynamics
∇µJµS ≥ 0

I No entropy production in equilibrium: ∇µJµS = 0
I Derivative corrections

JµS = s0uµ + ( gradient
corrections)

I In the presence of parity breaking, the canonical entropy
current could be corrected Landau Lifshitz 6, Minwalla-Yarom-etal 1105.3733

JµS = s0uµ − µ

T
Υµ − uν

T
τµν︸ ︷︷ ︸

JµS,can

+
(

all possible
single gradient

3-vectors

)

NB: Υ and τ include the derivative corrections π and ν plus
(magn. and vortical) magnetization contributions at O(∂1)
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Remarks
I The whole argument is algebraically involved but otherwise

straightforward. I will stress the main points. If somebody
is interested in the calculation, we can discuss in private.

I More convenient basis for first order pseudovectors :

Ṽµ
1 = εµνρuν∇ρT = −T Ṽµ

1 + R0T Ṽµ
3

Ṽµ
2 = Ṽµ

2

Ṽµ
3 = εµνρuν∇ρ µT = − Ṽµ3

T +
Ṽµ2
T

Ṽµ
4 = 1

2ε
µνρFνρ = Ṽµ

2 + uµB
Ṽµ

5 = εµνρ∇νuρ = −Ṽµ
1 + uµΩ

I Ansatz for the entropy current

Jµs = Jµs,can +ν0(µ,T )(∇·u)uµ+
3∑

i=1
νi(µ,T )Vµ

i +
5∑

i=1
ν̃i(µ,T )Ṽµ

i
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Remarks
I Schematic structure of the entropy current divergence

∇µJµs =
(

products of
first order

data

)
+ (second order

scalar data )

I Second order contributions have to vanish separately,
severly restricting the form of the entropy current. Coupling
to a curved background is important: [Minwalla-Yarom 1105.3733]

∇αJαs = +
(
ν2 −

ν3

T

)
∇µEµ + ν3∆µν∇µ∂ν

µ

T
+ (ν0 + ν1) uα∇α∇µuµ−ν1uαuµRαµ

−ν̃2uα∇αB + ( products of
first order data)

⇒ ν0 = ν1 = ν2 = ν3 = ν̃2 = 0

I The products of first order data have to either vanish or be
complete squares.

I Ambiguity : Jµs → Jµs + εµνρ∇ν(α̃uρ)

Invariants ν̃4 , ∂T ν̃5 + ν̃1 , ∂µ
T
ν̃5 + ν̃3
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Results

I Parametrize two invariants with magnetizations

T ν̃4 =MB , ∂µ
T
ν̃5 + ν̃3 = 1

T ∂µT
MΩ −MB

I Constraint fixes the third invariant up to a free function

∂
∂µ(T 2(∂T ν̃5 + ν̃1)− T∂TMΩ + 2MΩ) = 0

⇒ T 2(∂T ν̃5 + ν̃1) = T∂TMΩ − 2MΩ + fΩ(T )

I The role of fΩ(T ) remains unclear so far. In the
magnetovortical frame it contributes to the vorticity
magnetization subtraction of the energy density.
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Results
I Transport Coefficients in Landau Frame:

(η, ζ, σ) ≥ 0 , σ̃, η̃ ∈ R , χE = χT = 0

I Incidentally also frame-invariant!

I η, ζ, σ, η̃, σ̃ are transport coefficients (encode dynamical
information)

I χ̃B, χ̃E , χ̃T , χ̃Ω are thermodynamic response parameters
(calculable from Euclidean Greens functions)
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Linearized Hydrodynamics

I In the presence of small sources (Aµ,hµν) the
hydrodynamic equations of motion can be solved in linear
response theory.

I The resulting VEVs Tµν and Jµ encode
retarded hydrodynamic correlators

Gµ,νR =
δ(
√
−gJµ)

δAν

∣∣∣∣∣
A=h=0

Gµν,σR =
δ(
√
−gTµν )

δAν

∣∣∣∣∣
A=h=0

Gσ,µνR = 2
δ(
√
−gJσ)

δhµν

∣∣∣∣∣
A=h=0

Gστ,µνR = 2
δ(
√
−gTστ )

δhµν

∣∣∣∣∣
A=h=0

I These correlators have to fulfill several constraints
Positivity of spectral function, Onsager relations,
Reproduce thermodynamic susceptibilities

I Can those reproduce the entropy current results? Can we
further determineMB,MΩ, fΩ, such as e.g. MB = dP

dB ?
Cooper-Halperin-Ruzin cond-mat/9607001
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Constraints from Linearized Hydro

I The Parity even sector :

Tµν = ε0uµuν + (P0 − ζ∇ρuρ)Pµν − ησµν

Jµ = ρ0uµ + σ
(

Eµ − TPµν∇ν
µ

T

)
+ χEEµ + χT Pµν∇νT



Constraints from Linearized Hydro

I The Parity even sector :

Tµν = ε0uµuν + (P0 − ζ∇ρuρ)Pµν − ησµν

Jµ = ρ0uµ + σ
(

Eµ − TPµν∇ν
µ

T

)
+ χEEµ + χT Pµν∇νT

I The following susceptibility constraints must hold

lim
k→0

G0,0
R (0,k) =

(
∂ρ
∂µ

)
T
, lim

k→0
G0,00

R (0,k) = T
(
∂ρ
∂T

)
µ
T



Constraints from Linearized Hydro

I The Parity even sector :

Tµν = ε0uµuν + (P0 − ζ∇ρuρ)Pµν − ησµν

Jµ = ρ0uµ + σ
(

Eµ − TPµν∇ν
µ

T

)
+ χEEµ + χT Pµν∇νT

I The following susceptibility constraints must hold

lim
k→0

G0,0
R (0,k) =

(
∂ρ
∂µ

)
T
, lim

k→0
G0,00

R (0,k) = T
(
∂ρ
∂T

)
µ
T

I Direct computation yields

G0,0
R (0,0) =

(
∂ρ
∂µ

)
T

+
T
(

s ∂ρ
∂µ
−ρ ∂s

∂µ

)
(ε+P)σ+TρχT

χE

G0,00
R (0,0) = (ε+P)σ

(ε+P)σ+TρχT
T
(
∂ρ
∂T

)
µ
T

+ (ε+P)TχT
(ε+P)σ+TρχT

(
∂ρ
∂µ

)
T



Constraints from Linearized Hydro

I The Parity even sector :

Tµν = ε0uµuν + (P0 − ζ∇ρuρ)Pµν − ησµν

Jµ = ρ0uµ + σ
(

Eµ − TPµν∇ν
µ

T

)
+ χEEµ + χT Pµν∇νT

I The following susceptibility constraints must hold

lim
k→0

G0,0
R (0,k) =

(
∂ρ
∂µ

)
T
, lim

k→0
G0,00

R (0,k) = T
(
∂ρ
∂T

)
µ
T

I Direct computation yields

G0,0
R (0,0) =

(
∂ρ
∂µ

)
T

+
T
(

s ∂ρ
∂µ
−ρ ∂s

∂µ

)
(ε+P)σ+TρχT

χE

G0,00
R (0,0) = (ε+P)σ

(ε+P)σ+TρχT
T
(
∂ρ
∂T

)
µ
T

+ (ε+P)TχT
(ε+P)σ+TρχT

(
∂ρ
∂µ

)
T

⇒ χE = χT = 0



Constraints from Linearized Hydro

I The Parity even sector :

Tµν = ε0uµuν + (P0 − ζ∇ρuρ)Pµν − ησµν

Jµ = ρ0uµ + σ
(

Eµ − TPµν∇ν
µ

T

)
+���χEEµ +((((

((χT Pµν∇νT

I Positivity of the spectral function:

=Gi,i
R (ω,k) ≥ 0 =Gij,ij

R (ω,k) ≥ 0

I Direct computation yields e.g. for G12,12
R and G1,1

R

G12,12
R (ω,k = 0) = −P + iηω +O(ω2)

G1,1
R (ω,k = 0) = − ρ2

ε+P + iσω +O(ω2)

G11,11
R (ω,k = 0) = C + i(η + ζ)ω +O(ω2)
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The Parity Even and Odd Sectors

I Results from the parity even sector are unchanged.

I Possible contributions from higher order terms prevent
safe application of many retarded correlators in the full
theory without knowledge of second-order hydrodynamics.

I Some Kubo Formulas are safe:

C0 =
(
∂P0
∂ρ0

)
ε0
J 0 +

(
∂P0
∂ε0

)
ρ0
T 00, C i = J i − R0T 0i

χ̃B = lim
k→0

1

ik
〈C0J 2〉R (0, k) = lim

k→0

1

ik

(
∂P0

∂ρ0
G0,2

R (0, k) +
∂P0

∂ε0
G00,2

R (0, k)

)

χ̃Ω = lim
k→0

1

ik
〈C0T 02〉R (0, k) = lim

k→0

1

ik

(
∂P0

∂ρ0
G0,02

R (0, k) +
∂P0

∂ε0
G00,02

R (0, k)

)

χ̃E = − lim
k→0

1

ik
〈C2J 0〉R (0, k) = lim

k→0

1

ik

(
G0,2

R (0, k)− R0G0,02
R (0, k)

)
T χ̃T = − lim

k→0

1

ik
〈C2T 00〉R (0, k) = lim

k→0

1

ik

(
G00,2

R (0, k)− R0G00,02
R (0, k)

)
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The Parity Even and Odd Sectors

I Kubo Formulas for parity-odd transport coefficients

η̃ = lim
ω→0

1
4ω

δikεjl Im Gij,kl
R (ω,0)

σ̃ + χ̃E = lim
ω→0

1
2ω

εij Im Gi,j
R (ω,0)

I Onsager relations relate χ̃Ω, χ̃B, χ̃E , χ̃T :

Gij
R(ω,k; ba) = ninjG

ji
R(ω,−k;−ba) (ΘOiΘ

−1 = niOi)

I Relating 〈C0C2〉 to 〈C2C0〉 in this way yields

χ̃B −
ρ0

ε0 + P0
χ̃Ω =

∂P0

∂ρ0
χ̃E +

∂P0

∂ε0
TχT

I Satisfied by the results from the entropy current
→ Consistency check
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The Magnetovortical Frame

I Constant B,Ω should characterize
equilibrium configurations of the fluid

I Examples: 1) Rigid rotation on a disc with radius R and
angular velocity ωR � 1; 2) Kerr BH [Petkou et.al. 2011]

I Thermodynamics now depends on T , µ,B,Ω

dP = sdT + ρdµ+
∂P
∂B

dB +
∂P
∂Ω

dΩ , ε+ P = sT + ρµ

I Equilibrium constitutive relations are unknown, but can be
parametrized by functions of µ,T

Tµν = (ε− eBB − eΩΩ)uµuν + (P − xBB − xΩΩ)Pµν

Jµ = (ρ− rBB − rΩΩ)uµ

I Magnetic Subtractions: xB = rΩ = ∂P
∂B
Cooper-Halperin-Ruzin cond-mat/9607001



The Magnetovortical Frame

I Constant B,Ω should characterize
equilibrium configurations of the fluid

I Examples: 1) Rigid rotation on a disc with radius R and
angular velocity ωR � 1; 2) Kerr BH [Petkou et.al. 2011]

I Thermodynamics now depends on T , µ,B,Ω

dP = sdT + ρdµ+
∂P
∂B

dB +
∂P
∂Ω

dΩ , ε+ P = sT + ρµ

I Equilibrium constitutive relations are unknown, but can be
parametrized by functions of µ,T

Tµν = (ε− eBB − eΩΩ)uµuν + (P − xBB − xΩΩ)Pµν

Jµ = (ρ− rBB − rΩΩ)uµ

I Magnetic Subtractions: xB = rΩ = ∂P
∂B
Cooper-Halperin-Ruzin cond-mat/9607001



The Magnetovortical Frame

I Constant B,Ω should characterize
equilibrium configurations of the fluid

I Examples: 1) Rigid rotation on a disc with radius R and
angular velocity ωR � 1; 2) Kerr BH [Petkou et.al. 2011]

I Thermodynamics now depends on T , µ,B,Ω

dP = sdT + ρdµ+
∂P
∂B

dB +
∂P
∂Ω

dΩ , ε+ P = sT + ρµ

I Equilibrium constitutive relations are unknown, but can be
parametrized by functions of µ,T

Tµν = (ε− eBB − eΩΩ)uµuν + (P − xBB − xΩΩ)Pµν

Jµ = (ρ− rBB − rΩΩ)uµ

I Magnetic Subtractions: xB = rΩ = ∂P
∂B
Cooper-Halperin-Ruzin cond-mat/9607001



The Magnetovortical Frame

I Constant B,Ω should characterize
equilibrium configurations of the fluid

I Examples: 1) Rigid rotation on a disc with radius R and
angular velocity ωR � 1; 2) Kerr BH [Petkou et.al. 2011]

I Thermodynamics now depends on T , µ,B,Ω

dP = sdT + ρdµ+
∂P
∂B

dB +
∂P
∂Ω

dΩ , ε+ P = sT + ρµ

I Equilibrium constitutive relations are unknown, but can be
parametrized by functions of µ,T

Tµν = (ε− eBB − eΩΩ)uµuν + (P − xBB − xΩΩ)Pµν

Jµ = (ρ− rBB − rΩΩ)uµ

I Magnetic Subtractions: xB = rΩ = ∂P
∂B
Cooper-Halperin-Ruzin cond-mat/9607001



The Magnetovortical Frame

I Constant B,Ω should characterize
equilibrium configurations of the fluid

I Examples: 1) Rigid rotation on a disc with radius R and
angular velocity ωR � 1; 2) Kerr BH [Petkou et.al. 2011]

I Thermodynamics now depends on T , µ,B,Ω

dP = sdT + ρdµ+
∂P
∂B

dB +
∂P
∂Ω

dΩ , ε+ P = sT + ρµ

I Equilibrium constitutive relations are unknown, but can be
parametrized by functions of µ,T

Tµν = (ε− eBB − eΩΩ)uµuν + (P − xBB − xΩΩ)Pµν

Jµ = (ρ− rBB − rΩΩ)uµ

I Magnetic Subtractions: xB = rΩ = ∂P
∂B
Cooper-Halperin-Ruzin cond-mat/9607001



The Magnetovortical Frame

I A similar derivation for vortical subtractions is missing
[JKKMRY, in progress]

I Used Kubo formulas for χ̃Ω, χ̃B, χ̃T , χ̃E , which are frame
independent , to match the expressions for χ̃Ω, χ̃B, χ̃T , χ̃E
in terms ofMB,MΩ, fΩ to this parametrization:

xB =
∂P
∂B

, xΩ =
∂P
∂Ω

MB =
∂P
∂B

+ hB(µ) , MΩ =
∂P
∂Ω

+ hΩ(µ,T )

eB = hB − µh′
B , rB = −h′

B , eΩ , rΩ undetermined

I If we match to the literature and set hB = 0 , and
furthermore conjecture the same for vorticity,

rΩ =MB , eΩ =MΩ − fΩ(T ) , hΩ = 0
we fully define a different hydrodynamic frame, the
magnetovortical frame .
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The Magnetovortical Frame

I The constitutive relations in the magnetovortical frame
read

Tµν = (ε− (MΩ − fΩ) Ω) uµuν + (P − (MBB +MΩΩ)) ∆µν

Jµ = (ρ−MBΩ) uµ

MB =
∂P
∂B

, MΩ =
∂P
∂Ω

I Consistency Check: Starting from these relations, the
susceptibility results

χ̃B =
∂P0

∂ε0

(
T
∂MB

∂T
+ µ

∂MB

∂µ
−MB

)
+
∂P0

∂ρ0

∂MB

∂µ

χ̃Ω =
∂P0

∂ε0

(
T
∂MΩ

∂T
+ µ

∂MΩ

∂µ
+ fΩ(T )− 2MΩ

)
+
∂P0

∂ρ0

(
∂MΩ

∂µ
−MB

)

χ̃E =
∂MB

∂µ
− R0

(
∂MΩ

∂µ
−MB

)
T χ̃T =

(
T
∂MB

∂T
+ µ

∂MB

∂µ
−MB

)
− R0

(
T
∂MΩ

∂T
+ µ

∂MΩ

∂µ
+ fΩ(T )− 2MΩ

)

could have been reproduced from linearized hydro alone.



The Magnetovortical Frame

I The constitutive relations in the magnetovortical frame
read

Tµν = (ε− (MΩ − fΩ) Ω) uµuν + (P − (MBB +MΩΩ)) ∆µν

Jµ = (ρ−MBΩ) uµ

MB =
∂P
∂B

, MΩ =
∂P
∂Ω

I Consistency Check: Starting from these relations, the
susceptibility results

χ̃B =
∂P0

∂ε0

(
T
∂MB

∂T
+ µ

∂MB

∂µ
−MB

)
+
∂P0

∂ρ0

∂MB

∂µ

χ̃Ω =
∂P0

∂ε0

(
T
∂MΩ

∂T
+ µ

∂MΩ

∂µ
+ fΩ(T )− 2MΩ

)
+
∂P0

∂ρ0

(
∂MΩ

∂µ
−MB

)

χ̃E =
∂MB

∂µ
− R0

(
∂MΩ

∂µ
−MB

)
T χ̃T =

(
T
∂MB

∂T
+ µ

∂MB

∂µ
−MB

)
− R0

(
T
∂MΩ

∂T
+ µ

∂MΩ

∂µ
+ fΩ(T )− 2MΩ

)

could have been reproduced from linearized hydro alone.



Outline

Introduction

Basics of Hydrodynamics

Parity Breaking in First Order Hydrodynamics

Positivity of Entropy Production

Linearized Hydrodynamics

The Magnetovortical Frame

A strongly coupled example

Conclusions and Outlook



A Strongly Coupled Example
I A strongly interacting matter example:

S = Sgrav − 1
16πGN

∫
d4x
√
−g F 2

4 −
1

64π2

∫
θ(φ)F ∧ F

I Analytic black hole from high temperature limit [Yarom, 0912.2100]

I Calculated Susceptibilities ⇒ Consistent!

I Fluid-Gravity Correspondence ⇒ Constitutive Relations

σ̃ =
θ(φ(rh))

8π2 − ∂ρ

∂B
+O(µ2, J2

φ) , χ̃E =
∂ρ

∂B
+O(µ2, J2

φ)

σ =
1

16πGN
+O(µ2, J2

φ) , T χ̃T =
∂ε

∂B
+O(µ3, J2

φ)

⇒ Anomalous Hall Conductivity: σ̃ + χ̃E = θ(φ(rh))
8π2
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Conclusions and Outlook
I New dissipationless transport coefficients from parity

non-invariance in first order 2+1-dimensional
hydrodynamics

I Computable in strong coupling examples via AdS/CFT

I A parity odd conductivity σ̃, and four "thermodynamic"
transport coefficients χ̃E , χ̃T , χ̃B, χ̃Ω

I Allows for anomalous Hall transport with conductivity
∝ σ̃ + χ̃E

I Open points

• Derivation of Magnetovortical Frame

• More planar equilibrium states with vorticity?

• Going beyond small magnetic and vortical backgrounds

• Search for interesting real-world systems

• A membrane paradigm for the Hall conductivity?
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