1

Einstein-Maxwell-Dilaton theories: holographic applications and generalised dimensional reduction

Blaise Goutéraux

Lab. Astroparticles and Cosmology CNRS UMR 7164, Université Paris Diderot - Paris 7

> *2012.05.10* CCTP, Univ. of Crete

Based on collaborations with C. Charmousis, E. Kiritis, K. Skenderis, M. Taylor, R. Meyer, B. S. Kim, J.&M. Smolic

arXiv:1110.2320, arXiv:1107.2116, arXiv:1005.4690 and ongoing

2 Generalised Quantum Criticality

Strong coupling in Condensed Matter Systems

- Some materials (e.g. high T_c or heavy fermion superconductors) display unconventional behaviour in the normal phase: strange metals.
 - non-Fermi Liquid (no weakly-coupled quasiparticles).
 - $C_{\mu} \sim \sigma_{DC}^{-1} \sim T$ ($\omega \ll T \ll \mu$). $\sigma_{AC} \sim \omega^{-2/3}$ ($T \lesssim \omega \ll \mu$).

- Unconventional behaviours at low T ($T \ll \mu$) in CMS often controlled by Quantum Critical points (T=0).
- QC points cannot be described by a theory of weakly-coupled particles. Strong coupling \Rightarrow Holography?

Holography in AdS spacetimes

$$S = \int d^4x \sqrt{-g} \left(R - 2\Lambda - \frac{1}{4}F^2 \right)$$
$$ds^2 = \frac{1}{r^2} \left(-dt^2 + dr^2 + dx^2 + dy^2 \right)$$

- Canonical duality ([MALDACENA98]): sYM(N=4) in strong coupling and supergravity on $AdS_5 \times S^5$ (weak coupling).
- Relativistic scale invariance: $(r, x, y, t) \rightarrow \lambda(r, x, y, t) \Rightarrow UV-IR$ relation: the radial bulk coordinate r geometrises the boundary RG flow.
- Local U(1) gauge field in the bulk ⇔ global gauge field on the boundary: finite density of boundary carriers.

Holography in AdS spacetimes

- Above T_c,
 HP phase transition between thermal AdS and large AdS black holes.
- [WITTEN98]: formation of a bulk event horizon ⇔ deconfined boundary phase.
- Flat AdS boundary: destroys HP phase transition.
- Need to simulate horizon curvature: can be done with a scalar (relevant) operator and exponential potential:

[GURSOY,KIRITSIS, Mazzanti&Nitti.08].

Holography in AdS spacetimes

- Above *T_c*, HP phase transition between thermal AdS and large AdS black holes.
- [WITTEN98]: formation of a bulk event horizon ⇔ deconfined boundary phase.
- Flat AdS boundary HP phase transition.
- Need to simulate horizon curvature: can be done with a scalar (relevant) operator and exponential potential:

[GURSOY, KIRITSIS,

MAZZANTI&NITTI.08].

Relativistic IR fixed points

The AdS₄ charged black hole **collapses** to an AdS₂ × **R**₂ metric in the IR: $ds^{2} = \frac{1}{r^{2}} \left(-dt^{2} + dr^{2}\right) + dx^{2} + dy^{2}$

Emergent IR scaling behaviour: Non-Fermi liquid [LEE08, LIU&AL,ZAANEN&AL.09] Charged horizon: $\lim_{r\to 0} \int_{\mathbf{R}_2} \star F = ct$

But

- finite entropy at zero temperature;
- $\rho \sim \langle J^t \rangle^{-1} T^2$, $\sigma_{AC} \sim \omega^2$
- unstable to particle pair production near the horizon: condensation of complex scalar (superfluid, [HARTNOLL&AL08]); electron stars, [HARTNOLL&AL10,11].
- Emergent IR Lifshiz scaling, [HOROWITZ&ROBERTS09,GUBSER&Nellore09], [TONG&AL09].

Relativistic IR fixed points

The AdS₄ charged black hole **collapses** to an AdS₂ × **R**₂ metric in the IR: $ds^{2} = \frac{1}{r^{2}} \left(-dt^{2} + dr^{2}\right) + dx^{2} + dy^{2}$

Emergent IR scaling behaviour: Non-Fermi liquid [LEE08, LIU&AL,ZAANEN&AL.09] Charged horizon: $\lim_{r\to 0} \int_{\mathbf{R}_2} \star F = ct$

But

- finite entropy at zero temperature;
- $\rho \sim \langle J^t \rangle^{-1} T^2$, $\sigma_{AC} \sim \omega^2$
- unstable to particle pair production near the horizon: condensation of complex scalar (superfluid, [HARTNOLL&ALO8]); electron stars, [HARTNOLL&AL10,11].
- Emergent IR Lifshiz scaling, [HOROWITZ&ROBERTS09,GUBSER&Nellore09], [TONG&AL09].

Non-relativistic fixed points [BALASUBRAMANIAN&MCGREEVY,KACHRU&AL,SONOS]

so
$$S = \int \sqrt{-g} \left(R - 2\Lambda - \frac{F^2}{4} - m^2 A^2 \right)$$

 $ds^2 = -\frac{dt^2}{r^{22}} + \frac{dr^2 + dx^2 + dy^2}{r^2}, A_t \sim r^{-z}$

Anisotropic scaling $(x, y) \rightarrow \lambda(x, y), t \rightarrow \lambda^{z} t$

Hyperscaling: $S \sim T^{\frac{2}{z}}$

- Zero horizon electric flux: $\lim_{r\to\infty}\int_{\mathbf{R}_2} \star F = 0$, S(T = 0) = 0.
- $\rho \sim \langle J^t \rangle^{-1} T^{2/z}$, $\sigma_{AC} \sim \omega^2$ [Hartnoll&al08].
- 'Mesonic' phase, [HARTNOLL&HUIJSE11]: charge carried by composite boundary gauge-invariant operators ↔ charged matter in the bulk.
- But geodesically incomplete: unstable? [HOROWITZ&WAY11]
- Can one have both S(T = 0) = 0 and charge carried by the horizon?

Hyperscaling violation and fractionalisation

- Fractionalised phases: charge carried by boundary gauge-charged operators ⇒ introduce a bulk neutral scalar: drives the IR dynamics (Effective Holographic Theories, [BG,KIRITSIS&AL10])
- EMD theories:

$$S_{EMD} = \int \mathrm{d}^4 x \, \sqrt{-g} \left[R - \frac{1}{2} \partial \phi^2 - \frac{1}{4} \mathrm{e}^{\gamma \phi} F^2 - 2\Lambda e^{-\delta \phi} \right]$$

• $\delta = 0$: Lifshitz IR (hyper)scaling, [Taylor08,Kachru&al09].

$$z=1+rac{4}{\gamma^2}\geq 1$$

• $\delta \neq 0$: hyperscaling violating IR fixed points, [BG,Kiritsis&al10, BG&Kiritsis, Sachdev&al.11, Kachru&al.12]

$$\mathrm{d}s^2 = r^\theta \left[-\frac{\mathrm{d}t^2}{r^{2z}} + \frac{\mathrm{d}r^2 + \mathrm{d}x^2 + \mathrm{d}y^2}{r^2} \right], \quad e^{\delta\phi} \sim r^\theta$$

• conformal to Lifshitz [Perlmutter10,BG&Kiritsis11]

T = 0 IR fixed point: generalised Lifshitz structure

Generalised IR fixed point at finite temperature

$$ds_{(4)}^{2} = -V(p) e^{\gamma \phi} dt^{2} + \frac{u e^{\delta \phi} dp^{2}}{w(-\Lambda)V(p)} + e^{(\delta-\gamma)\frac{\phi}{2}} d\mathbf{R}_{(2)}^{2}$$
$$V(p) = p(p-2m), \quad e^{\phi} = p^{\frac{-4(\gamma-\delta)}{w}}, \quad A = 2\sqrt{\frac{-v}{w}}p dt$$
$$u = \gamma^{2} - \gamma\delta + 2, \quad v = \delta^{2} - \gamma\delta - 2, \quad w = 3\gamma^{2} - \delta^{2} - 2\gamma\delta + 4$$

 1 singularity (p = 0), 1 event horizon (p = 2m) if u > 0, v < 0, w > 0 (else, naked cosmological singularity); singular extremal limit m = 0.

•
$$\gamma = \delta$$
: $AdS_2 \times \mathbf{R}^2$.

- $\delta = 0$: Lifshitz solution, $z = 1 + \frac{4}{\gamma^2} > 1$ [Taylor08,Kachru et al.09]
- Arbitrary γ, δ : **unusual** asymptotics.

Thermodynamics

- Single branch of solutions
- $sign[F] \sim -sign[w 2(v + u)]$

•
$$sign[C_T] \sim sign[w - 2(v + u)]$$

- w 2(v + u) > 0: thermally stable
- w 2(v + u) < 0: thermally unstable
- No phase transitions

• If
$$w = 4(v + u)$$
, $C_T \sim T$

AC and DC conductivity

Contour levels of the scaling exponent n_{AC} in the (γ, δ) plane

• Yellow region: unstable.

• Lighter regions: higher scaling exponent
$$(n_{AC} > 1.5)$$
.

- Fluctuations of A_i and g_{ti}: sources in the boundary theory. σ_x ~ ω^{n_{AC}}
- Strange metals: $n_{AC} < 0 (\sim -0.66)$.
- Einstein-Maxwell case: NHEL AdS₂ × R² ⇒ σ_x ∼ ω².
- EMD: non-conventional NHE geometry \Rightarrow non-conventional scaling.
- Charged EMD background: Stable region $\Rightarrow n_{AC} > 0$ $\gamma = \delta (AdS_2 \times \mathbb{R}^2) \Rightarrow n_{AC} = 2$
- drag force result: $\rho \sim \sigma_{DC}^{-1} \sim C_{\mu} \sim T^{\frac{2(\nu+u)}{w-2(\nu+u)}}$ Linear scaling if $w = 4(\nu + u)$.

Some questions

- Can we set up holography for such non-trivial, non-conformal spacetimes?
- Can we explain the scaling properties of the EMD backgrounds ?
- Solution Can we explain the scaling of their thermodynamics and of their transport coefficients?

Holography for Einstein-Dilaton theories [KANITSCHEIDER&SKENDERIS09]

• ED theories are by *diagonal reductions* of AdS_{n+p+1} over Rⁿ

$$S = \int \mathrm{d}^{n+p+1} x \left[R - 2\Lambda \right] \Rightarrow S = \int \mathrm{d}^{p+1} x \left[R - \frac{1}{2} \partial \phi^2 - 2\Lambda e^{-\delta \phi} \right]$$

- It is a consistent truncation: all (p+1) solutions are (n+p+1) solutions.
- The eoms depend smoothly on *n* and can be analytically continued: the reduction is generalised.

$$\delta^2 = \frac{2n}{(p-1)(n+p-1)} \in \mathbb{R}, \qquad 0 \le \delta^2 \le \frac{2}{p-1}.$$

- In that range, the holographic dictionary (asymptotics, counterterms, 1-point functions, etc.) for ED spacetimes follows straightforwardly from the AdS case.
- The dilatonic planar black hole in p + 1 uplifts to its AdS counterpart in n + p + 1.
- Conserved charges and hydrodynamics can also be derived.
- $\delta^2 > 2/(p-1)$: Reduction over a sphere from $\Lambda = 0$ GR.

Application to the EMD IR fixed points

$$\mathcal{L}_{(n+4)} = R - rac{1}{2}\partial\Phi^2 - e^{\Gamma\Phi}F^2_{[q+2]} - 2\Lambda$$

- Solid black line: $AdS_2 \times R_{n+2}$, $\Phi = 0, \Gamma = 0, q = 0$
- Dotted blue line: $AdS_{n+2} \times R_2$, $\Phi = 0, \Gamma = 0, q = n$
- Blue region: Dilatonic Lifshitz solution $z = 1 + \frac{2(n+2)}{\Gamma^2}$, q = 0
- Red region: Dilatonic 2-brane , q = 0, $\Lambda = 0$
- All lower-dimensional scalings derive from the usual higher-dimensional ones.
- The theory effectively lives in 4 + n dimensions.

Conclusions

- Charged horizons can be associated with fractionalised phases, with non-trivial IR emergent scalings.
- The near-extremal geometry of EMD theories is **universal**: it encompasses all main types of IR fixed points (AdS, Lifshitz, hyperscaling violating).
- Interesting laboratories for the recovery of strongly-coupled Condensed Matter phenomena, such as **strange metallicity**.
- Generalised dimensional reduction can be used to put the non-conformal holographic dictionary on firmer grounds, and explain the lower-dimensional scalings. It provides a fast way of computing interesting quantities (thermodynamics, hydrodynamics).
- Hidden fermi surfaces, [Sachdev&al11]: $\theta = 1$. Uplift?