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Strong coupling in Condensed Matter Systems

Some materials (e.g. high Tc or heavy
fermion superconductors) display
unconventional behaviour in the normal
phase: strange metals.

non-Fermi Liquid (no weakly-coupled
quasiparticles).
Cµ ∼ σ−1

DC ∼ T (ω << T << µ).
σAC ∼ ω−2/3 (T . ω << µ).

Unconventional behaviours at low T (T << µ) in CMS often
controlled by Quantum Critical points (T=0).

QC points cannot be described by a theory of weakly-coupled
particles. Strong coupling ⇒ Holography?
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Holography in AdS spacetimes

S =
∫

d4x
√
−g
(
R − 2Λ− 1

4 F 2)
ds2 = 1

r2

(
−dt2 + dr 2 + dx2 + dy 2)

Canonical duality ([Maldacena98]): sYM(N=4) in strong coupling
and supergravity on AdS5 × S5 (weak coupling).
Relativistic scale invariance: (r , x , y , t)→ λ(r , x , y , t) ⇒ UV-IR
relation: the radial bulk coordinate r geometrises the boundary RG
flow.
Local U(1) gauge field in the bulk ⇔ global gauge field on the
boundary: finite density of boundary carriers.
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Holography in AdS spacetimes

Reissner-Nordström

Schwarzschild-AdS

Planar Schwarzschild-AdS

Reissner-Nordström-AdS
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F Above Tc ,
HP phase transition between
thermal AdS and large AdS
black holes.

[Witten98]: formation of a bulk
event horizon ⇔ deconfined
boundary phase.

Flat AdS boundary: destroys
HP phase transition.

Need to simulate horizon
curvature: can be done with a
scalar (relevant) operator and
exponential potential:
[Gursoy,Kiritsis,
Mazzanti&Nitti.08].
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Relativistic IR fixed points

The AdS4 charged black hole collapses
to an AdS2 × R2 metric in the IR:
ds2 = 1

r2

(
−dt2 + dr 2)+ dx2 + dy 2

Emergent IR scaling behaviour:
Non-Fermi liquid [Lee08,
Liu&al,Zaanen&al.09]
Charged horizon: limr→0

∫
R2
?F = ct

But
finite entropy at zero temperature;
ρ ∼ 〈J t〉−1T 2, σAC ∼ ω2

unstable to particle pair production near the horizon: condensation of
complex scalar (superfluid, [Hartnoll&al08]); electron stars,
[Hartnoll&al10,11].
Emergent IR Lifshiz scaling, [Horowitz&Roberts09,Gubser&Nellore09],
[Tong&al09].
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Non-relativistic fixed points [Balasubramanian&McGreevy,Kachru&al,Son08]

S =
∫ √
−g
(

R − 2Λ− F 2

4 −m2A2
)

ds2 = −dt2

r2z + dr2+dx2+dy2

r2 , At ∼ r−z

Anisotropic scaling
(x , y)→ λ(x , y), t → λz t

Hyperscaling: S ∼ T 2
z

Zero horizon electric flux: limr→∞
∫

R2
?F = 0, S(T = 0) = 0.

ρ ∼ 〈J t〉−1T 2/z , σAC ∼ ω2[Hartnoll&al08].
’Mesonic’ phase, [Hartnoll&Huijse11]: charge carried by composite
boundary gauge-invariant operators ↔ charged matter in the bulk.
But geodesically incomplete: unstable? [Horowitz&Way11]

Can one have both S(T = 0) = 0 and charge carried by the horizon?
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Hyperscaling violation and fractionalisation

Fractionalised phases: charge carried by boundary gauge-charged
operators ⇒ introduce a bulk neutral scalar: drives the IR dynamics
(Effective Holographic Theories, [BG,Kiritsis&al10])
EMD theories:

SEMD =

∫
d4x
√
−g
[
R − 1

2∂φ
2 − 1

4eγφF 2 − 2Λe−δφ
]

δ = 0: Lifshitz IR (hyper)scaling, [Taylor08,Kachru&al09].

z = 1 +
4
γ2 ≥ 1

δ 6= 0: hyperscaling violating IR fixed points, [BG,Kiritsis&al10,
BG&Kiritsis, Sachdev&al.11, Kachru&al.12]

ds2 = rθ
[
−dt2

r2z +
dr2 + dx2 + dy2

r2

]
, eδφ ∼ rθ

conformal to Lifshitz [Perlmutter10,BG&Kiritsis11]
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T = 0 IR fixed point: generalised Lifshitz structure
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Generalised IR fixed point at finite temperature

ds2
(4) = −V (p) eγφdt2 +

ueδφdp2

w(−Λ)V (p)
+ e(δ−γ)

φ
2 dR2

(2)

V (p) = p(p − 2m) , eφ = p
−4(γ−δ)

w , A = 2
√
−v
w p dt

u = γ2 − γδ + 2 , v = δ2 − γδ − 2 , w = 3γ2 − δ2 − 2γδ + 4

Cosmological
  Solution

Black
Hole

-4 -2 2 4 Γ

1

2

3

4

∆

1 singularity (p = 0), 1 event horizon
(p = 2m) if u > 0 , v < 0 , w > 0 (else,
naked cosmological singularity); singular
extremal limit m = 0.
γ = δ: AdS2 × R2.
δ = 0: Lifshitz solution, z = 1 + 4

γ2 > 1
[Taylor08,Kachru et al.09]

Arbitrary γ, δ: unusual asymptotics.
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Thermodynamics

Thermal
Instability

Thermal
Stability

-4 -2 2 4 Γ

1

2

3

4

∆

Single branch of solutions
sign[F ] ∼ −sign[w − 2(v + u)]

sign[CT ] ∼ sign[w − 2(v + u)]

w − 2(v + u) > 0: thermally stable
w − 2(v + u) < 0: thermally unstable
No phase transitions
If w = 4(v + u), CT ∼ T
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AC and DC conductivity
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Contour levels of the scaling
exponent nAC in the (γ , δ) plane

Yellow region: unstable.
Lighter regions: higher
scaling exponent
(nAC > 1.5).

Fluctuations of Ai and gti : sources in the
boundary theory. σx ∼ ωnAC

Strange metals: nAC < 0 (∼ −0.66).
Einstein-Maxwell case:
NHEL AdS2 × R2 ⇒ σx ∼ ω2.
EMD: non-conventional NHE geometry ⇒
non-conventional scaling.
Charged EMD background:
Stable region ⇒ nAC > 0
γ = δ (AdS2 × R2) ⇒ nAC = 2

drag force result: ρ ∼ σ−1
DC ∼ Cµ ∼ T

2(v+u)
w−2(v+u)

Linear scaling if w = 4(v + u).
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Some questions

1 Can we set up holography for such non-trivial, non-conformal
spacetimes?

2 Can we explain the scaling properties of the EMD
backgrounds ?

3 Can we explain the scaling of their thermodynamics and of
their transport coefficients?
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Holography for Einstein-Dilaton theories [Kanitscheider&Skenderis09]

ED theories are by diagonal reductions of AdSn+p+1 over Rn

S =

∫
dn+p+1x [R − 2Λ]⇒ S =

∫
dp+1x

[
R − 1

2∂φ
2 − 2Λe−δφ

]
It is a consistent truncation: all (p + 1) solutions are (n + p + 1) solutions.
The eoms depend smoothly on n and can be analytically continued: the
reduction is generalised.

δ2 =
2n

(p − 1)(n + p − 1)
∈ R , 0 ≤ δ2 ≤ 2

p − 1 .

In that range, the holographic dictionary (asymptotics, counterterms,
1-point functions, etc.) for ED spacetimes follows straightforwardly from
the AdS case.
The dilatonic planar black hole in p + 1 uplifts to its AdS counterpart in
n + p + 1.
Conserved charges and hydrodynamics can also be derived.
δ2 > 2/(p − 1): Reduction over a sphere from Λ = 0 GR.
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Application to the EMD IR fixed points

L(n+4) = R − 1
2∂Φ2 − eΓΦF 2

[q+2] − 2Λ

Solid black line: AdS2×Rn+2, Φ = 0, Γ = 0, q = 0
Dotted blue line: AdSn+2 × R2,
Φ = 0, Γ = 0, q = n
Blue region: Dilatonic Lifshitz solution
z = 1 + 2(n+2)

Γ2 , q = 0
Red region: Dilatonic 2-brane , q = 0, Λ = 0
All lower-dimensional scalings derive from the
usual higher-dimensional ones.
The theory effectively lives in 4 + n dimensions.
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Conclusions

Charged horizons can be associated with fractionalised phases, with
non-trivial IR emergent scalings.

The near-extremal geometry of EMD theories is universal: it
encompasses all main types of IR fixed points (AdS, Lifshitz,
hyperscaling violating).

Interesting laboratories for the recovery of strongly-coupled
Condensed Matter phenomena, such as strange metallicity.

Generalised dimensional reduction can be used to put the
non-conformal holographic dictionary on firmer grounds, and explain
the lower-dimensional scalings. It provides a fast way of computing
interesting quantities (thermodynamics, hydrodynamics).

Hidden fermi surfaces, [Sachdev&al11]: θ = 1. Uplift?
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