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Motivations

Strong coupling in Condensed Matter Systems
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@ Unconventional behaviours at low T (T << u) in CMS often
controlled by Quantum Critical points (T=0).

@ QC points cannot be described by a theory of weakly-coupled
particles. Strong coupling = Holography?



Motivations

Holography in AdS spacetimes

Ads4

S=[d'xy/=g(R-2A-}F?)

AdS2xR2 ds2 — riz (_dt2 + dr2 + dX2 + dyZ)

@ Canonical duality ([Mapacenaos]): sYM(N=4) in strong coupling
and supergravity on AdSs x S® (weak coupling).

@ Relativistic scale invariance: (r,x,y,t) = A(r,x,y, t) = UV-IR
relation: the radial bulk coordinate r geometrises the boundary RG
flow.

@ Local U(1) gauge field in the bulk < global gauge field on the
boundary: finite density of boundary carriers.



Motivations

Holography in AdS spacetimes
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Motivations

Holography in AdS spacetimes
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Motivations

Relativistic IR fixed points

The AdS. charged black hole collapses
Electric Flux Ads4 to an AdS; x Rz metric in the IR:
ds® = % (—dt® +dr?) + dx* + dy?

AdS2xR2 . H

Emergent IR scaling behaviour:
Non-Fermi liquid [LEE0S,
LIU&AL,ZAANEN&AL.09]

Charged horizon: lim,_,o fRz *xF = ct

But
@ finite entropy at zero temperature;
@ p~ (Jt>71 T2, OAC ™~ w?
@ unstable to particle pair production near the horizon: condensation of

complex scalar (superfluid, [HarTnoLL&aL08]); electron stars,
[HARTNOLL&AL10,11].

@ Emergent IR Lifshiz scaling, [HorowiTz&RoBERTS09,GUBSERZNELLOREOY],
[TonGc&aL09].



Motivations

Relativistic IR fixed points

The AdS. charged black hole collapses
Ads4  to an AdS; x R, metric in the IR:
ds® = % (—dt® +dr?) + dx* + dy?

Charged condensat

AdS2xR2 . .
Emergent IR scaling behaviour:

Non-Fermi liquid [LEE0S,

LIU&AL,ZAANEN&AL.09]

Charged horizon: lim,_,o fR *xF = ct
2

But
@ finite entropy at zero temperature;
@ p~ (Jt>71 T2, OAC ™~ w?
@ unstable to particle pair production near the horizon: condensation of

complex scalar (superfluid, [HarTnoLL&aL08]); electron stars,
[HARTNOLL&AL10,11].

@ Emergent IR Lifshiz scaling, [HorowiTz&RoBERTS09,GUBSERZNELLOREOY],
[TonGc&aL09].



Motivations

Non-relativistic fixed points

S:f,ﬁ—g(R—y\—F{—m?A?)

2 21 4,2 2 _
dS2:7dt +dr+dx+dy ,AtNI’ z

r2z r2

Ads4

Lifshitz(z) . . )
Anisotropic scaling

(x,y) = A(x,y), t = Nt

Hyperscaling: S ~ T:

@ Zero horizon electric flux: lim,— oo fR2 *F=0,S(T=0)=0.

@ p~ (UNTIT?? Gpc ~ w? [HARTNOLLEZALOS] .

@ 'Mesonic’ phase, [HarTnoLrL&Hutse11]: charge carried by composite
boundary gauge-invariant operators <> charged matter in the bulk.

@ But geodesically incomplete: unstable? [HorowiTz&Way11]

@ Can one have both S(T = 0) = 0 and charge carried by the horizon?



Generalised Quantum Criticality

Hyperscaling violation and fractionalisation

@ Fractionalised phases: charge carried by boundary gauge-charged
operators = introduce a bulk neutral scalar: drives the IR dynamics
(Effective Holographic Theories, [BG,KiriTsrs&ar10])

@ EMD theories:
1 1 5
Semp = / d*xv/—g {R - §a¢2 - ZeW’F2 —2N\e™%?
@ § = 0: Lifshitz IR (hyper)scaling, [TavLor08,KacHru&AL09].
4
v

@ 0 # 0: hyperscaling violating IR fixed points, [BG,KirrTs1s&ar10,
BG&KIRITSIS, SACHDEV&AL.11, KACHRU&AL.12]
dt? n dr? + dx? + dy?
r2z r2

ds> =rY e~ r?

)

@ conformal to Lifshitz [PErLMUTTER10,BG&KIRITSIS11]



Generalised Quantum Criticality

T = 0 IR fixed point: generalised Lifshitz structure
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Generalised Quantum Criticality

Generalised IR fixed point at finite temperature

8 1,42
e’?d _ne
dsfy = =V(p)e™de’ + B eI T ARy,

(=M)V(p)

—4(v=6) —
V(p) = p(p—2m), e =p v , A=2\/7vpdt

U=~ —v5+2, v=0—45-2, w=3y -6 —-2v0+4

0
o Va @ 1 singularity (p = 0), 1 event horizon
Cé);mtqloglcal (p = 2m) ifu>0,v<0,w>0 (else,
ution
of naked cosmological singularity); singular
extremal limit m = 0.
L A @ =4 AdS: x R%.
@ 6 = 0: Lifshitz solution, z=1+ % >1
"/1, [TAYLORO8,KACHRU ET AL.09]
Black
Hole @ Arbitrary 7, d: unusual asymptotics.
4 2 2 ; ’y
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Generalised Quantum Criticality

Thermodynamics

Thermal
Instability

Thermal
Stability

11

L
2

Y

® 6 6 6 o o o

Single branch of solutions

sign[F] ~ —sign[w — 2(v + u)]
sign[Cr] ~ sign[w — 2(v + u)]

w — 2(v + u) > 0: thermally stable
w — 2(v + u) < 0: thermally unstable
No phase transitions

fw=4v+u), Cr ~T



Generalised Quantum Criticality

AC and DC conductivity

Contour levels of the scaling
exponent nac in the (v, ) plane
@ Yellow region: unstable.

@ Lighter regions: higher
scaling exponent
(nac > 1.5).
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Fluctuations of A; and g:: sources in the
boundary theory. o, ~ w"A¢

@ Strange metals: nac < 0(~ —0.66).

@ Einstein-Maxwell case:

NHEL AdS, x R? = oy ~ w?.

EMD: non-conventional NHE geometry =
non-conventional scaling.

Charged EMD background:
Stable region = nac >0
v =46 (AdS: x R?) = nac =2

2(v+4u)
drag force result: p ~ a;,é ~ Cy ~ Tw=2vt0)
Linear scaling if w = 4(v + u).




Generalised Quantum Criticality

Some questions

© Can we set up holography for such non-trivial, non-conformal
spacetimes?

@ Can we explain the scaling properties of the EMD
backgrounds ?

© Can we explain the scaling of their thermodynamics and of
their transport coefficients?
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Generalised dimensional reduction

Holography for Einstein-Dilaton theories

@ ED theories are by diagonal reductions of AdS, 41 over R"
S= / d"PHIX[R—2N] = S = / dPtix [R - %a& —20e™%?

@ It is a consistent truncation: all (p+ 1) solutions are (n+ p + 1) solutions.

@ The eoms depend smoothly on n and can be analytically continued: the
reduction is generalised.
2n 2 2
6 = eR, 0<§ < —=——.
(p=1)(n+p—1) p-1

@ In that range, the holographic dictionary (asymptotics, counterterms,
1-point functions, etc.) for ED spacetimes follows straightforwardly from
the AdS case.

@ The dilatonic planar black hole in p 4+ 1 uplifts to its AdS counterpart in
n+p+1.

@ Conserved charges and hydrodynamics can also be derived.

@ 6% >2/(p—1): Reduction over a sphere from A = 0 GR.
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Generalised dimensional reduction

Application to the EMD IR fixed points

1
;C(n+4) =R— §8¢2 — er¢F[%7+2] —2A

@ Solid black line: AdSz X Rpt2, @ =0,T =0,9=0

@ Dotted blue line: AdS,12 X Rz,
¢=0,=0,g=n

@ Blue region: Dilatonic Lifshitz solution
z=1+2("£2), g=0

1 @ Red region: Dilatonic 2-brane , g =0, A =0

@ All lower-dimensional scalings derive from the
usual higher-dimensional ones.

@ The theory effectively lives in 4 4+ n dimensions.
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Generalised dimensional reduction

Conclusions

@ Charged horizons can be associated with fractionalised phases, with
non-trivial IR emergent scalings.

@ The near-extremal geometry of EMD theories is universal: it
encompasses all main types of IR fixed points (AdS, Lifshitz,
hyperscaling violating).

@ Interesting laboratories for the recovery of strongly-coupled
Condensed Matter phenomena, such as strange metallicity.

@ Generalised dimensional reduction can be used to put the
non-conformal holographic dictionary on firmer grounds, and explain
the lower-dimensional scalings. It provides a fast way of computing
interesting quantities (thermodynamics, hydrodynamics).

@ Hidden fermi surfaces, [sacupevaarii]l: 8 = 1. Uplift?
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