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Brief motivation

I Use AdS/CFT to learn about phenomena with low-energy
physics in strongly coupled systems. (FQHE,
superconductivity, confinement, chiral symmetry breaking,. . . )

I Concrete string theory construction: known field theory dual.

I Will give new effective models.

I Universal features?

I Maybe we will gain new understanding.
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ABJM Chern-Simons matter theories

I Associated with M2-branes in C4/Zk in M-theory.
[Aharony-Bergman-Jafferis-Maldacena]

I Field theory: Chern-Simons matter theories in 2+1 dimensions
with gauge group U(N)k × U(N)−k .

I Bosonic field content:
I Two gauge fields Aµ, Âµ
I Four complex scalar fields: C I =1,...,4, bifundamentals (N, N̄)

I Action

S = kCS[A]− kCS[Â]− kDµC
I†DµC I − Vpot(C )

Vpot(C ) = sextic scalar potential
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ABJM Chern-Simons matter theories

I The ABJM has N = 6 SUSY in 3d.
I It has two parameters, which form the ’t Hooft coupling
λ ∼ N

k :
I N: rank of the gauge group
I k : CS level (1/

√
k ∼ gauge coupling)

I It is a CFT with very nice properties
I partition function and Wilson loops can be obtained from

localization
[Drukker-Mariño-Putrov]

I has many integrability properties (Bethe ansatz, Wilson
loop/amplitude relation, . . . )

I may help understand some cond-mat phenomena which are
essentially 3d?

I It is the 3d analogue of N = 4 SYM in 4d
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ABJM: SUGRA side

I At low energy, the M-theory description for large N → 11d
SUGRA in AdS4 × S7/Zk .

I SUGRA description in type IIA:
I Represent S7 as a U(1) bundle over CP3. Reduce from 11d to

10d along the U(1) fiber ϕ
I Get AdS4 × CP3+fluxes, CP3 = C4/(zi ∼ λzi ).

ds2
10d = L2ds2

AdS4
+ 4L2ds2

CP3 , L4 = 2π2N

k

ds2
AdS4

= r2dx2
1,2 +

dr2

r2
, ds2

CP3 = Fubini− Study metric

F2 = 2kJ , F4 =
3π√

2

√
kNΩAdS4 , eφ =

2L

k
= 2
√
π

(
2N

k5

)1/4

I Effective description for N1/5 � k � N.
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Adding flavor

U(N) U(Nf )U(N)U(Nf )

Q1

Q̃1

Q̃2

Q2
A1, A2

B1, B2

I Add flavor D6-branes (massless quarks) in AdS4 and wrapping
RP3 ⊂ CP3.

[Hohenegger-Kirsch]
[Gaiotto-Jafferis]

I Introduce quarks in the (N, 1) and (1,N) representation:

Q1 → (N, 1) , Q2 → (1,N) , Q̃1 → (N̄, 1) , Q̃2 → (1, N̄)

I coupling to vectors (V , V̂ vector supermultiplets for A, Â):

Q†1e
−VQ1 + Q†2e

−V̂Q2 + antiquarks

I coupling to the bifundamentals (C I = (A1,A2,B
†
1 ,B

†
2)):

Q̃1AiBiQ1 , Q̃2BiAiQ2 , + quartic terms in Q, Q̃ ′s
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Including the backreaction

I The flavors backreact on the geometry:

SWZ = TD6

Nf∑
i=1

∫
M(i)

7

Ĉ7 → TD6

∫
M10

C7 ∧ Ω

I Ω =
∑

Nf
δ(3)(M7)ω3 is a charge distribution 3-form, where

ω3 is the transverse volume element
I Induces a violation of the Bianchi identity of F2:

dF2 = 2πΩ → δ − function source term

I Einstein equations have also δ-function source terms: very
difficult to solve! Also PDEs. . .

I Localized soln. in 11d for coincident massless flavors
AdS4 ×M7, with M7 hyperkähler tri-Sasakian manifold,
N = 3, with U(Nf ). Reduce to 10d: becomes a mess.

[Gauntlett-Gibbons-Papadopoulos-Townsend,. . . ]

I Conformality is kept intact with flavor!
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Background action

I The full (bosonic) action in Einstein frame:

SE = SE
IIA + SE

sources

SE
IIA =

1

2κ2
10

[∫ √
−g
(
R − 1

2
∂µφ∂

µφ

)

−1

2

∫ (
e3φ/2 ∗ F2 ∧ F2 + eφ/2 ∗ F4 ∧ F4

)]

SE
sources = −TD6

∫ (
e3φ/4K − C7

)
∧ Ω

I Key observation: start from the known (unsourced) ABJM
solution and try to generalize from there.
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Smearing technique

[Bigazzi-Casero-Cotrone-Kiritsis-Paredes’05,. . . ,Nunez-Paredes-Ramallo’10]

rq

I no δ-function sources

I still can preserve (less) SUSY

I much simpler (analytic) solutions

I flavor symmetry: U(1)Nf
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Backreaction with smearing

I Write CP3 as an S2-bundle over S4:
[Conde-Ramallo]

ds2
CP3 =

1

4

(
ds2

S4 +
(
dx i + εijkAjxk

)2
)

,
∑

i

(x i )2 = 1

I The RR two-form F2 can be written as

F2 =
k

2

(
E 1 ∧ E 2 −

(
S4 ∧ S3 + S1 ∧ S2

))
,

∫
CP1

F2 = 2πk

I Ai are SU(2) instantons on S4, S i are (rotated) basis
one-forms along S4, E i are one-forms along the S2 fiber;(
dx i + εijkAjxk

)2
= (E 1)2 + (E 2)2

I Idea: some Killing spinors are constant in this basis → deform
to preserve them
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Backreaction with smearing

I Prescription: squash F2 (induces a violation of Bianchi
identity) and the metric:

F2 =
k

2

(
E 1 ∧ E 2 − η(r)

(
S4 ∧ S3 + S1 ∧ S2

))
F4 = K (r)d3x ∧ dr

x
dr

dx
= eg , q(x) = e2f−2g (squashing of CP3)

ds2
10 = h−1/2dx2

1,2+h1/2

[
e2g dx

2

x2
+ e2f ds2

S4 + e2g
(
(E 1)2 + (E 2)2

)]
I Flux quantization

∫
∗F4 ∼ integer and d ∗ F4 = 0 imply

K = 3π2Nh−2e−4f−2g .
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Master equation

I Instead to trying to solve 2nd-order Einstein DE, make use of
SUSY: 1st order DE.

I It turns out that the BPS equations can be reduced to one
second-order differential equation

W ′′ + 4η′ + (W ′ + 4η)

[
W ′ + 10η

3W
− W ′ + 4η + 6

x(W ′ + 4η)

]
= 0

W (x) ≡ 4

k
h1/4e2f−g−φ

I Given η all the other functions h, g , f , φ, q can be constructed
from the master function W !
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Solutions to the master equation

I The master equation has analytic solutions.

I Take η = const.:
W = A0(η)x

I Corresponds to the massless smeared flavor solution, which is
remarkably simple (q = const.). For the particular case
A0(1) = 2 one obtains the ABJM solution.

[Conde-Ramallo]

I Take η = 1 (ABJM at the IR, G2 cone at UV), running
solution:

W =
4(1 + 4γx)x

1 +
√

1 + 4γx
.

I We are interested in interpolating solutions: ABJM (η = 1) at
IR and massless smeared (η = const. > 1) at UV. Need to
resort to numerics.
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Interpolating solutions

I The profile η, which corresponds to Nf smeared flavor
D6-branes ending at r = rq (can set xq = 1) is determined by
kappa symmetry:

η(x) = 1 + ε̂

(
1− 1

x2

)
Θ(x − 1) , ε̂ =

3Nf

4k

I Match running solution with numerical at x = 1, only one
γ(ε̂) ∼ 0.4ε̂+ 0.3ε̂2 works for which W ∼ x , x →∞.
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Description of the RG flow

I Only one parameter rq mass of unquenched quarks. (and ε̂)
I Interpolating solution between two asymptotically AdS4 with

LIR > LUV ∼ N
Nf

.

I Along the flow N = 1 is preserved and U(1)Nf . The flow is
generated by changing the quark mass rq, rq →∞: ABJM
and rq → 0 unquenched massless flavors.

I From UV expansions one can infer deviations from
conformality, controlled by the quark mass, and where b
determines the dimension ∆ = 3− b of the qq̄ bilinear.

b=
2qUV

qUV +1
, qUV = 3

2
+3(1+ε̂)−

√
9(1+ε̂)2−2(1+ε̂)+9

eg(r)= r
b

[
1+g̃2( rq

r )
2b

+...
]
, ef (r)=

qUV r

b

[
1+f̃2( rq

r )
2b

+...
]

h(r)=
(

LUV
r

)4[
1+h̃2( rq

r )
2b

+...
]
, eφ(r)=eφUV

[
1+φ̃2( rq

r )
2b

+...
]

17/26



Pros in comparison to other smeared solutions

I Our solution is very simple and we have a lot of analytic
control.

I Our solution has a good UV behavior, no Landau pole. The
spacetime has an AdS-factor!

I Our solution has a good IR behavior, no IR singularity due to
massless flavors. The IR fix point is stable.

[Bianchi-Penati-Siani]

I At the massless limit rq → 0, our solution has a simple T 6= 0
generalization by just including the blackening factor in the
metric.

[NJ-Mas-Ramallo-Zoakos]
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Observables: entanglement entropy on the disk

I Minimize the hanging surface ending on a disk of radius R:
[Ryu-Takayanagi]

S(R) =
1

4G10

∫
Σ
d8ξe−2φ

√
det g8

I The expression is divergent Sdiv = FUV (S3)
L2

UV
rmaxR and to

extract the finite piece is ambiguous. We use
[Liu-Mezei]

F ≡ R
∂S

∂R
− S

I For 3d CFT: SCFT = αR − γ.
Notice that S is of this form
(as R →∞). Hence F = γ,
and at the fixed point F is
constant and equal to free
energy on the three-sphere.

[Casini-Huerta-Myers]
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Entanglement entropy on the disk

I The asymptotic values (∆UV = 3− b):

F(R) =

{
FUV (S3) + cUV (rqR)2(3−∆UV ) + . . . , rqR → 0
FIR(S3) + . . . , rqR →∞

I The F is finite and monotonic along the flow: F-theorem!
[Myers-Sinha,Klebanov-et al.,Casini-Huerta]
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rq R

Λ

2
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8

Λ

N2
F
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rq Ρ

Λ
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Entanglement entropy on the strip

I Repeat the holographic entanglement entropy for a surface
ending on an infinite strip.

I Asymptotically

Sfinite(`)

rqL2
=

 −
4π2FUV (S3)

Γ( 1
4

)4
1

rq`
+ . . . , rq`→ 0

S∞ − 4π2FIR (S3)

Γ( 1
4

)4
1

rq`
+ . . . , rq`→∞

2 4 6 8 10 12 14

l rq

Λ

- 4

- 3

- 2

- 1

0

Sfinite Λ

N 2 L2 rq
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Wilson loop and quark-antiquark potential

I Compute the regularized Nambu-Goto action for a hanging
string.

[Maldacena,Rey-Yee]

I Asymptotically:

Eqq̄

rq
=

 −
4π3
√

2λ
Γ( 1

4
)4 σ 1

rqd + . . . , rqd → 0

−4π3
√

2λ
Γ( 1

4
)4

1
rqd + . . . , rqd →∞

I σ characterizes corrections of the static qq̄ potential due to
screening produced by unquenched flavors.

σ →
{

1 ,Nf → 0√
k/Nf ,Nf large

5 10 15 20

d rq

Λ

- 1.2

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

Eq q

rq
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Two-point function of high dimension operators

I Semi-classical calculation of geodesics of massive particles in
the dual geometry:

[Balasubramanian-Ross,Louko-Marolf-Ross,Kraus-Ooguri-Shenker]

〈O(x)O(y)〉 ∼ e−mLr (x ,y)

I Here Lr (x , y) is the regularized length along the geodesic and
m large to make saddle-point approximation applicable.

I Asymptotically (CFT
expectations):

〈O(t, `)O(t, 0)〉 →


1+c∆

(
rq`√
λ

)2b
+...

(rq`/
√
λ)

2∆UV

N+...

(rq`/
√
λ)

2∆IR

- 2 0 2 4 6 8 10
log H rq l

Λ
L

1.0

1.1

1.2

1.3

m Lr

2 D IR log K rq l

Λ
O
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Meson spectrum

I Embed a flavor probe D6-brane and study its fluctuations
analytically/numerically.

I Focus on vector mesons:

Aµ = ξµe
ikνxνR(x) , Aangular directions = 0 .

I WKB results (UV and IR are exact!):

mWKB =
π√

2ξ(x∗)

√
(n + 1)(2n + 1) , ξ(x∗) =

∫ ∞
x∗

dx
eg(x)

√
h(x)√

x2 − x2
∗

I Asymptotically:

mUV
WKB

mIR
WKB

=
Γ
(

b+1
2b

)
Γ
(

2b+1
2b

) 1

σ

æ æ æ æ æ
æ

æ

æ
æ æ æ æ æ

à à à à
à

à

à

à

à à à à à

ì ì ì ì
ì

ì

ì

ì

ì ì ì ì ì

-10 -5 5 10
log

Μq

mq

5

10

15

20

25

30

Λ

m

Μq

24/26



Conclusions and outlook

I We described how to smear massive D6-branes in the ABJM
background, while keeping N = 1.

I We obtained a non-trivial holographic RG flow connecting two
scale-invariant fixed points: the unflavored ABJM theory at
the IR and the massless flavored model at the UV.

I We studied several observables along the RG flow, e.g., we
confirmed the F-theorem and showed that infinitely massive
flavors can be smoothly decoupled.

I Lots of avenues how to generalize our case: ABJ, Romans
mass, include gauge fields,. . .
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Thank you!
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