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Introduction

Motivation—The five W’s and one H

What? At temperatures T of the order of 200 MeV, hadrons give way to a deconfined
state of matter: the quark-gluon plasma (QGP)

When? Believed to have existed in Nature until a few microseconds after the Big Bang

Where? Reproduced in heavy-ion collision experiments, in which a strongly coupled
QGP is indirectly observed

Why? Theoretical understanding of the dynamical evolution of the QGP is crucial

Who? Based on work in collaboration with Kari Rummukainen (Helsinki) and
Andreas Schäfer (Regensburg), arXiv:1307.5850

How? Non-perturbative, first-principle approach via lattice simulations

http://arxiv.org/abs/arXiv:1307.5850
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Andreas Schäfer (Regensburg), arXiv:1307.5850

How? Non-perturbative, first-principle approach via lattice simulations

http://arxiv.org/abs/arXiv:1307.5850


Introduction

Motivation—The five W’s and one H

What? At temperatures T of the order of 200 MeV, hadrons give way to a deconfined
state of matter: the quark-gluon plasma (QGP)

When? Believed to have existed in Nature until a few microseconds after the Big Bang

Where? Reproduced in heavy-ion collision experiments, in which a strongly coupled
QGP is indirectly observed

Why? Theoretical understanding of the dynamical evolution of the QGP is crucial

Who? Based on work in collaboration with Kari Rummukainen (Helsinki) and
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Introduction

Jet quenching

Jet quenching is the suppression of high-pT particles and back-to-back correlations
in nuclear collisions

Provides important experimental evidence for the quark-gluon plasma (QGP)
existence Bjorken, 1982

http://lss.fnal.gov/archive/1982/pub/Pub-82-059-T.pdf
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Theory

Overview of the theoretical approach

Jet quenching belongs to the class of hard probes to heavy-ion collisions, involving
a large energy scale Q (see Casalderrey-Solana and Salgado, 2007)

QCD factorization theorems:

σ(M+N→hadron) = fM (x1, Q
2)⊗fN (x2, Q

2)⊗σ(x1, x2, Q
2)⊗Dparton→hadron(z,Q2)

fA(x,Q2): parton distribution functions

σ(x, y,Q2): short-distance cross-section

Dparton→hadron(z,Q2): fragmentation function

http://arxiv.org/abs/0712.3443
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Jet quenching belongs to the class of hard probes to heavy-ion collisions, involving
a large energy scale Q (see Casalderrey-Solana and Salgado, 2007)

QCD factorization theorems:

σ(M+N→hadron) = fM (x1, Q
2)⊗fN (x2, Q

2)⊗σ(x1, x2, Q
2)⊗Dparton→hadron(z,Q2)

fA(x,Q2): parton distribution functions

σ(x, y,Q2): short-distance cross-section

Dparton→hadron(z,Q2): fragmentation function

Here: Focus on propagation of a high-energy parton in QGP medium

http://arxiv.org/abs/0712.3443


Theory

Hard parton propagation in QGP

Multiple soft-scattering description, in the eikonal approximation Baier et al., 1997

Leading effect: transverse momentum broadening, described by the jet quenching
parameter:

q̂ =
〈p2⊥〉
L

Can be evaluated in terms of a collision kernel C(p⊥) (differential parton-plasma
constituents collision rate)

q̂ =

∫
d2p⊥
(2π)2

p2⊥C(p⊥)

C(p⊥) can be related to a two-point correlator of light-cone Wilson lines

http://arxiv.org/abs/hep-ph/9608322


Theory

Computing the jet quenching parameter

What tools are available?

Perturbation theory (PT) expansions
3 Based on first principles
3 Well established technology
3 Problems with infrared divergences are well understood
7 May not be reliable at RHIC or LHC temperatures

Holographic computations
3 Mathematically beautiful
3 Ideally suited for strong coupling
7 Not directly applicable to real-world QCD

Lattice simulations
3 Based on first principles
3 Well established (computer) technology
3 Do not rely on weak- or strong-coupling assumptions
7 Euclidean setup, so generally unsuitable for real-time phenomena
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Soft contribution

Key idea

Energy scale hierarchy in high-temperature, perturbative QCD:

g2T/π (ultrasoft) � gT (soft) � πT (hard)

IR divergences accounted for by 3D effective theories Braaten and Nieto, 1995

Kajantie et al., 1995:

electrostatic QCD (3D Yang-Mills + adjoint scalar field) for soft scale

magnetostatic QCD (3D pure Yang-Mills) for ultrasoft scale

Large NLO corrections hindering PT due to soft, essentially classical fields

Observation: Soft contributions to physics of light-cone partons insensitive to
parton velocity −→ Can turn the problem Euclidean! Caron-Huot, 2008

http://arxiv.org/abs/hep-ph/9501375
http://arxiv.org/abs/hep-ph/9508379
http://arxiv.org/abs/arXiv:0811.1603


Soft contribution

Proof

Spatially separated (|t| < |z|) light-like Wilson lines Ghiglieri et al., 2013

G<(t, x⊥, z) =

∫
dωd2p⊥dpzG̃<(ω, p⊥, p

z)e−i(ωt−x⊥·p⊥−zp
z)

=

∫
dωd2p⊥dpz

[
1

2
+ nB(ω)

] [
G̃R(ω, p⊥, p

z)− G̃A(ω, p⊥, p
z)
]
e−i(ωt−x⊥·p⊥−zp

z)

Shift p′z = pz − ωt/z, integrate over frequencies by analytical continuation into
upper (lower) half-plane for retarded (advanced) contribution −→ sum over
Matsubara frequencies

G<(t, x⊥, z) = T
∑
n∈Z

∫
d2p⊥dp′zG̃E(2πnT, p⊥, p

′z + 2πinT t/z)ei(x⊥·p⊥+zp′z)

n 6= 0 contributions: exponentially suppressed at large separations

Soft contribution: from n = 0 mode. Time-independent: evaluate in EQCD

http://arxiv.org/abs/arXiv:1302.5970
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Lattice implementation

So, what is this “lettuce cage theory”1 all about?

1Courtesy of Dragon Dictation, as reported by Andreas Kronfeld, 26 November 2013



Lattice implementation

Basics of lattice QCD – I

Discretize a finite hypervolume in Euclidean spacetime by a regular grid with
finite spacing a

a

Transcribe gauge and fermion d.o.f. to lattice elements, build lattice
observables
Isotropic lattice action for Yang-Mills theory Wilson, 1974

S = β
∑
2

(
1−

1

N
Re Tr U2

)
, with: β =

2N

g2
aD−4

A gauge-invariant, non-perturbative regularization
Exact symmetries at any value of a

Gauge symmetry
Discrete translations
Discrete rotations
Global discrete symmetries of the continuum (C, P, T , . . . )

Suitable for numerical simulation: Sample configuration space according to a
statistical weight proportional to exp(−S)
Expectation values from statistical averages

〈O〉 =

∫ ∏
dUµ(x)O exp(−S)∫ ∏
dUµ(x) exp(−S)

http://prd.aps.org/abstract/PRD/v10/i8/p2445_1
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Basics of lattice QCD – II

Setting the scale (for a choice of lattice parameters): Match a lattice
observable to its continuum value

Extrapolation to the continuum limit a→ 0 in the presence of a continuous
phase transition of the lattice theory

Simulation of fermionic fields along same principles, but:
involves non-local determinant of Dirac operator
unphysical doubler modes to be removed
additional challenges at finite quark chemical potential

Lattice QCD now in an era of precision calculations; results show striking
agreement with experimental data

Note: Euclidean formalism
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Note: Euclidean formalism

http://arxiv.org/abs/arXiv:1203.1204
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Lattice implementation

Electrostatic QCD on the lattice

Super-renormalizable EQCD Lagrangian

L =
1

4
FaijF

a
ij + Tr

(
(DiA0)2

)
+m2

ETr
(
A2

0

)
+ λ3

(
Tr
(
A2

0

))2
Parameters chosen (by matching) to reproduce soft physics of high-T QCD

3D gauge coupling: g2E = g2T + . . .

Debye mass parameter: m2
E =

(
1 +

nf

6

)
g2T + . . .

3D quartic coupling: λ3 =
9−nf

24π2 g
4T + . . .

Standard Wilson lattice regularization Hietanen et al., 2008

Our setup: QCD with nf = 2 light flavors, two temperature ensembles:

T ' 398 MeV

T ' 2 GeV

Closely related studies in MQCD Laine, 2012 Benzke et al., 2012

http://arxiv.org/abs/0811.4664
http://arxiv.org/abs/arXiv:1208.5707
http://arxiv.org/abs/arXiv:1208.4253


Lattice implementation

Operator implementation

Effective theory: purely spatial

but

Operator describes real time evolution



Lattice implementation

Operator implementation

Light-cone Wilson line correlator

〈W (`, r)〉 =
〈

Tr
(
L3L1L

†
3L
†
1

)〉
∼ exp [−`V (r)]

with
L3 =

∏
U3H L1 =

∏
U1 H = exp(−ag2EA0)

L
1

3
L

L
1

L
3 H

r

Well-defined renormalization properties D’Onofrio et al., to appear
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Results
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Contribution to q̂ related to the curvature of V (r) near the origin

Data fitted with a procedure similar to Laine, 2012

V/g2E = Arg2E +B(rg2E)2 + C(rg2E)2 ln(rg2E) + . . .

Purely NP soft contribution to q̂ is quite large

q̂NP
EQCD ∼ 0.5g6E

Approximate estimate q̂ ∼ 6 GeV2/fm at RHIC temperatures

http://arxiv.org/abs/arXiv:1208.5707
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Discrepancy reduced if data are plotted in terms of non-perturbative mD
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Using NP value for mD in

q̂NLO
EQCD = g4T 2mDCfCa

3π2 + 10− 4 ln 2

32π2

yields again q̂ ∼ 6 GeV2/fm at RHIC temperatures

http://arxiv.org/abs/arXiv:0811.1603
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Conclusions

Conclusions

Lattice approach possible for certain real-time problems—see also Ji, 2013

Here: focus on soft physics in thermal QCD Laine and Rothkopf, 2013

Cherednikov et al., 2013

Outlined approach is systematic

Tentative estimate of jet quenching parameter

Clear indication for large non-perturbative effects

Results in ballpark of
holographic computations Liu, Rajagopal and Wiedemann, 2006 Armesto, Edelstein and Mas, 2006

Gürsoy, Kiritsis, Michalogiorgakis and Nitti, 2009 3
estimates from phenomenological models Dainese et al., 2004 Eskola et al., 2004

Bass et al., 2008 3
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