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The CVE

B
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Net chirality
topological charge

axial anomaly (QCD)

topologically non trivial gauge field

effective: axial chemical potential 

∂µjµ
5 = 2mf �ψ̄f iγ5ψf � −

Nfg2

16π2
F a

µνF̃µν
a

∆Q5 = 2NfQw

Qw =
g2

32π2

�
d4x F a

µνF̃µν
a

E

nw
-1 0 1

µ5
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Kubo formulae
Anomaly related conductivities

Kubo formula, general symmetry group
 

�J = σ �B

σAB = lim
pj→0

�

i,k

i

2pj
�ijk�JA

i JB
k �

����
ω=0
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Kubo formulae 
chiral fermions 

chemical potentials and Cartan generators

1-loop graph
q

q + kJA
i (k)

JB
j (−k)
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Kubo formulae 
chiral fermions 

chemical potentials and Cartan generators

1-loop graph
q

q + kJA
i (k)

JB
j (−k)

Anomalycoeff
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Kubo formulae 

∼ dABC

TA

TB TC

AμA  pure gauge

AνB AρC
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σA
V = lim

pj→0

�

i,k

i

2pj
�ijk�JA

i Tk0�

Tμν sourced by metric

Ag “gravitomagnetic field” -> chiral gravitomagnetic 
effect

chiral vortical effect: fluid velocities

Kubo formulae
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Kubo formulae
as before: general symmetry group

q

q + k

JA
i (k) T0j(−k)
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Kubo formulae
as before: general symmetry group

Integration constant -> gravitational anomaly!

q

q + k

JA
i (k) T0j(−k)
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Kubo formulae 

∼ tr (TA)
TA

gμν gλρ

AμA  pure gauge

“Mixed gauge gravitational anomaly”

Wednesday, October 9, 2013



�JA = σAB
B

�BB + σA
V �ω

�JA
� = σ�,A

B
�BA + σ�

V�ω

Anomalous Transport 

σAB
B =

1

4π2
dABCµC

σ�
V =

1

12π2
dABCµAµBµC + bAµA

T 2

12

σA
V = σ�,A

B =
1

8π2
dABCµBµC + bA

T 2

24
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Chiral Anomalies

O(4) in derivatives!O(2) in derivatives!

Mismatch in derivative counting 
for gravitational anomaly ! ??
[Jensen, Loganayagam, Yarom]

[Son,Surowka]

• Hydrodynamics: fixed by “entropic principle”
(except T^2 terms)

[Neimann, Oz] [Loganayagam]
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String Theory as spherical cow of sQGP
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String Theory as spherical cow of sQGP

=

=
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SEM =
1

16πG
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R

S = SME + SCS + SGH + SCSK

Holography

mixed gauge gravitational Chern Simons term

[Newman], [Banerjee et al.], [Erdmenger et al.] [Yee] [Rebhan, Schmitt, Stricker] [Khalaydzyan, 
Kirsch], [Hoyos, Nishioka, OBannon]
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�JJ� = −ikz

�
µ

4π2
− β

12π2

�

�JT � = −ikz

�
µ2

8π2
+

T 2

24

�

�TT � = −ikz

�
µ3

12π2
+

µT 2

12

�

Holography
Holography (String Theory): 
5 dim gravity (Anti de Sitter) dual to strongly coupled quantum 
field theory

background: charged AdS black hole

correlators are 
same as weak coupling!
non-renormalization
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what’s this?

�JJ� = −ikz

�
µ

4π2
− β

12π2
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Holography
Holography (String Theory): 
5 dim gravity (Anti de Sitter) dual to strongly coupled quantum 
field theory

background: charged AdS black hole

correlators are 
same as weak coupling!
non-renormalization
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Formalism Hamiltonian Boundary conditions

(A) H − µQ Ψ(ti) = −Ψ(ti − iβ)
(B) H Ψ(ti) = −e

βµΨ(ti − iβ)

Chemical Potentials

Anomalous Transport from Kubo Formulae 15

The anomalous transport phenomena therefore do no work on the system, first they

take place at zero frequency and second they are not contained in the spectral func-

tion ρ = −i

2
(Gr −G

†
r
).

2.3 Contributions to the Kubo formulae

Now we want to give a detailed analysis of the different Feynman graphs that con-

tribute to the Kubo formulae in the different formalisms for the chemical potentials.

The simplest and most economic formalism is certainly the one labeled (B) in which

we introduce the chemical potentials via twisted boundary conditions. The Hamilto-

nian is simply the microscopic Hamiltonian H. Relevant contributions arise only at

first order in the momentum and at zero frequency and in this kinematic limit only

the Kubo formulae for the chiral magnetic conductivity is affected. In the figure (2)

we summarize the different contributions to the Kubo formulae in the three ways to

introduce the chemical potential.

(A)

A0 = µ

vacuum loop

(A�)

A0 = µ

vacuum loop

Θ

coupling to spurious Θ field

finite T, µ loop

finite T, µ loop

(B)

finite T, µ loop

Fig. 2 Contributions to the Kubo formula for the chiral magnetic conductivity in the different

formalisms for the chemical potential.

The first of the Feynman graphs is the same in all formalisms. It is the genuine

finite temperature and finite density one-loop contribution. This graph is finite be-

cause the Fermi-Dirac distributions cutoff the UV momentum modes in the loop. In

the formalism (A) we need to take into account that there is also a contribution from

the triangle graph with the fermions going around the loop in vacuum, i.e. without

the Fermi-Dirac distributions in the loop integrals. For a non-anomalous symmetry

this graph vanishes simply because on the upper vertex of the triangle sits a field

configuration that is a pure gauge. If the symmetry under consideration is however

anomalous the triangle diagram picks up just the anomaly. Even pure gauge field

Anomalous Transport from Kubo Formulae 15

The anomalous transport phenomena therefore do no work on the system, first they

take place at zero frequency and second they are not contained in the spectral func-

tion ρ = −i

2
(Gr −G

†
r
).

2.3 Contributions to the Kubo formulae

Now we want to give a detailed analysis of the different Feynman graphs that con-

tribute to the Kubo formulae in the different formalisms for the chemical potentials.

The simplest and most economic formalism is certainly the one labeled (B) in which

we introduce the chemical potentials via twisted boundary conditions. The Hamilto-

nian is simply the microscopic Hamiltonian H. Relevant contributions arise only at

first order in the momentum and at zero frequency and in this kinematic limit only

the Kubo formulae for the chiral magnetic conductivity is affected. In the figure (2)

we summarize the different contributions to the Kubo formulae in the three ways to

introduce the chemical potential.

(A)

A0 = µ

vacuum loop

(A�)

A0 = µ

vacuum loop

Θ

coupling to spurious Θ field

finite T, µ loop

finite T, µ loop

(B)

finite T, µ loop

Fig. 2 Contributions to the Kubo formula for the chiral magnetic conductivity in the different

formalisms for the chemical potential.

The first of the Feynman graphs is the same in all formalisms. It is the genuine

finite temperature and finite density one-loop contribution. This graph is finite be-

cause the Fermi-Dirac distributions cutoff the UV momentum modes in the loop. In

the formalism (A) we need to take into account that there is also a contribution from

the triangle graph with the fermions going around the loop in vacuum, i.e. without

the Fermi-Dirac distributions in the loop integrals. For a non-anomalous symmetry

this graph vanishes simply because on the upper vertex of the triangle sits a field

configuration that is a pure gauge. If the symmetry under consideration is however

anomalous the triangle diagram picks up just the anomaly. Even pure gauge field

+

Anomalous Transport from Kubo Formulae 15

The anomalous transport phenomena therefore do no work on the system, first they

take place at zero frequency and second they are not contained in the spectral func-

tion ρ = −i

2
(Gr −G

†
r
).

2.3 Contributions to the Kubo formulae

Now we want to give a detailed analysis of the different Feynman graphs that con-

tribute to the Kubo formulae in the different formalisms for the chemical potentials.

The simplest and most economic formalism is certainly the one labeled (B) in which

we introduce the chemical potentials via twisted boundary conditions. The Hamilto-

nian is simply the microscopic Hamiltonian H. Relevant contributions arise only at

first order in the momentum and at zero frequency and in this kinematic limit only

the Kubo formulae for the chiral magnetic conductivity is affected. In the figure (2)

we summarize the different contributions to the Kubo formulae in the three ways to

introduce the chemical potential.

(A)

A0 = µ

vacuum loop

(A�)

A0 = µ

vacuum loop

Θ

coupling to spurious Θ field

finite T, µ loop

finite T, µ loop

(B)

finite T, µ loop

Fig. 2 Contributions to the Kubo formula for the chiral magnetic conductivity in the different

formalisms for the chemical potential.

The first of the Feynman graphs is the same in all formalisms. It is the genuine

finite temperature and finite density one-loop contribution. This graph is finite be-

cause the Fermi-Dirac distributions cutoff the UV momentum modes in the loop. In

the formalism (A) we need to take into account that there is also a contribution from

the triangle graph with the fermions going around the loop in vacuum, i.e. without

the Fermi-Dirac distributions in the loop integrals. For a non-anomalous symmetry

this graph vanishes simply because on the upper vertex of the triangle sits a field

configuration that is a pure gauge. If the symmetry under consideration is however

anomalous the triangle diagram picks up just the anomaly. Even pure gauge field

vs

Wednesday, October 9, 2013



∂µJ
µ
5 =

1

48π2
�µνρλ

�
3FµνFρλ + F 5

µνF
5
ρλ

�
∂µJ

µ = 0

�J� =
µµ5

2π2
�B +

�
3µ2µ5 + µµ2

5

6π2
+

µ5T 2

6

�
�ω

�J =
µ5

2π2
�B +

µµ5

2π2
�ω − A5

0

2π2
�B

�J5 =
µ

2π2
�B +

�
µ2 + µ2

5

4π2
+

T 2

12

�
�ω

One Dirac Fermion:
• Vector and axial currents

Jµ = ψ̄γµψ Jµ
5 = ψ̄γµγ5ψ
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Holography
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Non-renormalization

or is it?
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Formalism Hamiltonian Boundary conditions

(A) H − µQ Ψ(ti) = −Ψ(ti − iβ)
(B) H Ψ(ti) = −e

βµΨ(ti − iβ)

σ2−loop =
g2C(R)d(G)

48π2
T 2

∂J = F ∧ F

Non-renormalization?
• [Golkar, Son] [Hou, Liu, Ren]

• Dynamical Gauge Fields

(a) Fermionic stress tensor diagrams. (b) Gauge stress tensor diagrams.

Figure 2: The two diagram classes.

order, the anomaly only depends on the trace of the perturbation and thus does not contribute to
correlators involving a single insertion of T 0i.

However, it turns out that there are certain diagrams in the second class that do in fact con-
tribute to the CVE. Since in the absence of the anomaly in equation (14), there would be no
radiative corrections, it is clear that the only contributing diagram are those that include a triangle
subdiagram as in figure 3a. Figure 3b shows the leading order diagram in this class which we now
proceed to calculate.

Since we already know that the only contribution comes from the anomaly in (14), we can
replace the triangle part of the two loop diagram with the effective vertex:

Jµ
Anom = −

g2C(r)

4π2
√
−g

εµνρσVν∂ρVσ (15)

which captures the divergence of the axial current, and we are effectively left with only a one loop
diagram (figure 3c). The calculation of the diagram is slightly complicated by the fact that different
components of the gauge field receive different effective masses which are in general very important
for our arguments. However, in this case it turns out that there are no infrared divergences even
at zero effective mass and we present the calculation with this simplification.

(a) Anomalous diagrams. (b) Leading order diagram. (c) Effective leading diagram.

Figure 3: (a) The only class of diagrams with non-vanishing corrections to the CVE in the large
N limit. (b) The leading order diagram. (c) After replacing the leading order diagram with the
effective vertex Jµ

Anom. The triangle vertex represents the anomalous effect of the triangle diagram.

The anomalous contribution to the Euclidean Green’s function is:

Gi,0j
Anom = 〈J i

AnomT
0j〉 =

−g2TC(r)d(G)

4π2
εijmkm

∑

∫

d3p

(2π)3
ω2 − p2

3

(ω2 + p2)2
+ · · · (16)

where d(G) is the dimension of the adjoint representation and we have expanded up to first order
in k. It is now a simple matter to carry out the sum and the integral:

Gi,0j
Anom =

−g2C(r)d(G)

48π4
εijmkm

∫

dp p
1− e−2 p

T − 4e
−p
T

p
T

(

1− e
−p
T

)2 →
g2C(r)d(G)

48π4
εijmkm, (17)

6

• 2-loop correction to CVC of axial current:

• [Gorbar, Miransky, Shovkovy, Wang] CSE in QED @ 2 loop
• [Jensen, Kovtun, Ritz] MHD corrections
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Formalism Hamiltonian Boundary conditions

(A) H − µQ Ψ(ti) = −Ψ(ti − iβ)
(B) H Ψ(ti) = −e

βµΨ(ti − iβ)

c ∼ cfree/17

Lattice 

3

where SYM(Aa
µ) is the lattice action for the gluons Aa

µ.

There are at least two ways to calculate the fermion

propagator (8) in the presence of the axial magnetic field

in a finite-volume lattice. One can introduce the axial

magnetic field straightforwardly by modifying the spatial

boundary conditions for fermions according to the gen-

eral approach of Ref. [13]. Alternatively, one can make

use of the identity,

tr [S5(A5) γµ] ≡ tr [(PR + PL)S5(A5) γµ]

= tr [PR S(A5)γµ] + tr [PL S(−A5)γµ] , (9)

where PR,L = (1 ± γ5)/2 are the right and left chiral

projectors, the trace is taken over spinor indices and

S5(A5) =
�
/D5(A5)

�−1
, S(A) =

�
/D(A)

�−1
, (10)

are the Dirac operators for the massless fermions in the

background of the axial field A5,µ and the usual Abelian

gauge field A, respectively. The former is defined in

Eq. (6) while the later has the usual form:

Dµ(A) = ∂µ − igAa
µt

a − ieAµ . (11)

It worth stressing that in the right hand side of Eq. (9)

the axial gauge field A5 appears as the Abelian field with

opposite signs for right-handed and left-handed fermions.

This is an expected property given the very definition of

the axial magnetic field.

Identity (9) is valid regardless of the dynamical gener-

ation of quark mass and chiral symmetry breaking since

this identity is a generic property of the fermion operator

itself while the mentioned phenomena are the particular

properties of the expectation values of this operator.

Thus, identity (9) allows us to express the energy

flow (7) of the massless fermions via the standard Dirac

operator in a background of usual magnetic field. This

property is particularly useful for numerical calculations

with overlap fermions since we can use the already exist-

ing techniques of Ref. [11].

We evaluate the energy flow (7) in the quenched SU(2)

gauge theory using 300 configurations of the gluon gauge

field for each value of the background axial magnetic field.

We consider the asymmetric lattices L3
sLt with three

temporal lengths Lt = 4, 6, 8 and the fixed spatial length

Ls = 14. We use the improved lattice action for the

gluon fields with the lattice coupling β = 3.2810 which

corresponds to the lattice spacing a = 0.103 fm [14].

Similarly to the usual magnetic field, the axial mag-

netic field is quantized due to the periodicity of the gauge

fields in a finite volume :

B5 = k B5,min , eB5,min =
2π

L2
s

≈ 0.117GeV
2 , (12)

where the integer k = 0, 1, . . . , L2
s/2 determines the num-

ber of elementary magnetic fluxes which pass through the

boundary of the lattice in the (x1, x2) plane. Notice that

the elementary (minimal) field (12) in our simulation is

three times weaker compared to the field used in our pre-

vious studies, Ref. [11], because in the present paper the

fermion field carries a unit electric charge.

The maximal possible value of the quantized flux, k =

L2
s/2 = 98, corresponds to an extremely large magnetic

field. In this case the magnetic length LB ∼ (eB)−1/2

is the order of the lattice spacing, LB ∼ a. In order to

avoid possible ultraviolet artifacts, we consider relatively

weak axial magnetic fields with k = 0, 1, . . . kmax, where

the flux number is limited by kmax = 10 � l2/2, so that

our strongest magnetic field is eBmax ≈ 1.17GeV
2
.

In order to increase the efficiency of our numerical algo-

rithm we introduce a small bare quark mass m ∼ 20MeV

in the overlap fermion operator (8). Despite this bare

mass being very small, we have carefully checked the ap-

plicability of Eq. (9) to our numerical setup by making

sure that the energy flow is insensitive to the variations

of the quark mass. For example, a two-fold increase of

the mass leads to a less than 1% change of the central

values of our observable (this is much smaller than our

statistical errors).

In SU(2) gauge theory the critical deconfinement tem-

perature is Tc = 303MeV. Our three lattices with tem-

poral extensions Lt = 4, 6, 8 correspond, respectively,

to the deconfinement phase (T = 1.58Tc), the vicin-

ity of the confinement–deconfinement phase transition

(T = 1.05Tc) and the confinement phase (T = 0.79Tc).

T � 1.58 Tc JΕ��

JΕ�

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.5

1.0

1.5

2.0

2.5

eB5, GeV2

J Ε
�
10
3 ,
G
eV

4

FIG. 1. Energy flow (7) parallel (J�
� ) and perpendicular (J⊥

� )
to the direction of the axial magnetic field B5 in the decon-
finement phase at T = 1.58Tc ≡ 479MeV. The red dashed
line represents the best linear fit confirming the existence of
the Axial Magnetic Effect (4). The slope of the fit is given by
the conductivity (13).

In Fig. 1 we show the energy flow (7) as a function of

the axial magnetic field B5 in the deconfinement phase

at T = 1.58Tc. One can see that the energy flow parallel

to the axial magnetic field J�
� is a linear function of the

field strength as predicted by the AME transport law (4).

The energy flow in the transverse directions J⊥
� is zero

within the error bars, as expected. We have also checked

numerically that the usual magnetic field does not induce

any energy flow.

The linear fit of the energy flow gives us the following

Axial Magnetic Effect (AME) �J� = c T 2 �B5

[V. Braguta, M.N. Chernodub, K.L., M.I. Polikarpov, M. V. Ulybyshev, arXiv:1303.6266]
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Weyl Semi-metals
4

We can take the symmetries to be U(1)R×U(1)L under which the two Weyl cones have the charges (1,0)

and (0,−1). It follows that relevant anomaly coefficients dRRR = bR = −dLLL = −bL = 1. The magnetic

field �B acts the same on both Weyl cones, i.e. �B = �BR = �BL.

non−relativistic electrons

E

µ

kRkL

ER

EL

k

E1

E0

Figure 1: Schematic depiction of the electronic structure of a Weyl semi-metal. Two Weyl cones of opposite handed-

ness are located at (EL,kL) and (ER,kR). The filling level (chemical potential) is given by µ and in equilibrium must

be the same for both cones. Below the level denoted by E0 the description in terms of Weyl fermions is not valid.

This provides a natural IR cutoff. From the point of view of the physics of the excitations near the Fermi surface

this is however better thought of as an UV cutoff since in order to probe it one needs to create holes (=anti-particles)

of energy ω ∼ µ −E0. In this sense the low energy effective theory near the Fermi surface is the one of two Weyl

fermions with chemical potentials µR,L = µ −ER,L. The Dirac seas below the tips of the cones is however not of

infinite depth but reaches down only to E = E0.

Now from the figure 1 it is clear that the validity of the description of the dynamics of the band electrons

by the Weyl Hamiltonian in equation (9) is limited to a certain energy range. We take E0 to be the lower

cut-off at which the band electrons stop being Weyl fermions and the upper cut-off to be E1. Note that from
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σWSM = σ(µ− Ei, T )− σ(−(Ei − E0), 0)

�JL,R = ±µ− E0

4π2
�B JL + JR = 0

JL,R = ±
�
(µ− E0)(µ+ E0 − 2ER,L)

4π2
+

T 2

12

�
�ω

�J =
(EL − ER)(µ− E0)

2π2
�ω

Weyl Semi-metals

CME

CVE

agrees with kinetic theory
[ G. Basar, D. Kharzeev, H.U. Yee, arXiv:1305.6338]

[ D.T. Son, Yamamoto, arXiv:1203.2697] [ M. Stephanov, arXiv:1207.0747] [ I.Zahed, arXiv:1204.1955]
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Weyl Semi-metals
➡ T2 term (gravitational anomaly !)
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Weyl Semi-metals
➡ T2 term (gravitational anomaly !)

�ω �J5
+∆µ5 −∆µ5
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Weyl Semi-metals
➡ T2 term (gravitational anomaly !)

�B

�J

�J

�ω �J5
+∆µ5 −∆µ5
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Wrap Up

Anomalies -> dissipationless transport

Full 4D classification of anomalous transport

(non-)renormalization

QGP

Weyl Semi-metals promise table top laboratory 
demonstration of anomalous transport 
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Thank You!
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Thank You!
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