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Goldstone Theorems
• Spontaneously broken continuous symmetry

• At least one mode

• No constraint on power:  

• Lorentz symmetry:

•  

• One mode for every broken generator

lim
k→0

ω(k) = 0

ω(k) ∝ kn

ω(k) = ck
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Goldstone Theorems

• No Lorentz symmetry

• State:  temperature T, density mu

• Principally: non-relativistic, Lifshitz, ...

• Classification :                 [Nielsen-Chadha ’74]

• Type I :  

• Type II:  

ω ∝ k2n+1

ω ∝ k2n
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Goldstone Theorems
• Chadha-Nielsen

• Brauner-Watanabe-Murayama

• Brauner-Murayama-Watanabe, 
Nicolis-Piazza,  Kapustin
(“massive” Goldstone) 

NI + 2NII ≥ NBG

�[Qa, Qb]� = Bab

NI +NII = NBG − 1

2
rank(Bab)

ω = qµ
Wednesday, October 9, 2013



Field Theory Model
T. Schafer, D. T. Son, M. A. Stephanov, D. Toublan and J. J. M. Verbaarschot,  [hep-ph/0108210]

V. A. Miransky and I. A. Shovkovy,  [hep-ph/0108178]

L = (∂0 − iµ)Φ†(∂0 + iµ)Φ− �∂Φ†�∂Φ−M2Φ†Φ− λ4(Φ†Φ)2

φ = (φ1,φ2)
TDoublet of U(2) φ = (0, v)T

Type I Goldstone

ω3 ≈ p2

2µ

Type II Goldstone

ω4 = 2µ “Massive Goldstone”

ω2
1 =

µ2 −M2

3µ2 −M2
p
2 +O(p4) ,

ω2
2 = 6µ2 − 2M2 +O(p2) ,

ω2
3 = p

2 − 2µω3 ,

ω2
4 = p

2 + 2µω4 .

μ inside overall U(1)
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Holography 

• Global on boundary = local in Bulk

• U(2) gauge fields + scalar in doublet

• gauged model, 

• Chemical potential only in U(1)

• Holographic Goldstone modes   =   Quasinormal Modes

• Simplest: U(2) generalization of HHH
[Hartnoll-Herzog-Horowitz] 

• Decoupling limit
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Holography 

Quasinormal Modes:

3D AdS 
Schwarzschild BH

Maxwell + 
Charged Scalar
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Holography 

Quasinormal Modes:

3D AdS 
Schwarzschild BH

Maxwell + 
Charged Scalar
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Holography 

Quasinormal Modes:
Horizon

“infalling”
Boundary

ω(k) = ±Ω(k)− iΓ(k)

3D AdS 
Schwarzschild BH

Maxwell + 
Charged Scalar
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Holography 
U(2) decomposition:

σ+ =
1

2
(σ0 + σ3) =

�
1 0
0 0

�

σ− =
1

2
(σ0 − σ3) =

�
0 0
0 1

�

σ1 =

�
0 1
1 0

�

σ2 =

�
0 i
−i 0

�
broken:

unbroken:
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Holography 
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Figure 2: Lowest scalar quasinormal frequencies as a function of the temperature and at momen-
tum k = 0, from T/Tc = ∞ to T/Tc = 0.81 in the O2 theory (right) and to T/Tc = 0.56 in the O1

theory (left). The dots correspond to the critical point T/Tc = 1 where the phase transition takes
place. Red, blue and green correspond to first, second and third mode respectively.

−2.545+0.825i in the O2 theory and R1(Tc) = 0.686− 0.348i in the O1 theory. In general,

one expects the residues of hydrodynamic modes that correspond to conserved quantities

of the system to vanish in the limit of zero momentum, since its susceptibility remains

constant. Consider for instance the diffusion mode associated to conserved density. The

susceptibility is defined through the two point correlation function as

χ = lim
k,ω→0

〈ρρ〉 = lim
k,ω→0

iσk2

ω + iDk2
=

σ

D
, (3.26)

where D is the diffusion constant and σ is the conductivity. The residue, iσk2, vanishes and

one recovers the well-known Einstein relation σ = Dχ. However, for hydrodynamic modes

appearing at second order phase transitions the order parameter susceptibility should di-

verge at the critical point. This order parameter susceptibility is given in our case by the

correlator of the boundary operator sourced by the scalar field. At the critical temperature

it is

χŌiOi
= lim

k,ω→0
〈ŌiOi〉 = lim

k,ω→0

Ri(k, Tc)

ω − ωH(k, Tc)
→ ∞ (3.27)

since ωH(0, Tc) = 0 while the residue remains finite. This result allows us to identify the

lowest scalar quasinormal mode in the unbroken phase with the Goldstone boson appearing

at the critical point.

In the model under consideration one can also compute the gauge field fluctuations

in the normal phase. Nevertheless, as the model does not include the backreaction of

the metric, the computation is not sensitive to temperature anymore. This can be seen

from the equations of motion (3.2) of the gauge fluctuations, that do not depend on the

background solutions thus are independent of the temperature. Hence we recover the

results for the quasinormal modes of vector field perturbations in the AdS4 black hole

background computed by [34]. For our purposes the most important fact is the presence

– 13 –

Normal phase (high T) I. Amado, M. Kaminski and K. L.,  [arXiv:0903.2209 [hep-th]]

There are also 4 Diffusion modes ω = −iDk2

Scalar QNMs 
doubly degenerate

D =
3

4πT
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Holography 

Notice that we are again working in the probe limit, so the background metric is taken
to be the Schwarzschild-AdS black brane of (16). On the other hand, the gauge field is now

A(0)
0 ≡ Φ(r) , A(3)

0 ≡ Θ(r) . (50)

The rest of the components of the gauge field being zero. As in the previous section, we will
use dimensionless coordinates defined by the rescaling given in (17).

The equations of motion for our ansatz are

ψ�� +

�
f �

f
+

2

ρ

�
ψ� +

(Φ−Θ)2

4f 2
ψ − m2

f
ψ = 0 , (51)

Φ�� +
2

ρ
Φ� − ψ2

2f
(Φ−Θ) = 0 , (52)

Θ�� +
2

ρ
Θ� +

ψ2

2f
(Φ−Θ) = 0 . (53)

Notice that from (53) it follows that we can not simply switch on Φ without also allowing for
a non-trivial Θ. We are of course only interested in switching on a chemical potential in the
overall U(1), and therefore we will impose Θ(ρ → ∞) = 0 and allow for a finite boundary
value of Φ.

The coupled system of equations above can be simplified by defining χ ≡ 1
2 (Φ−Θ) and

ξ ≡ 1
2 (Φ+Θ). Using (52) and (53), we see that the resulting equations for these fields are7

Ψ�� +

�
f �

f
+

2

ρ

�
Ψ� +

χ2

f 2
Ψ− m2

f
Ψ = 0 , (54)

χ�� +
2

ρ
χ� − 2Ψ2

f
χ = 0 , (55)

ξ�� +
2

ρ
ξ� = 0 , (56)

where we have redefined ψ →
√
2Ψ. As usual we choose the boundary conditions χ(ρ = 1) =

0, ξ(ρ = 1) = 0 along with regularity of Ψ. Having a dual field theory with only one finite
chemical potential switched on, implies that χ and ξ must take the same non trivial value
at the boundary in order to ensure that Θ vanishes asymptotically. Notice that ξ decouples
completely. The remaining system (54)-(55) is again the background found for the widely
studied s-wave U(1) holographic superconductor. Therefore, the background of the U(2)
gauge model contains the Abelian superconductor plus a decoupled conserved U(1) sector.

The field χ lies in the direction of one of the broken generators, which is the linear
combination 1

2(T3 − T0), whereas ξ lies in the direction of the preserved U(1) given by
1
2(T3 + T0).

7These equations of motion correspond to the probe limit of the system studied in [36] as a dual of
superconductors with chemical potential imbalance. Notice however that in [36] the gauge symmetry was
U(1)× U(1) instead of U(2) as in the present setup.

19
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Figure 2: (Left) The free energy of the trivial (blue) and condensate (red) background solu-
tions at low temperatures, T < Tc. (Right) Value of the condensate in the grand canonical
ensemble as a function of T/Tc.

In the normal phase, i.e. expanding around ψ(ρ) = 0, the system reduces to the U(1)
holographic superconductor studied in [15] with two copies of the scalar fluctuations,

fs�� + s�
�
f � +

2f

ρ

�
+

�
(χ+ ω)2

f
− k2

ρ2
−m2

�
s =0 , (30)

fa��t +
2f

ρ
a�t −

k2

ρ2
at −

ωk

ρ2
ax =0 , (31)

fa��x + f �a�x +
ω2

f
ax +

ωk

f
at =0 , (32)

iω

f
a�t +

ik

ρ2
a�x =0 , (33)

where s stands for both η and σ fluctuations. The equation for the complex conjugate
scalar s̄ can be obtained by changing the sign of the potential χ in (30). The frequency and
momentum are related to the physical ones by

ω =
3

4πT
ωph , (34)

k =
3

4πT
kph . (35)

The scalar and gauge fluctuations completely decouple in the symmetric phase. This is
a consequence of working in the probe limit. The quasinormal mode spectrum of the U(1)
field in the normal phase is just that of an electromagnetic field on an AdS-Sch background.
The longitudinal fluctuations contain one hydrodynamic mode, ω = −iDk2, reflecting the
diffusive behavior of normal fluids. In physical units D = 3/(4πT ). Due to the lack of an
energy-momentum tensor for the dual field theory in the probe limit, the diffusion pole is
the only hydrodynamic mode in the unbroken phase.

There are two copies of the scalar fluctuations. The quasinormal modes of η and σ move
towards the origin when decreasing the temperature, whereas the modes of η̄ and σ̄ have

11

The asymptotic expansion of the fields near the conformal boundary reads

χ = µ̄χ −
n̄χ

ρ
+O

�
1

ρ2

�
, (57)

ξ = µ̄ξ −
n̄ξ

ρ
+O

�
1

ρ2

�
, (58)

Ψ =
ψ1

ρ
+

ψ2

ρ2
+O

�
1

ρ3

�
. (59)

The map of the various coefficients in the previous equations to the boundary conditions is

µ̄χ = µ̄ξ = µ̄. We will again focus in the O2 theory exclusively, henceforth we will demand

ψ1 = 0.

Equations (54)-(55) allow for solutions with a non-vanishing condensate, and therefore
1
2(T3−T0) will be spontaneously broken. This solution must be found numerically, since the

system is non-linear. However, (56) does have an analytic solution

ξ = µ̄

�
1− 1

ρ

�
(60)

and thus n̄ξ = µ̄.

When the symmetry is not broken, Ψ = 0, the equation for χ has of course

χ = µ̄

�
1− 1

ρ

�
(61)

as a solution as well. Therefore, in the unbroken phase

Θ = 0 , (62)

Φ = 2µ̄

�
1− 1

ρ

�
. (63)

This behavior reflects the fact that T3 is completely independent from T0 in the unbroken

phase. However, once we switch on the condensate, the interplay between T3 and T0 (recall

that the remaining symmetry is a combination of the two) makes it impossible to set only

one of the fields to zero.

Finally, let us mention that in order to relate the dimensionless parameters with the

physical ones, we need to apply the same dictionary (23)-(26) used for the ungauged model.

4.1 Charge Density in the broken phase

According to [19, 24] we can expect the presence of type II Goldstone modes if the broken

symmetry generators fulfill

�[Qa, Qb]� = Bab (64)

with at least one Bab �= 0. In our case we have [Q1, Q2] = iQ3. Therefore in the broken

phase we are interested in a non-vanishing expectation value for the charge density operator

20

The asymptotic expansion of the fields near the conformal boundary reads

χ = µ̄χ −
n̄χ

ρ
+O

�
1

ρ2

�
, (57)

ξ = µ̄ξ −
n̄ξ

ρ
+O

�
1

ρ2

�
, (58)

Ψ =
ψ1

ρ
+

ψ2

ρ2
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�
1

ρ3

�
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1− 1
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b.c.s:

ψ2 ∝ �O�
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Holography 

Notice that we are again working in the probe limit, so the background metric is taken
to be the Schwarzschild-AdS black brane of (16). On the other hand, the gauge field is now

A(0)
0 ≡ Φ(r) , A(3)

0 ≡ Θ(r) . (50)

The rest of the components of the gauge field being zero. As in the previous section, we will
use dimensionless coordinates defined by the rescaling given in (17).

The equations of motion for our ansatz are

ψ�� +

�
f �

f
+

2

ρ

�
ψ� +

(Φ−Θ)2

4f 2
ψ − m2

f
ψ = 0 , (51)

Φ�� +
2

ρ
Φ� − ψ2

2f
(Φ−Θ) = 0 , (52)

Θ�� +
2

ρ
Θ� +

ψ2

2f
(Φ−Θ) = 0 . (53)

Notice that from (53) it follows that we can not simply switch on Φ without also allowing for
a non-trivial Θ. We are of course only interested in switching on a chemical potential in the
overall U(1), and therefore we will impose Θ(ρ → ∞) = 0 and allow for a finite boundary
value of Φ.

The coupled system of equations above can be simplified by defining χ ≡ 1
2 (Φ−Θ) and

ξ ≡ 1
2 (Φ+Θ). Using (52) and (53), we see that the resulting equations for these fields are7

Ψ�� +

�
f �

f
+

2

ρ

�
Ψ� +

χ2

f 2
Ψ− m2

f
Ψ = 0 , (54)

χ�� +
2

ρ
χ� − 2Ψ2

f
χ = 0 , (55)

ξ�� +
2

ρ
ξ� = 0 , (56)

where we have redefined ψ →
√
2Ψ. As usual we choose the boundary conditions χ(ρ = 1) =

0, ξ(ρ = 1) = 0 along with regularity of Ψ. Having a dual field theory with only one finite
chemical potential switched on, implies that χ and ξ must take the same non trivial value
at the boundary in order to ensure that Θ vanishes asymptotically. Notice that ξ decouples
completely. The remaining system (54)-(55) is again the background found for the widely
studied s-wave U(1) holographic superconductor. Therefore, the background of the U(2)
gauge model contains the Abelian superconductor plus a decoupled conserved U(1) sector.

The field χ lies in the direction of one of the broken generators, which is the linear
combination 1

2(T3 − T0), whereas ξ lies in the direction of the preserved U(1) given by
1
2(T3 + T0).

7These equations of motion correspond to the probe limit of the system studied in [36] as a dual of
superconductors with chemical potential imbalance. Notice however that in [36] the gauge symmetry was
U(1)× U(1) instead of U(2) as in the present setup.

19

Scalar

σ- Sector

σ+ Sector

Charge in σ3 Sector:  

�Q3� = nΘ. As we argued previously, in the unbroken phase we necessarily have Θ(r) = 0.

This happened since both χ and ξ obey the same differential equation and the integration

constants had to be set equal in order to do not switch on a source for Θ. Now we would

like to find out whether or not an expectation value for Θ will be spontaneously generated

in the broken phase.

Independently of the phase the field associated to the unbroken combination of generators

is given by (60). Since Θ = ξ − χ, then

n̄Θ = µ̄− n̄χ . (65)

Hence, what we want to check is the difference between the leading and the subleading

coefficients of χ as a function of the temperature. The numerical result is shown in Figure

10.

0.4 0.5 0.6 0.7 0.8 0.9 1.0

T

Tc

� 20

�15

�10

�5

0
n �

Figure 10: Charge density of Θ, n̄Θ, as a function of the temperature T/Tc.

So we conclude that precisely at T ≤ Tc this difference is switched on and an expectation

value for �Q3� appears. This can be taken as a clear indication for the appearance of type

II Goldstone bosons in the spectrum.

4.2 Fluctuations of the gauged model

In order to study the quasinormal spectrum and the conductivities of the system, we

switch on longitudinal perturbations on top of the background, so that

Ψ̂T
= (η(t, ρ, x),Ψ(ρ) + σ(t, ρ, x)) , (66)

A(0)
= (Φ(ρ) + a(0)t (t, ρ, x))dt+ a(0)x (t, ρ, x)dx , (67)

A(1)
= a(1)t (t, ρ, x)dt+ a(1)x (t, ρ, x)dx , (68)

A(2)
= a(2)t (t, ρ, x)dt+ a(2)x (t, ρ, x)dx , (69)

A(3)
= (Θ(ρ) + a(3)t (t, ρ, x))dt+ a(3)x (t, ρ, x)dx . (70)

21

(Charge in σ0 sector always >0) 

triggers 2nd phase transition to p-wave          [I. Amado, D. Arean, A. Jimenez-Alba, L. Melgar, I. Salazar-Landea, arXiv:1309.5986]
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Holography 

Broken phase, Type I (4th sound) ω = vsk + (b− iΓs)k
2

small and subleading compared to the linear term that determines the speed of sound. In
[15] this real quadratic part has not been studied.
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Figure 4: Speed of sound and damping for the sound mode. The speed of sound goes to
zero at the critical temperature. The damping constant first rises quickly and then falls off
again. Precisely at the critical temperature its value is such that the sound modes connect
continuously to the scalar modes that become massless there. The peak in the damping
constant sits close to the critical temperature and was not resolved in [15].

For very small temperatures the velocity approaches its conformal value v2s = 1/2 while
the width goes to zero, see figure 4. Close to the phase transition, the speed of sound has a
mean field behavior as a function of temperature

v
2
s ≈ 2.8

�
1− T

Tc

�
. (42)

As expected, at T = Tc the speed of sound vanishes. This can be traced back to the fact
that at the phase transition the total mass m2

∗ = M2 − µ2 fulfills m2
∗ = v2 = 0, as expected,

and hence the complex scalar field, charged under a U(1) symmetry, becomes massless.
Indeed, one can write down the effective action, analogous to (4), for a complex scalar

field with mass M , in the presence of a chemical potential for a U(1) symmetry that is
spontaneously broken. The excitations on top of the U(1)-breaking background have a
dispersion relation equal to (8)-(9), being (8) the type I Goldstone boson. It is a general
feature of these linear sigma models that the coefficient in front of the linear term in the
momentum depends on m2

∗, as can be explicitly checked for the case at hand (see (8)).
Therefore, at the phase transition the leading term in the dispersion relation is of O(k2);
this effect can be seen very clearly with numerical methods, as shown in Figure 5. Since
the quasinormal mode spectrum has to vary continuously through the second order phase
transition the real and complex coefficients of the k2 term have to coincide at T = Tc with
the ones obtained from the massless scalars in the unbroken phase. Numerically we find
b̄(Tc) = 0.22 and Γs(Tc) = 0.071.

Pseudo diffusion mode: In the unbroken phase our model has only one hydrodynamic
mode, the diffusion mode ω = −iDk2 + O(k4) with D = 3/(4πT ) in physical units. The

14

“σ-” Sector:
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Holography 

Broken phase, Type II ω = (B − iC)k2

The temperature dependence of B and C is plotted in Figure 18. The value at T = Tc is

given by the same value as in the ungauged model (46) and in fact can also be cross checked

by calculating the scalar mode dispersion relation in the unbroken phase at T = Tc since

the QNMs must be continuous through the phase transition. We find a rather surprising

dependence of B with the temperature. It starts at a finite value at the transition and then it

rises rather sharply and falls off slower. It reaches a minimum at T ≈ 0.49Tc, temperature at

which we found the change of sign in the residue of current-current correlators. We also find

another peak around T ≈ 0.4Tc. We expect that it is again related with the instability found

in the gauge sector around that temperature. It would also be interesting to calculate B(T )
using an alternative method e.g. as the sound velocity can be calculated from thermodynamic

considerations alone. In order to do this one would need to formulate the hydrodynamics of

type II Goldstone modes. We are however not aware of such a hydrodynamic formulation

and leave this for future research.
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Figure 18: B (left) and C (right) as a function of T/Tc. The zoom-in shows the peak of C
close to the transition. Furthermore at T � 0.4Tc a sharp peak shows up in both coefficients.

We relate this feature also to the instability arising in the vector sector.

The attenuation C(T ) decreases rapidly with temperature. For temperatures T/Tc < 0.9
it is negligible and the width of the type II Goldstone scales with k4

in the hydrodynamic

limit. This fast decreasing with temperature reflects that this mode propagates almost ideally

in the fluid at low temperature. No further ungapped modes can be found in this sector.

4.6.2 Higher quasinormal modes

Higher quasinormal modes correspond to gapped modes in the QNM spectrum and thus

represent subleading contributions to the low energy Green’s functions. We will focus here

only on two of them: the continuation of the two diffusive modes of the unbroken phase and

the special gapped mode that appears as the partner mode of the type II Goldstone mode

in the field theoretical model.

33

“σ1,2” Sector:
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Holography 

Broken phase, Type II ω = (B − iC)k2

The temperature dependence of B and C is plotted in Figure 18. The value at T = Tc is

given by the same value as in the ungauged model (46) and in fact can also be cross checked

by calculating the scalar mode dispersion relation in the unbroken phase at T = Tc since

the QNMs must be continuous through the phase transition. We find a rather surprising

dependence of B with the temperature. It starts at a finite value at the transition and then it

rises rather sharply and falls off slower. It reaches a minimum at T ≈ 0.49Tc, temperature at

which we found the change of sign in the residue of current-current correlators. We also find

another peak around T ≈ 0.4Tc. We expect that it is again related with the instability found

in the gauge sector around that temperature. It would also be interesting to calculate B(T )
using an alternative method e.g. as the sound velocity can be calculated from thermodynamic

considerations alone. In order to do this one would need to formulate the hydrodynamics of

type II Goldstone modes. We are however not aware of such a hydrodynamic formulation

and leave this for future research.
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Figure 18: B (left) and C (right) as a function of T/Tc. The zoom-in shows the peak of C
close to the transition. Furthermore at T � 0.4Tc a sharp peak shows up in both coefficients.

We relate this feature also to the instability arising in the vector sector.

The attenuation C(T ) decreases rapidly with temperature. For temperatures T/Tc < 0.9
it is negligible and the width of the type II Goldstone scales with k4

in the hydrodynamic

limit. This fast decreasing with temperature reflects that this mode propagates almost ideally

in the fluid at low temperature. No further ungapped modes can be found in this sector.

4.6.2 Higher quasinormal modes

Higher quasinormal modes correspond to gapped modes in the QNM spectrum and thus

represent subleading contributions to the low energy Green’s functions. We will focus here

only on two of them: the continuation of the two diffusive modes of the unbroken phase and

the special gapped mode that appears as the partner mode of the type II Goldstone mode

in the field theoretical model.
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Holography 
Conductivities related to type I

We see that the resulting system of equations is now completely decoupled. We only have
two diagonal conductivities σ++ and σ−−, corresponding to the unbroken U(1) diffusive
sector and a mode which is associated to the broken U(1) coupling to the condensate. The
former is the same as in the unbroken phase and of no further interest for us. The latter
is again the well-studied U(1) s-wave superconductor. Its conductivity has been already
calculated in [3]. To check our numerics we have re-calculated it and in Figure 11 we show
its behavior. It coincides completely with [3]. The real part shows the ω = 0 delta function
characteristic of superconductivity9. Numerically this can be seen through the 1/ω behavior
in the imaginary part. The Kramers-Kronig relation (see (121) in appendix A) implies then
infinite DC conductivity. The real part of the AC conductivity also exhibits a temperature
dependent gap.
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Figure 11: Real part (left) and imaginary part (right) of the conductivity as a function of
frequency. The plots correspond to temperatures in the range T/Tc ≈ 0.91− 0.41, from red
to purple. As expected, the plots reproduce the ones of [3].

4.5 Conductivities in the (1)− (2) sector

The relevant equations for the (1)− (2) sector read

0 = fa��(1)x + f �a�(1)x +

�
ω2

f
−Ψ2 +

Θ2

f

�
a(1)x − 2i

Θω

f
a(2)x , (97)

0 = fa��(2)x + f �a�(2)x +

�
ω2

f
−Ψ2 +

Θ2

f

�
a(2)x + 2i

Θω

f
a(1)x . (98)

These equations obey the symmetry

(a(1)x → a(2)x , a(2)x → −a(1)x ) . (99)

9
In general, this behavior is also typical of translation invariant charged media, in which accelerated

charges cannot relax. However, working in the probe limit we effectively break translation invariance and

therefore the infinite DC conductivity is a genuine sign of superconductivity.
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Holography 
Conductivities related to type II, diagonal
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Superconductor !

“σ1,2” Sector:

Off-diagonal σ’s: no δ-function pole !     
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Holography 
Fate of the diffusion modes in broken phase

ω = −iγ − iDk2

“σ-” Sector: gapped (pseudo) diffusion
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Figure 6: (Left) Dispersion relation of the gapped pseudo diffusion mode in the broken phase
for three different temperatures. The gap widens as the temperature is lowered. (Right) Gap
γ as a function of the reduced temperature T/Tc. As one approaches the critical temperature
from below the gap vanishes linearly.
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Figure 7: (Left) Continuation of the second and third scalar QNM into the broken phase.
The real part grows as the temperature is lowered whereas the imaginary part shows very
little dependence on T . (Right) The gap γ (blue line) and the imaginary part of the lowest
(scalar) mode fluctuation (red line) in the broken phase are shown as function of T/Tc.
At T∗ ≈ 0.69Tc the imaginary parts cross. For lower temperatures the late time response
is not dominated anymore by the pseudo diffusion mode and consequently is in form of a
exponentially decaying oscillation.

For finite momentum the response pattern is expected to be different however. Now one
also has to take into account the sound mode. While precisely at zero momentum the sound
mode, i.e. the Goldstone mode, degenerates to a constant phase change of the condensate at
small but non-zero momentum the long time response should be dominated by the complex
frequencies (42). If one looks however only to the response in the gauge invariant order
parameter |O| the Goldstone modes, being local phase rotations of the order parameter, are
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Holography 
Fate of the diffusion modes in broken phase

ω = −iγ − iDk2

“σ-” Sector: gapped (pseudo) diffusion
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Figure 6: (Left) Dispersion relation of the gapped pseudo diffusion mode in the broken phase
for three different temperatures. The gap widens as the temperature is lowered. (Right) Gap
γ as a function of the reduced temperature T/Tc. As one approaches the critical temperature
from below the gap vanishes linearly.
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Figure 7: (Left) Continuation of the second and third scalar QNM into the broken phase.
The real part grows as the temperature is lowered whereas the imaginary part shows very
little dependence on T . (Right) The gap γ (blue line) and the imaginary part of the lowest
(scalar) mode fluctuation (red line) in the broken phase are shown as function of T/Tc.
At T∗ ≈ 0.69Tc the imaginary parts cross. For lower temperatures the late time response
is not dominated anymore by the pseudo diffusion mode and consequently is in form of a
exponentially decaying oscillation.

For finite momentum the response pattern is expected to be different however. Now one
also has to take into account the sound mode. While precisely at zero momentum the sound
mode, i.e. the Goldstone mode, degenerates to a constant phase change of the condensate at
small but non-zero momentum the long time response should be dominated by the complex
frequencies (42). If one looks however only to the response in the gauge invariant order
parameter |O| the Goldstone modes, being local phase rotations of the order parameter, are

17

Imaginary gap!

Wednesday, October 9, 2013



Holography 
Fate of the diffusion modes in broken phase
σ1,2 - Sector: 2 gapped modes ω = ±Ω− iΓ
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Figure 19: Imω versus Reω at k = 0 as a function of the temperature. The shape of the

figure is compatible with T symmetry, since there are two pseudo-diffusive modes. Having

Reω(k = 0) �= 0 is characteristic of the non-Abelian case.
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Figure 20: Real (left) and imaginary (right) part of M(T ) as a function of T/Tc. As the

temperature approaches Tc, the value of M(T ) reaches the one prescribed by continuity

through the phase transition.
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Holography 
“Massive” Goldstone

expected for second order phase transitions, however instead of simply developing an imag-
inary gap to drop out of the hydrodynamic spectrum as for the usual U(1) superconductor,
they pair up in two modes that on top of this gap also develop a real part.

The fact that Re(ω) does not vanish for these modes implies that sufficiently close to
Tc and in the limit k = 0, the late-time response of the perturbed state will present an
oscillatory decay of the perturbations, meaning that, contrary to the U(1) case, there will
not be a temperature at which the late-time behavior changes qualitatively.

Special Gapped mode: Seeking for this mode is computationally much more involved.
Its behavior is characterized by a gap that is proportional to µ. In particular, in [31] it was
argued that a type II Goldstone mode is accompanied by a gapped mode obeying ω(0) = qµ
with q being the charge of the corresponding field. In our conventions here we have q = 1.
So we have to look for a mode with ω(k = 0) = µ. Furthermore we expect that it connects
to the lowest mode of the complex conjugate scalar in the unbroken phase.

In Figure 21 we depict such mode at zero momentum with respect to the chemical po-
tential µ̄ in numerical units. Notice that the mode is continuous at the phase transition, as
expected. We observe the linear behavior with the chemical potential that is predicted the-
oretically, at least near µ̄c. It is very difficult to do the analysis when µ̄ > 6 due to the high
computational power demanded to carry out the computation. The mode shows of course
also a non-vanishing imaginary part which is due to the dissipation at finite temperature.
We find that the real part above the phase transition can be approximated by

Reω = 1.10 µ̄ near µ̄c . (108)

This result shows a deviation from the conjectured behavior which could nevertheless be
due to uncertainties in the numerics. Let us emphasize here that the numerics involved in
tracking this mode through the phase transition were rather challenging.
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Figure 21: Real (left) and imaginary (right) part of the special gapped mode versus the
chemical potential. We encounter the expected linear behavior with µ. The plot covers both
the unbroken (dashed line) and the broken (solid line) phases.
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Re(ω) ≈ 1.1qµ
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Landau criterion

• Superflow = spatial gauge field on boundary

• Critical superfluid velocity 

• T=0 via boosts

• T>0 more complicated

• basic idea: negative energy , instability

• QNMs:

ω(p) + �p.�S ≤ 0

�(ω(p, S, T )) ≤ 0 �(ω(p, S, T )) ≥ 0

Sc = min
ω(p)

p
⇒
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Landau criterion
Type I Goldstone
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Landau criterion
Weak Coupling

(courtesy: A. Schmitt)  
[Alford, Mallavarpu, Schmitt, Stetina] to appear
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Landau criterion
Type I Goldstone
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Landau criterion
Type II Goldstone
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Figure 9: Real and Imaginary parts of the dispertion relation of the lowest QNM of the

(1)-(2) sector in the gauged model. Both plots correspond to fixed Sx/µ = 0.15 and a regime

of temperatures from T = T̃ = 0.95Tc (red) to T = 0.45Tc (blue). Lower temperatures show

analogue behaviour. XXHay que hacer algunas curvas mas smooth, (lineas rojas

cerca de k parte real)XX

(10), where �(ω(k)) is ploted against the momentum k at a fixed supervelocity Sx/µ = 0.25
and for a long range of temperatures. Hence, we conclude that the gauge sector has the

effect of incresing the value of the maximum momentum.

5 Conclusions

We have analyzed the holographic realization of the Landau criterion of superfluidity.

The study was motivated by the appearance of Type-II NG bosons in the model (5), as

detailed in [2], which, according to the aforementioned criterion, should be responsible for

driving the system out of the superfluid phase for arbitrarily small supervelocity.

Taking advantage of the fact that the usual U(1) holographic s-wave superconductor is

contained in (5), we have revisited the Landau criterion for holographic Type-I NG bosons

in Section 3, pointing out that, when adressing the problem of the stabily of the superfluid

at finite supervelocity Sx/µ, the analysis of the free energy does not give the correct answer.

The QNM spectrum presents a tachyon at finite momentum for temperatures T ∗ < T < T̃ ,
being T̃ the temperature at which the system is supossed to pass through a phase transition

to an homogeneous and stable superfluid with non-vanishing supervelocity according to the

F.E. calculation. Hence, the homogeneous superfluid is stable only for T < T ∗
, see Figure

(6). The results of the velocity of sound vs. the angle γ between the momentum and the

supervelocity, depicted in Figures (3) and (4), are perfectly consistent with this statement:

at T = T ∗
and γ = π the velocity of sound vanishes. This condition can be easily seen to

be equivalent to the Landau criterion and signals the existence of a critical velocity above

which the superfluid is not stable anymore. Indeed, in the simple language of Section 1, the

dispersion relation from the moving frame can be written as

17

Does not support finite superflow!
Superconductor but not Superfluid
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Landau criterion
Phase diagram based on Landau criterion
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Figure 6: Left: Phase Space after the study of the QNM’s. Grey line corresponds to T̃ ,
the transition temperature found by direct analysis of the F.E.. At a certain point (Disk)
the transition changes from 2nd order (dotted) to 1st order (dash-dotted). Black solid line
corresponds to the critical temperature in abscence of superfluid velocity. The black dashed
line corresponds to T ∗, the temperature the local instability appears at. Points 1,2 and 3
indicate the values of tamperature and velocity used in the r.h.s. plot. Right: Imaginary
part of ω of the lowest QNM for different temperatures (see l.h.s. plot) and fixed Sx/µ = 0.2.
Dashed lines were obtained in the Normal Phase whereas solid lines were calculated in the
S-wave phase.

Therefore the QNM results indicate that at finite momentum the phase transition (from
low to high temperatures) occurs actually at a lower temperature T ∗ < T̃ . Similarly, if we
imagine the system at fixed temperature and start rising the supervelocity, both vs and Γ
will vanish at some value of Sx/µ, which we claim is indeed the critical velocity vc of the
superfluid, in the sense of the Landau criterion.

As a remarkable fact, the imaginary part exhibiting the instability has a maximum at
finite momentum as well, which suggests that the stable intermediate phase might be a spa-
tially inhomogeneous phase.

Recall that the Landau criterion can be formulated uniquely in terms of �(ω). At a
given temperature the critical velocity corresponds to vs = 0 or equivalently the value of
Sx/µ where �(ω) becomes negative (see Figure (5)). That the criterion is a statement about
�(ω) reflects the fact that it holds also at zero temperature. Remarkable enough, at finite
temperature the dispersion relation of the gapless mode gets itself altered due to both the
supervelocity and the temperature ([1], [13]), implying that generically the critical value of
Sx/µ at fixed temperature does not correspond to the velocity of sound of the Goldstone
mode at the same temperature and vanishing supervelocity.

An extra comment is in order here regarding the space between Tc and T̃ in the l.h.s.
of Figure (6). The fact that the lowest QNM is unstable in this regime (see line 2N,S in

12

C.P. Herzog, P.K. Kovtun, and D.T. Son.  Phys.Rev., D79:066002
Pallab Basu, Anindya Mukherjee, and Hsien-Hang Sieh, Phys.Rev., D79:045010

Landau criterion via QNMs

Stripes ?
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Ungauged Model
What if SU(2) only global in AdS bulk?

• U(1) gauge field + scalar doublet 

• Global symmetry sufficient to chose vacuum

• SU(2) = “Outer Automorphism”

• Decomposition:  HHH-superfluid + scalar

• Still type II Goldstone?

• Massive ?
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Ungauged Model
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Ungauged Model
Massive mode:

Does not obey theory!!
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Effective U(2) symmetric action only 
for lower Energies!
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Summary 
• Type II Goldstone QNMs !

• Compare to weak coupling

• Universality of Pseudo-diffusion ?

• “Un-gauged” model: 
no SU(2) gauge fields, violates some Theorems

• Backreacted models
1st, 2nd, 4th sound modes etc.

• Superflow: striped phases ?
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Summary 
• Type II Goldstone QNMs !

• Compare to weak coupling

• Universality of Pseudo-diffusion ?

• “Un-gauged” model: 
no SU(2) gauge fields, violates some Theorems

• Backreacted models
1st, 2nd, 4th sound modes etc.

• Superflow: striped phases ?

THANK YOU!
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Drude Peak
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Due to gapped “Pseudo” diffusion mode !
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Holography 
Conductivities related to type II, off-diagonal

no Superconductor !of frequency. At T/Tc = 1 the system is practically decoupled, so for all temperatures the

off-diagonal conductivity goes to zero as ω increases.
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Figure 14: Real (left) and imaginary (right) part of σ12 as a function of ω for T/Tc ≈
0.91− 0.41, from red to purple.

Observe that σ12(ω) behaves as a normal conductivity. Its real part vanishes as ω → 0,

whereas the imaginary part tends to a constant value.

4.5.3 Conductivities σ+− and σ−+

It is worth to notice that the equations (97)-(98) decouple if we define a new vector field

ϕ̃ =

�
A+

A−

�
=

�
1 i
1 −i

� �
a(1)x

a(2)x

�
= S ϕ . (102)

In this basis, the equations of motion become

0 = fA��
± + f �A�

± +

�
(ω ∓Θ)2

f
−Ψ2

�
A± . (103)

It is easy to check that the relation between the conductivity matrices in the two basis is

given by

σ̃ =
�
ST

�−1
σS−1 , (104)

and that only the off-diagonal components of σ̃ are non vanishing.

The conductivities σ−+ and σ+− are represented in Figure 15 and 16, respectively. The

plot of the conductivity σ−+ is particularly suggestive. Besides the superconducting delta

of the DC conductivity, it resembles the behavior observed in Graphene [29]. Such a resem-

blance of the conductivities of holographic superconductors to the one of graphene has been

pointed our already in [37]. We emphasize however that the conductivities shown in figure

15 have an even closer resemblance to [29]. In particular, at small frequencies we see that

30
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