Holographic Type II Goldstone Bosons

Karl Landsteiner

Instituto de Física Teórica, UAM-CSIC

I.Amado, D.Arean, A. Jimenez-Alba, K.L., L. Melgar, I. Salazar-Landea [arXiv:1302.5641, arXiv:1307.8100]

Crete CTP, 07-10-2013

- Goldstone theorems
- Field theoretical model
- Holographic model(s)
- Landau criterion
- Summary

• Spontaneously broken continuous symmetry

 $\lim_{k \to 0} \omega(k) = 0$

- At least one mode
- No constraint on power: $\omega(k) \propto k^n$
- Lorentz symmetry:
 - $\omega(k) = ck$
 - One mode for every broken generator

<u>Goldstone Theorems</u>

- No Lorentz symmetry
 - State: temperature T, density mu
 - Principally: non-relativistic, Lifshitz, ...
- Classification :

[Nielsen-Chadha '74]

- Type I : $\omega \propto k^{2n+1}$
- Type II: $\omega \propto k^{2n}$

<u>Goldstone Theorems</u>

Chadha-Nielsen

$$N_I + 2N_{II} \ge N_{BG}$$

• Brauner-Watanabe-Murayama

$$\langle [Q_a, Q_b] \rangle = B_{ab} N_I + N_{II} = N_{BG} - \frac{1}{2} \operatorname{rank}(B_{ab})$$

 Brauner-Murayama-Watanabe, Nicolis-Piazza, Kapustin ("massive" Goldstone)

Field Theory Model

T. Schafer, D. T. Son, M. A. Stephanov, D. Toublan and J. J. M. Verbaarschot, [hep-ph/0108210] V. A. Miransky and I. A. Shovkovy, [hep-ph/0108178]

 $\mathcal{L} = (\partial_0 - i\mu)\Phi^{\dagger}(\partial_0 + i\mu)\Phi - \vec{\partial}\Phi^{\dagger}\vec{\partial}\Phi - M^2\Phi^{\dagger}\Phi - \lambda^4(\Phi^{\dagger}\Phi)^2$

Doublet of U(2) $\phi = (\phi_1, \phi_2)^T$ $\phi = (0, v)^T$ μ inside overall U(1)

Holography

- Global on boundary = local in Bulk
- U(2) gauge fields + scalar in doublet
- gauged model,
- Chemical potential only in U(I)
- Holographic Goldstone modes = Quasinormal Modes
- Simplest: U(2) generalization of HHH [Hartnoll-Herzog-Horowitz]
- Decoupling limit

3D AdS Schwarzschild BH

Maxwell + Charged Scalar

Quasinormal Modes:

Wednesday, October 9, 2013

3D AdS Schwarzschild BH

Maxwell + Charged Scalar

Quasinormal Modes:

3D AdS Schwarzschild BH

Maxwell + Charged Scalar

 $\omega(k) = \pm \Omega(k) - i \Gamma(k)$

Boundary

Quasinormal Modes:

U(2) decomposition:

 $\sigma_{-} = \frac{1}{2}(\sigma_0 - \sigma_3) = \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix}$ $\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ broken: $\sigma_2 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$ $\sigma_{+} = \frac{1}{2}(\sigma_{0} + \sigma_{3}) = \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix}$ unbroken:

There are also 4 Diffusion modes $\omega = -iDk^2$ $D = \frac{3}{4\pi^2}$

 $\Psi'' + \left(\frac{f'}{f} + \frac{2}{\rho}\right)\Psi' + \frac{\chi^2}{f^2}\Psi - \frac{m^2}{f}\Psi = 0\,,$ Scalar $\chi'' + \frac{2}{\rho}\chi' - \frac{2\Psi^2}{f}\chi = 0\,,$ $\xi'' + \frac{2}{\rho}\xi' = 0\,,$ $\overline{n_{\Theta}}_{0}$ 0.4 Charge in σ_3 Sector: -5 (Charge in σ_0 sector always >0) -10 -15

 σ_{-} Sector σ_+ Sector

triggers 2nd phase transition to p-wave

"σ₋" Sector:

Broken phase, Type I (4th sound) $\omega = v_s k + (b - i\Gamma_s)k^2$

" $\sigma_{1,2}$ " Sector: Broken phase, Type II $\omega = (B - iC)k^2$

" $\sigma_{1,2}$ " Sector: Broken phase, Type II $\omega = (B - iC)k^2$

Holography

"σ-" Sector: Conductivities related to type I

(just HHH model)

$\begin{array}{l} & Holography\\ ``\sigma_{1,2}`` Sector:\\ & Conductivities related to type II, diagonal \end{array}$

Wednesday, October 9, 2013

Fate of the diffusion modes in broken phase " σ_{-} " Sector: gapped (pseudo) diffusion

$$\omega = -i\gamma - iDk^2$$

Fate of the diffusion modes in broken phase " σ -" Sector: gapped (pseudo) diffusion

Fate of the diffusion modes in broken phase $\sigma_{1,2}$ - Sector: 2 gapped modes $\omega = \pm \Omega - i\Gamma$

Landau criterion

- Superflow = spatial gauge field on boundary
- Critical superfluid velocity
 - **T=0 via boosts** $\omega(p) + \vec{p} \cdot \vec{S} \le 0 \implies S_c = \min \frac{\omega(p)}{r}$
 - T>0 more complicated
 - basic idea: negative energy , instability
 - QNMs:

 $\Re(\omega(p, S, T)) \le 0 \qquad \qquad \Im(\omega(p, S, T)) \ge 0$

Landau criterion

Type I Goldstone

Landau criterion Weak Coupling

(courtesy: A. Schmitt) [Alford, Mallavarpu, Schmitt, Stetina] to appear

Landau criterion

Type II Goldstone

Does not support finite superflow! Superconductor but not Superfluid

Landau criterion

Phase diagram based on Landau criterion

What if SU(2) only global in AdS bulk?

- U(I) gauge field + scalar doublet
- Global symmetry sufficient to chose vacuum
- SU(2) = "Outer Automorphism"
- Decomposition: HHH-superfluid + scalar
- Still type II Goldstone?
- Massive ?

Massless mode in 2nd scalar! Dispersion relation: $\omega = (b + ic)k^2$

Massive mode:

Effective U(2) symmetric action only for lower Energies!

Wednesday, October 9, 2013

- Type II Goldstone QNMs !
- Compare to weak coupling
- Universality of Pseudo-diffusion ?
- "Un-gauged" model: no SU(2) gauge fields, violates some Theorems
- Backreacted models
 I st, 2nd, 4th sound modes etc.
- Superflow: striped phases ?

- Type II Goldstone QNMs !
- Compare to weak coupling
- Universality of Pseudo-diffusion ?
- "Un-gauged" model: no SU(2) gauge fields, violates some Theorems
- Backreacted models
 I st, 2nd, 4th sound modes etc.
- Superflow: striped phases ?

Drude Peak

Due to gapped "Pseudo" diffusion mode !

Holography

Conductivities related to type II, off-diagonal no Superconductor !

