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Introduction: AdS/CFT

Since 15 years,the AdS/CFT correspondence or gauge/gravity
duality, offered us another way to think about QFTs

• The QFT degrees of freedom and dynamics can be recast in the
language of a theory of gravity in ahigher dimensional, curved
space-time.

• The higher dimensional (bulk) theory becomes simple e.g.
classical GR in the regime where the number of degrees of the
QFT becomes large, and the couplings become strong.

• The deconfined, high-temperature phase of gauge theories is
mapped to ablack holesolution.

Strongly coupled quantum field theories may be described using the

tools of classical General Relativity
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Introduction: Heavy quarks in QGP

• in a heavy-ion collision experiment, a collecive state
(quark-gluon plasma) is form that undergoes fast thermalization
and can be described by hydrodimamics.

• A heavy quarkcan be created out of equilibrium in the QGP
produced by a heavy ion collision. It then undergoes a diffusion
process governed by the interactions with the medium.

The brownaian-like dynamics causes viscousenergy lossand a

spread in transverse momentum
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Introduction: Heavy quarks in QGP

• in a heavy-ion collision experiment, a collecive state
(quark-gluon plasma) is form that undergoes fast thermalization
and can be described by hydrodimamics.

• A heavy quarkcan be created out of equilibrium in the QGP
produced by a heavy ion collision. It then undergoes a diffusion
process governed by the interactions with the medium.

Dual dual to atrailing stringwith the quark as its endopoint.
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Motivation

I will discuss thetrailing string solution inT = 0 vacuum
geometries,in particular those dual to aconfining theory.

• An important point of contact with heavy ion experiments (jet
quenching, heavy flavor suppression).
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Motivation

I will discuss thetrailing string solution inT = 0 vacuum
geometries,in particular those dual to aconfining theory.

• An important point of contact with heavy ion experiments (jet
quenching, heavy flavor suppression).

• From a practical point of view, in order to correctly obtain the
dynamics of the probe in the deconfined medium, one needs a
subtraction procedureto make basic quantities (Boundary
retarded correlators) well defined.The natural way to operate
this subtraction is through the vacuum correlator.Whence the
need of the vacuum trailing string solution.
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Motivation

I will discuss thetrailing string solution inT = 0 vacuum
geometries,in particular those dual to aconfining theory.

• An important point of contact with heavy ion experiments (jet
quenching, heavy flavor suppression).

• From a practical point of view, in order to correctly obtain the
dynamics of the probe in the deconfined medium, one needs a
subtraction procedureto make basic quantities (Boundary
retarded correlators) well defined.The natural way to operate
this subtraction is through the vacuum correlator.Whence the
need of the vacuum trailing string solution.

• The vacuum trailing string in confining theories, and its
fluctuations, have an interesting and non-trivial structure

• presence of aconfining horizon

• long timedissipation effects
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Outline

• Confinement in AdS/CFT

• The trailing string picture of a probe quark, and connectionto
Brownian motion

• Review of trailing string in a black hole solution

• Static trailing string in a confining background

• Dragged confining trailing string

• Conclusion
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AdS/CFT and Confinement

Confinement in AdS/CFT is decided via the dual of the Wilson loop
test: In confining gauge theories, the Wilson Loop operator

W (γ) = P exp i

∮

γ
A

exhibits anArea Law: W ∼ exp σcArea
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AdS/CFT and Confinement

Confinement in AdS/CFT is decided via the dual of the Wilson loop
test: In confining gauge theories, the Wilson Loop operator

W (γ) = P exp i

∮

γ
A

exhibits anArea Law: W ∼ exp σcArea

Area law implies alinear potentialbetween two static quarks,

Sγ = TV (L) ∼ σcTL ⇒ V (L) = σcL
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AdS/CFT and Confinement

The holographic dual of the Wilson Loop is the action of a string
attaching to the contour on the boundary, and closing into the
interior.

⇔

Sγ =
1

2πℓ2
s

AreaΣ
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AdS/CFT and Confinement

Confinement if:

• The higher-dimensional space ends regularly (or at a hard wall)
at some coordinaterm

• The space is non-compact in the IR but the metric functions
have a non-zero minimum at some pointrm
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AdS/CFT and Confinement

Confinement if:

• The higher-dimensional space ends regularly (or at a hard wall)
at some coordinaterm

• The space is non-compact in the IR but the metric functions
have a non-zero minimum at some pointrm

ds2 = b(r)
[

dr2 + dx2
µ

]

non-confining,σc = 0 confining,σc = b2(rm)
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The Traling String

Probe quarkon the boundary a 5D asymptoticallyAdS spacetime
m

Classical string attached at the boundary and extending in the
interior.

(Gubser ’06)
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The Trailing String

The string profile is found by extremizing the surface spanned by the
string

S =
1

2πℓ2
s

∫

dtdr
√

−det gind ,

with respect to the embedding coordinates:~X(t, r) = ~vt + ~ξ(r).

The string exerts a drag force which causes the quark to lose energy:

dual description of in-medium energy loss
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The Trailing String Fluctuations

Add small fluctuations along the string:

X(t, r) = ξ(r) + δX(t, r)

they induce a Brownian-like dynamics for the boundary quark,
governed by a Langevin equation, and leading to a spread in
momentum.(Gubser ’05, De Boeret al06, Herzoget al06, Son and Teaney 09).

Dual description of transverse momentum broadening.
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The Trailing String Fluctuations

MδẌ(t)+

∫

dt′ GR(t − t′)δX(t′) = ζ(t), 〈ζ(t)ζ(t′)〉 = Gs(t − t′)

Generalized Langevin equation.
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The Trailing String Fluctuations

MδẌ(t)+

∫

dt′ GR(t − t′)δX(t′) = ζ(t), 〈ζ(t)ζ(t′)〉 = Gs(t − t′)

Generalized Langevin equation.Two force terms:

• aclassicalforce with retardation effects;

• astochasticforce with a Gaussian distribution.

Both terms arise from the same underlying physics.
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The Trailing String Fluctuations

MδẌ(t)+

∫

dt′ GR(t − t′)δX(t′) = ζ(t), 〈ζ(t)ζ(t′)〉 = Gs(t − t′)

• GR(t) is theretardedboundary correlator associated to the
fluctuationsδX(t, r) around the classical trailing string.

• Gs(t) is the associated thesymmetriccorrelator, obtained from
GR(t) via a Fluctuation-Dissipation relation, characteristic of
the ensemble.
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The Trailing String Fluctuations

MδẌ(t)+

∫

dt′ GR(t − t′)δX(t′) = ζ(t), 〈ζ(t)ζ(t′)〉 = Gs(t − t′)

long-time limit:

MδẌ(t) + ηẊ(t) = ζ(t), 〈ζ(t)ζ(t′)〉 = kδ(t − t′)

η = lim
ω→0

Im GR(ω)

ω
, κ = lim

ω→0
Gs(ω)
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Trailing string in 5D black hole

Consider a generic asymptoticallyAdS 5D black hole:

ds2 = b2(r)

[

dr2

f(r)
− f(r)dt2 + dxidxi

]
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Trailing string in 5D black hole

Consider a generic asymptoticallyAdS 5D black hole:

ds2 = b2(r)

[

dr2

f(r)
− f(r)dt2 + dxidxi

]

• Boundary:

r → 0, f(r) → 1 log b(r) ∼ log
ℓ

r
+ . . .
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Trailing string in 5D black hole

Consider a generic asymptoticallyAdS 5D black hole:

ds2 = b2(r)

[

dr2

f(r)
− f(r)dt2 + dxidxi

]

• Boundary:

r → 0, f(r) → 1 log b(r) ∼ log
ℓ

r
+ . . .

• Horizon:

r → rh, f(rh) = 0, Th = ḟ(rh)/4π
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Trailing string in 5D black hole

Consider a generic asymptoticallyAdS 5D black hole:

ds2 = b2(r)

[

dr2

f(r)
− f(r)dt2 + dxidxi

]

• Boundary:

r → 0, f(r) → 1 log b(r) ∼ log
ℓ

r
+ . . .

• Horizon:

r → rh, f(rh) = 0, Th = ḟ(rh)/4π

• Dual to anon-conformalgauge theory in thermal equilbriumat
a temperatureTh, in adeconfined phase.

The Trailing String in Confining Holographic Theories – p.15



Trailing String in a 5D black hole

Let us focus on thestaticcase.

The string falls straight down into the horizon.

The Trailing String in Confining Holographic Theories – p.16



Trailing String in a 5D black hole

Let us focus on thestaticcase.

The string falls straight down into the horizon.
The induced 2D worldsheet metric is a2D black holewith horizon
rh and temperatureTh.

ds2
ind = b2(r)

[

−f(r)dt2 + f−1(r)dr2
]

,
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Trailing String in a 5D black hole

Let us focus on thestaticcase.

The string falls straight down into the horizon.
The induced 2D worldsheet metric is a2D black holewith horizon
rh and temperatureTh.

ds2
ind = b2(r)

[

−f(r)dt2 + f−1(r)dr2
]

, f(r) ≃ 4πTh(rh−r), r ≃ rh
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Fluctuations

Add fluctuations: modes going in/out of the horizon.
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Fluctuations

Add fluctuations: modes going in/out of the horizon.

The fluctuation equation close to the horizon is

δX ′′ − 1

(rh − r)
δX ′ +

ω̂2

(rh − r)2
δX = 0, ω̂ ≡ ω

4πTh
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Fluctuations

Add fluctuations: modes going in/out of the horizon.

The fluctuation equation close to the horizon is

δX ′′ − 1

(rh − r)
δX ′ +

ω̂2

(rh − r)2
δX = 0, ω̂ ≡ ω

4πTh

The solutions have infalling/outgoing behavior nearrh,

δX(ω, r) ≃ (rh − r)±iω̂
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Correlators

The retarded correlator is found by the Policastro-Son-Starinets
prescription

GR(ω) =
[

G(r) δX ′
R(ω, r)

]

r→0
, δXR(ω, r) →

{

1 r → 0

(r − rh)−iω̂ r → rh

The coefficientG(r) depends only on the background bulk
geometry and is explicitely known.
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Correlators

The retarded correlator is found by the Policastro-Son-Starinets
prescription

GR(ω) =
[

G(r) δX ′
R(ω, r)

]

r→0
, δXR(ω, r) →

{

1 r → 0

(r − rh)−iω̂ r → rh

The coefficientG(r) depends only on the background bulk
geometry and is explicitely known.
The long-time Langevin dynamics is governed by theviscosity
coefficientη that appears as the leadingω → 0 term inGR(ω)

GR = −i η ω + O(ω2)

⇒ ~Fdrag = η~v
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Correlators

The retarded correlator is found by the Policastro-Son-Starinets
prescription

GR(ω) =
[

G(r) δX ′
R(ω, r)

]

r→0
, δXR(ω, r) →

{

1 r → 0

(r − rh)−iω̂ r → rh

The coefficientG(r) depends only on the background bulk
geometry and is explicitely known.
The long-time Langevin dynamics is governed by theviscosity
coefficientη that appears as the leadingω → 0 term inGR(ω)

GR = −i η ω + O(ω2) η = b2(rh) Gursoy, Mazzanti, Kiritsis, FN 1006.3261

⇒ ~Fdrag = η~v
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Correlators

The retarded correlator is found by the Policastro-Son-Starinets
prescription

GR(ω) =
[

G(r) δX ′
R(ω, r)

]

r→0
, δXR(ω, r) →

{

1 r → 0

(r − rh)−iω̂ r → rh

The coefficientG(r) depends only on the background bulk
geometry and is explicitely known.
The symmetric correlator is found byFD relationat temperatureTh:

Gs(ω) = − coth

(

ω

2Th

)

Im GR(ω)
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Correlators

The retarded correlator is found by the Policastro-Son-Starinets
prescription

GR(ω) =
[

G(r) δX ′
R(ω, r)

]

r→0
, δXR(ω, r) →

{

1 r → 0

(r − rh)−iω̂ r → rh

The coefficientG(r) depends only on the background bulk
geometry and is explicitely known.
The symmetric correlator is found byFD relationat temperatureTh:

Gs(ω) = − coth

(

ω

2Th

)

Im GR(ω)

At long times, the dynamics is encoded by theLangevin coefficient

κ = lim
ω→0

Gs(ω) = 2Thη
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Green’s functions: High frequency limit

Thelargeω limit obtained via WKB approximation
Gursoy, Mazzanti, Kiritsis, FN 1006.3261:

Im GR(ω) ≃ ω3 h

(√
2

γω

)

b(r) ∼ ℓ

r
h(r)

The Trailing String in Confining Holographic Theories – p.20



Green’s functions: High frequency limit

Thelargeω limit obtained via WKB approximation
Gursoy, Mazzanti, Kiritsis, FN 1006.3261:

Im GR(ω) ≃ ω3 h

(√
2

γω

)

b(r) ∼ ℓ

r
h(r)

This diverges too fast forGR to be physical:

• Dispersion relations that allow to write

GR =

∫

Im GR(ω′)

ω′ − ω′ − iǫ

requireG(ω) ∼ 1/ω

• Real time dynamics completely dominated by the shortest time
interval with big random kicks as∆t → 0.
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Green’s functions: High frequency limit

Thelargeω limit obtained via WKB approximation
Gursoy, Mazzanti, Kiritsis, FN 1006.3261:

Im GR(ω) ≃ ω3 h

(√
2

γω

)

b(r) ∼ ℓ

r
h(r)

This diverges too fast forGR to be physical:

• Dispersion relations that allow to write

GR =

∫

Im GR(ω′)

ω′ − ω′ − iǫ

requireG(ω) ∼ 1/ω

• Real time dynamics completely dominated by the shortest time
interval with big random kicks as∆t → 0.

• Remark: the leading behavior istemperature-independent.
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Dressed spectral density

UV-safe spectral densities can be defined:Subtract the correlator
obtained from the vacuum background.Mazzanti, Kiritsis, FN, 1111.1008:

G
(ph)
R (ω) = GR(ω) − G

(vac)
R (ω)
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Dressed spectral density

UV-safe spectral densities can be defined:Subtract the correlator
obtained from the vacuum background.Mazzanti, Kiritsis, FN, 1111.1008:

G
(ph)
R (ω) = GR(ω) − G

(vac)
R (ω)

• Physically, equivalent to requiring that a quark in vacuum is
subject to no dissipation.
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Dressed spectral density

UV-safe spectral densities can be defined:Subtract the correlator
obtained from the vacuum background.Mazzanti, Kiritsis, FN, 1111.1008:

G
(ph)
R (ω) = GR(ω) − G

(vac)
R (ω)

• Physically, equivalent to requiring that a quark in vacuum is
subject to no dissipation.

• This prescription can be obtained with a change of variable in
the quark path integral.
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Vacuum correlator

What is the trailing string in thevacuumsolution i.e.f(r) = 1?
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Vacuum correlator

What is the trailing string in thevacuumsolution i.e.f(r) = 1?
Two qualitatively very different cases:

• the vacuum could be confining (as in QCD)

• or non-confining (as inN = 4 SYM).
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Vacuum correlator

What is the trailing string in thevacuumsolution i.e.f(r) = 1?
Two qualitatively very different cases:

• the vacuum could be confining (as in QCD)

• or non-confining (as inN = 4 SYM).

Confinement is essentially equivalent to the presence of a minimum
of thebulk scale factorb(r) (cfr. J .Sonnenschein’s talk)

non-confining confiningσc = b2(rm)
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Non-confining case

ds2 = b2(r)
[

dr2 + dxµdxµ

]

,

the string profile satisfies:

ξ′(r) =
C

√

b4(r) − C2
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Non-confining case

ds2 = b2(r)
[

dr2 + dxµdxµ

]

,

the string profile satisfies:

ξ′(r) =
C

√

b4(r) − C2

As b → 0, regularity requiresC = 0: the embedding is trivial,ξ = 0
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Confining Trailing String

ds2 = b2(r)
[

dr2 + dxµdxµ

]

,

the string profile satisfies:

ξ′(r) =
C

√

b4(r) − C2

Now the minimum ofb(r) is non-zero: the constantC is not fixed.
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Confining Trailing String

ds2 = b2(r)
[

dr2 + dxµdxµ

]

,

the string profile satisfies:

ξ′(r) =
C

√

b4(r) − C2

Now the minimum ofb(r) is non-zero: the constantC is not fixed.
One-parameter family of solutions with0 ≤ C ≤ b2(rm)
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Confining Trailing String

The extremalC = b2
m string is the one with lowest action. It does

not extend beyond theconfining horizonr = rm, and it extend to
infinity along one of the spatial directions.
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Confining Trailing String

The extremalC = b2
m string is the one with lowest action. It does

not extend beyond theconfining horizonr = rm, and it extend to
infinity along one of the spatial directions.

Asymptotically it looks like a straight string with fixed tension b2
m

i.e. the confining string tension of the dual theory: it is the QCD

flux-tube. The Trailing String in Confining Holographic Theories – p.25



Confining Trailing String

The extremalC = b2
m string is the one with lowest action. It does

not extend beyond theconfining horizonr = rm, and it extend to
infinity along one of the spatial directions.

The string breaks rotational invariance. It can be recovered summing

over different directions.
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Physical picture: the Shadow Quark

This has a simple physical interpretation:

look at the trailing string ashalf of the confining string connecting

two quarks, one of which is observed, the other (shadow quark) in-

finitely far.
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Confining string geometry

Worldsheet induced metric:

ds2 = b2(r)

[

−dt2 +
b4

R2
dr2

]

, R =
√

b4 − b4
m
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Confining string geometry

Worldsheet induced metric:

ds2 = b2(r)

[

−dt2 +
b4

R2
dr2

]

, R =
√

b4 − b4
m

• close to the boundary it approachesAdS2

ds2 ∼ (ℓ/r)2
[

−dt2 + dr2
]

r → 0
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Confining string geometry

Worldsheet induced metric:

ds2 = b2(r)

[

−dt2 +
b4

R2
dr2

]

, R =
√

b4 − b4
m

• close to the boundary it approachesAdS2

ds2 ∼ (ℓ/r)2
[

−dt2 + dr2
]

r → 0

• close to the confining horizonrm it reduces to

ds2 ∼ b2
m

[

−dt2 + (4πTm)2
dr2

(rm − r)2

]

Tm = (4π)−1
√

b′′m/bm
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Confining horizon geometry
Metric close to the confining horizonrm:

ds2 ∼ b2
m

[

−dt2 + (4πTm)2
dr2

(rm − r)2

]
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Confining horizon geometry
Metric close to the confining horizonrm:

ds2 ∼ b2
m

[

−dt2 + (4πTm)2
dr2

(rm − r)2

]

= b2
m[−dt2 + dz2]

z ∼ −4πTm log(rm − r) → +∞.

The full metric is conformally flat, and interpolates between AdS2

in the UV and flat Minkowski in the IR.
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Confining horizon geometry
Metric close to the confining horizonrm:

ds2 ∼ b2
m

[

−dt2 + (4πTm)2
dr2

(rm − r)2

]

= b2
m[−dt2 + dz2]

z ∼ −4πTm log(rm − r) → +∞.

The full metric is conformally flat, and interpolates between AdS2

in the UV and flat Minkowski in the IR.

ds2 = b(z)
[

−dt2 + dz2
]
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Transverse vs. longitudinal fluctuations

We can distinguish between fluctuations longitudinal and transverse
to the boundary direction of the string:

Transverse Longitudinal
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Transverse vs. longitudinal fluctuations

We can distinguish between fluctuations longitudinal and transverse
to the boundary direction of the string:

Transverse Longitudinal
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Transverse vs. longitudinal fluctuations

We can distinguish between fluctuations longitudinal and transverse
to the boundary direction of the string:

Transverse Longitudinal

We requireno informationcome from the quark at infinity.
⇒ we imposeinfalling boundary conditions asr → rm.
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Transverse vs. longitudinal fluctuations

The⊥ and‖ fluctuations behave differently:

∂r

[

R ∂r

(

δX⊥
)]

+
ω2b4

R
δX⊥ = 0,

∂r

[

R3

b4
∂r

(

δX‖
)

]

+ ω2RδX‖ = 0

R(r) =
√

b4(r) − b2
m
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Transverse vs. longitudinal fluctuations

The⊥ and‖ fluctuations behave differently:

∂r

[

R ∂r

(

δX⊥
)]

+
ω2b4

R
δX⊥ = 0,

∂r

[

R3

b4
∂r

(

δX‖
)

]

+ ω2RδX‖ = 0

R(r) =
√

b4(r) − b2
m ∼ b2

m 4πTm (rm − r), r ≃ rm.
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Angular dependence

The fluctuations⊥ and‖ to the direction of the string behave
differently.
One can transform the equation into the form of a Schrödinger
problem:

Transverse Longitudinal
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Angular dependence

The fluctuations⊥ and‖ to the direction of the string behave
differently.
One can transform the equation into the form of a Schrödinger
problem:

Transverse Longitudinal

The transverse modes have a continuous spectrum starting atω = 0,

the longitudinal modes aregapedand start atω = 4πTm
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An Effective Temperature?

The equation fortransverse fluctuationsclose torm is:

δX ′′ − 1

(rm − r)
δX ′ +

ω̂2

(rm − r)2
δX = 0, ω̂ ≡ ω

4πTm

same as close to a black hole horizon with temperatureTm.
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An Effective Temperature?

The equation fortransverse fluctuationsclose torm is:

δX ′′ − 1

(rm − r)
δX ′ +

ω̂2

(rm − r)2
δX = 0, ω̂ ≡ ω

4πTm

same as close to a black hole horizon with temperatureTm.

Are we seeing the emergence of aneffective temperatureset by the

confinement scale?
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An Effective Temperature?

BH: finite length Confining :∞ length
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An Effective Temperature?

BH: finite length Confining :∞ length

⇓ ⇓

Periodic euclidean time Non-compact Euclidean time
T = Th T=0

The Trailing String in Confining Holographic Theories – p.34



Dissipation at zero temperature

Thetransverseboundary correlator at small frequency behaves as:

GT
R(ω) ≃ ib2

mω +O(ω2), b2
m = σc the confining string tension
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Dissipation at zero temperature

Thetransverseboundary correlator at small frequency behaves as:

GT
R(ω) ≃ ib2

mω +O(ω2), b2
m = σc the confining string tension

The quantity[ImGR/ω]ω→0 is theviscous coefficientappearing in
(the long-time limit of) the momentum diffusion equation⇒ η = σc.
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Dissipation at zero temperature

Thetransverseboundary correlator at small frequency behaves as:

GT
R(ω) ≃ ib2

mω +O(ω2), b2
m = σc the confining string tension

The quantity[ImGR/ω]ω→0 is theviscous coefficientappearing in
(the long-time limit of) the momentum diffusion equation⇒ η = σc.

The confining vacuum is dissipative for the fluctuations of a single

quarkand the dissipation time scale is again set by the confinement

scale.
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Dissipation at zero temperature

Because of the gap in the longitudinal mode, the imaginary part of
thelongitufinalboundary correlator vanishes identically at small
frequency:

GL
R(ω) = 0 ω < 4πTm

GL
R(ω) ∼

√

(

ω

4πTm

)2

− 1 ω & 4πTm
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Dissipation at zero temperature

Because of the gap in the longitudinal mode, the imaginary part of
thelongitufinalboundary correlator vanishes identically at small
frequency:

GL
R(ω) = 0 ω < 4πTm

GL
R(ω) ∼

√

(

ω

4πTm

)2

− 1 ω & 4πTm

[ImGL
R/ω]ω→0 = 0 and there is no viscous friction for longitudinal

modes.
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Averaging over angles

The string solution breaks spontaneously spatial rotations
SO(3) → SO(2). For a given solution, the correlator will be
anisotropic:

Gij = GL(ω)ninj + GT (ω)(δij − ninj) ~n = ~n(θ, ϕ)
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Averaging over angles

The string solution breaks spontaneously spatial rotations
SO(3) → SO(2). For a given solution, the correlator will be
anisotropic:

Gij = GL(ω)ninj + GT (ω)(δij − ninj) ~n = ~n(θ, ϕ)

To obtain an angle-independent correlator we mustaverageover all
possible string solutions, i.e. over the string direction.
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Averaging over angles

The string solution breaks spontaneously spatial rotations
SO(3) → SO(2). For a given solution, the correlator will be
anisotropic:

Gij = GL(ω)ninj + GT (ω)(δij − ninj) ~n = ~n(θ, ϕ)

To obtain an angle-independent correlator we mustaverageover all
possible string solutions, i.e. over the string direction.
To quadratic order in the fluctuations:

Z =

∫

dΩ

4π
exp i

∫

dω δX i(ω)Gij(ω, Ω)δXj(−ω)

≃ exp i

∫

dΩ

4π

∫

dω δX i(ω)Gij(ω, Ω)δXj(−ω)

Thus the isotropic propagator is:̂Gij(ω) = 〈Gij(ω, Ω)〉ΩThe Trailing String in Confining Holographic Theories – p.37



Averaging over angles

The string solution breaks spontaneously spatial rotations
SO(3) → SO(2). For a given solution, the correlator will be
anisotropic:

Gij = GL(ω)ninj + GT (ω)(δij − ninj) ~n = ~n(θ, ϕ)

To obtain an angle-independent correlator we mustaverageover all
possible string solutions, i.e. over the string direction.
To quadratic order in the fluctuations:

Z =

∫

dΩ

4π
exp i

∫

dω δX i(ω)Gij(ω, Ω)δXj(−ω)

≃ exp i

∫

dω δX i(ω)

∫

dΩ

4π
Gij(ω, Ω)δXj(−ω)

Thus the isotropic propagator is:̂Gij(ω) = 〈Gij(ω, Ω)〉Ω
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Physical picture: the Shadow Quark

The friction coefficient arises because of infalling boundary
condition.

All calculation done on a single (observed) quark should be done by

assuming thatno informationis available or comes from the shadow

quark. E.g. the infalling wave condition atz → ∞
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Physical picture: the Shadow Quark

The friction coefficient arises because of infalling boundary
condition.

In practice, for any finite string, sooner or later information will come

back and the system will become non-dissipative: a finite length of

the string destroys the small-ω linear term inImGR. A finite quark

massM will introduce an IR cutoff to the string length.
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Physical picture: the Shadow Quark

The friction coefficient arises because of infalling boundary
condition.
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Trailing String at finite velocity

Suppose the boundary quark has a constant velocity~v. The more
general solution is now:

X(r, t) = ~vt + ~ξ(r), ξ′(r) =
~c√

b4 − C2
, |~c|2 +

(~v · ~c)2
1 − v2

= C2

Again, the action does not depend on the string direction, and the

preferred solution is the one withC = b2
m.

The Trailing String in Confining Holographic Theories – p.39



Drag Force

From the classical solution we can compute the net force exherted
by the string, as the worldsheet momentum. This correspodnsto the
vev of the force operator dual toδX:

〈 ~F〉 =
σc

(1 − v2 sin2 θ)3/2







cos θ

(1 − v2) sin θ cos ϕ

(1 − v2) sin θ sin ϕ
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Drag Force

From the classical solution we can compute the net force exherted
by the string, as the worldsheet momentum. This correspodnsto the
vev of the force operator dual toδX:

〈 ~F〉 =
σc

(1 − v2 sin2 θ)3/2







cos θ

(1 − v2) sin θ cos ϕ

(1 − v2) sin θ sin ϕ







Forv ≪ 1 it is directed along the string, and it represents the constant

force applied by a string with tensionσc on its endpoint.
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Fluctuations

Now we have two ways of defining transverse and longitudinal
modes:

• With respect to~v

• With respect to the string direction.
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Fluctuations

Now we have two ways of defining transverse and longitudinal
modes:

• With respect to~v

• With respect to the string direction.

Only the first distinction has a meaning on the boundary.
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Integrating over angles

The way to perfom the angular average is not unique.

• We can average with the usual meausre on the unit sphere. This
means assuming that for each choice of the angle, the
shadow-quark has the same velocity as the observed quark.
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means assuming that for each choice of the angle, the
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Integrating over angles

The way to perfom the angular average is not unique.

• We can assume the shadow quark has an arbitrary constant
velocity ~w and average over that. Ast → ∞, the angleθ will be
constant and function of~w and~v:
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Integrating over angles

The way to perfom the angular average is not unique.

• We can assume the shadow quark has an arbitrary constant
velocity ~w and average over that. Ast → ∞, the angleθ will be
constant and function of~w and~v:
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Integrating over angles

The way to perfom the angular average is not unique.

• We can assume the shadow quark has an arbitrary constant
velocity ~w and average over that. Ast → ∞, the angleθ will be
constant and function of~w and~v:

cosθ =
~v

|v|
~w − ~v

|~w − ~v|
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Averaged correlators

Both averaging procedures can be carried outanalytically. The
result is always in the form:

〈G‖〉 = A(v)GL(ω)+B(v)GT (ω), 〈G⊥〉 = C(v)GT (ω)+D(v)GL(ω)
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Averaged correlators

Both averaging procedures can be carried outanalytically. The
result is always in the form:

〈G‖〉 = A(v)GL(ω)+B(v)GT (ω), 〈G⊥〉 = C(v)GT (ω)+D(v)GL(ω)

• GT,L(ω): (essentially) the same correlators we found in the
static case;

• A, B, C, D : simple functions ofv whichdepend on the kind of
average.

• In the static limit we obtain the expected isotropic result:

〈G‖,⊥〉 → 1

3
GL +

2

3
GT v → 0

• The large-ω behavior isuniversal.
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Consistency condition

How to decide which average is the correct one?
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Consistency condition

How to decide which average is the correct one?

Under the same general assumptions that give the Generalized
Langevin equation as the effective description of the quark
fluctuations, alow-frequency Ward identitymust be obeyed:

d〈F〉
dv

= −i

[

dGR(ω)

dω

]

ω=0
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Consistency condition

How to decide which average is the correct one?

Under the same general assumptions that give the Generalized
Langevin equation as the effective description of the quark
fluctuations, alow-frequency Ward identitymust be obeyed:

d〈F〉
dv

= −i

[

dGR(ω)

dω

]

ω=0

• the simple angular average over the string direction DOES NOT
satisfy this relation;

• the average over the velocity of the shadow quark~w DOES.

• This is a consistency check that the shadow-quark picture
(complete ignorance about the string boundary at infinity) is the
correct one if we want to describe a consistent ensemble
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Conclusion

• We computed the trailing string solution and corresponding
fluctuation in confining holographic backgrounds.

• The solution exhibits new features (e.g. spontanous breaking of
isotropy), and interesting dynamics (viscous drag and low
frequency modes at zero temperaure)

• Integration over moduli gives correlators which can be usedto
define physical Langevin correlators for the diffusion problem
at finite temperature.

• The consistent interpratation of the vacuum correlator is in
terms of a quark pair, one of which is very far and unobserved.

• Next: finite mass quarks, comparison with experimental results.
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